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Abstract: Existing power anomaly detection is mainly based on analyzing static offline data. But
this method takes a long time and has low identification accuracy when detecting timing and fre‑
quency anomalies, since this method requires offline screening, classification and preprocessing of
the collected data, which is very laborious. Anomaly detection with supervised learning requires a
large amount of abnormal data and cannot detect unknown anomalies. So, this paper innovatively
proposes the idea of applying Time‑series Generative Adversarial Networks (Time‑GAN) in a dis‑
patching automation system for the identification, diagnosis and prediction of massive data flow
anomalies. First of all, regarding the problem of insufficient abnormal data, we use Time‑GAN to
generate a large number of reliable datasets for training fault diagnosis models. In addition, Time‑
GAN can ameliorate the imbalance between various types of data. Secondly, unsupervised learn‑
ing methods such as Density‑Based Spatial Clustering of Applications with Noise (DBSCAN) and
K‑means are used to detect unknown anomalies that may exist in the power grid. Finally, some
supervised learning methods are selected to compare with unsupervised learning methods. Experi‑
mental results show that the proposed algorithm has a higher recognition rate of known anomalies
than other benchmark algorithms and it can find new unknown anomalies. It lays a good foundation
for the safe, stable, high‑quality and economical operation of the power grid.

Keywords: Time‑GAN; DBSCAN; supervised learning; fault diagnosis; fault prediction

1. Introduction
With the rapid expansion of the power grid’s construction, various dispatching au‑

tomation systems have successively built upon power dispatching data networks. The era
of big data has officially arrived. In order to meet the needs of the smart grid, the intelli‑
gent dispatching automation system should have a powerful, intelligent and early‑warning
function, and we should pay attention to the coordination of system safety and economy
in dispatching decisions. When the system fails, it can quickly diagnose faults and pro‑
vide fault recovery decisions. The current anomaly detection methods for scheduling data
mainly include methods such as simple threshold judgment based on a single system and
analysis methods based on static offline data. The simple threshold judgment method
based on a single system has limitations. On one hand, the utilization rate of equipment
information and the accuracy of status evaluation are low. On the other hand, it is difficult
to detect the latent faults and fault categories of the equipment.

In recent years, domestic and foreign scholars have actively explored anomaly detec‑
tion of the smart grid based on machine learning and they have achieved certain results.
Reference [1] uses the anomaly detection method based on support vector machine to di‑
agnose the abnormality according to the characteristics of the power system’s data and it
achieves a higher efficiency compared to traditional methods. Due to the rapid expansion
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of the power grid’s scale, power monitoring data have the characteristics of sequential and
rapid and have continuous arrival time series. To address this, some scholars have carried
out research on the time series problems of power systems. Yao et al. [2] combine the Con‑
volutional Neural Networks (CNN) and Support Vector Machine (SVM) models to detect
abnormal consumption behaviors of users and achieve better results compared to tradi‑
tional methods. Yang et al. [3] use Long Short Term Memory (LSTM) to extract features
based on the traffic anomaly detection method of the Light Gradient Boosting Machine
(LightGBM) and LSTM models. Experimental results show that this method has a higher
anomaly classification accuracy and a higher anomaly detection accuracy. Liu et al. [4]
use LSTM to extract features and adopt the traffic anomaly detection method based on the
improved SVM embedding decision tree model. Compared with the traditional method,
it has a higher accuracy. Authors in [5] use the self‑organizing neural network to quantify
the historical data of power transmission and transformation equipment, mine the data
changing over time and use the auto regressive model to establish an anomaly model to
achieve the goal of high detection ratio and low false warning ratio.

The above‑mentioned references mainly detect known abnormal features, but there
are still many faults in electric power that cannot be analyzed for specific reasons and
there are still many abnormalities that are unknown, so unsupervised learning is required.
Unsupervised learning is a learning method that learns patterns from raw data without
the help of labels. Unlike supervised learning, which artificially specifies labels of data
categories under prior knowledge, unsupervised learning can discover the inherent con‑
nections or structures contained in the data. In recent years, domestic and foreign scholars
have achieved some research results in the application of clustering algorithms to identify
anomalies in network traffic in power systems. Huang et al. [6] use the Canopy‑K‑means
algorithm to cluster the traffic data in the key business system of electric power to identify
attacking traffic and business traffic. Attacking traffic refers to network packets sent by ille‑
gitimate IP addresses, including attacks on important control systems. The authors in [7]
use the DBSCAN algorithm to establish a power transformer fault diagnosis model and
take the typical oil chromatography data of various fault types as the input of the model to
obtain typical clusters of various faults. Wang et al. [8] apply the method of fuzzy cluster‑
ing to realize the fusion of multiple expert diagnosis results in the process of power system
fault diagnosis and achieve a faster fault diagnosis result. Dong et al. [9] use methods such
as hierarchical clustering, K‑means and DBSCAN to improve the detection rate of wire‑
less network intrusion detection methods, to reduce false detection rates and to improve
the overall performance of intrusion detection systems. Jian et al. [10] use the hierarchical
clustering method to construct an abnormal traffic model, which improves the detection
efficiency of attacking traffic in the network. Compared with supervised learning, unsu‑
pervised learning methods such as DBSCAN and K‑means can distinguish abnormal data
from normal data and the separated anomalies may contain many unknown anomalies,
which are of great help for us to explore the possible unknown anomalies in electric power.

When tackling anomaly detection problems in the power grid, some following chal‑
lenges should be well met. Firstly, the traditional power grid fault diagnosis methods are
not accurate enough. What’s more, it is difficult to find hidden dangers and identification
of grid faults will also rely onmore Key Performance Indicators (KPI). So, one objective for
us is to improve the accuracy of the detection of unknown anomalies. Secondly, existing
works lack data support and require a large number of manually trained datasets, which is
very time‑consuming. So, how to expand the sample of a small number of packets so as to
obtain a large number of reliable datasets in such a complex network environment needs
to be well addressed. Finally, messages in the power grid have various types, like control
message, signaling message, telemetry message and call message. And different types of
messages have different generation speed. So, we need to classify messages according to
their types and ensure the sample balance of various types of power data.

Among all those challenges, how to enlarge training data used in unsupervised learn‑
ing is fundamental andGenerativeAdversarial Network (GAN) is to be adopted. As a typi‑
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cal method of artificial intelligence, GAN consists of two independent deep networks [11],
namely, generator and discriminator, where generator is used to generate samples and
discriminator is used to classify samples when training GAN. Using this method to rec‑
ognize the Mixed National Institute of Standards and Technology (MNIST) handwriting
dataset, experimental results demonstrate the potential of this framework. However, it
still has some problems, such as difficulties in training and lack of diverse generated sam‑
ples. To address these problems, references [12,13] propose Wasserstein GAN (WGAN)
and it shows that this framework can ensure the stability in GAN training and guaran‑
tee the diversity of generated samples. Further, the method of Time‑GAN is introduced
in [14], which is specially designed to generate real‑time series, and this kind of data are
widespread in the power grid. Because WGAN and traditional GAN do not consider the
temporal dynamics of the training set, this method of Time‑GAN has obvious advantages
in generating time series.

Therefore, this paper innovatively proposes the idea of applying Time‑GAN to the
field of online analysis of data volume and rapid identification of problems in a dispatch‑
ing automation system and combines the idea of Time‑GAN with typical fault diagnosis
methods. Using the idea of Time‑GAN, based on a small number of datasets, a large num‑
ber of reliable datasets are obtained for the training of fault diagnosis models. The method
above not only reduces the time of manually labeling training datasets but also improves
the precision of the fault diagnosis model. Then, the expanded samples are input into the
supervised learning detection model and the unsupervised learning detector for compar‑
ison. Finally, unsupervised learning is used to detect the unknown anomalies that may
exist in the power grid. The simulation results show that this method can achieve accurate
and efficient power grid fault diagnosis and prediction results, which lay a good founda‑
tion for the safe, stable, high‑quality and economical operation of the power grid.

The rest of the paper is organized as follows. Section 2 presents the system model.
Section 3 discusses the proposed fault diagnosis method. Section 4 presents the experi‑
mental results and analysis. Section 5 concludes this paper.

2. SystemModel
According to the structure of a power dispatching automation system and the ab‑

normal classification characteristics of dispatching business information flow, this paper
designs the abnormal characteristics and fault identification process based on massive in‑
formation flow.

2.1. Power Dispatching Automatic System
The data collection and analysis scene of the power dispatching automation system is

shown in Figure 1, including the main network and the distribution network, respectively,
collecting datagram from their own networks. Among them, the data collection center
mainly collects the message data in the main network; that is, the message data are sent
from the remote control device of the factory station through a network switch to the main
network data collection center and are then sent to the anomalies detection server for fault
diagnosis. The data acquisition center mainly collects the message data in the distribution
network, which means the message data are sent by the power distribution automation
terminal of the factory station. The power distribution automation terminal of the factory
station sends data to the safe access area of the main station, and the message data are
collected to the network switch in the safe area and then sent to the distribution network
data collection center. The data collection center of the distribution network is connected
to the switch in the safe area through the mirror port. Based on the collected big data
and AI technology, the anomalies detection and diagnosis server can intelligently identify,
diagnose and predict the abnormal faults of the power dispatching automation system.
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Figure 1. Schematic diagram of data acquisition and processing of power dispatching automa‑
tion system.

2.2. Anomaly Classification of Scheduling Service Information Flow
The real‑time performance and reliability of scheduling business information flow

directly affect the realization of various business functions and they are specifically re‑
flected in the fact that the transmission delay should be guaranteed within the required
time range with no packet loss or retransmission occurrences. Since the channel, equip‑
ment and system often have some problems in design, setting andmaintenance that cannot
be completely eliminated, sometimes therewill be some abnormal information. Part of this
abnormal information is the response of the real state of the site and the other is caused
by various errors. These abnormalities have troubled the power system’s personnel for
operation and maintenance.

Classified according to the formation mechanism and characteristic quantity of dis‑
patching business information flow anomalies, the data flow anomalies in this paper are
divided into functional anomalies, timeliness anomalies, communication anomalies, in‑
tegrity anomalies and frequency anomalies. Among them, functional anomalies include
message disorder and telemetry values not being refreshed. Timing anomalies include ir‑
regular message delay and remote signaling jitter. Communication anomalies include ab‑
normal flow and communication retransmission anomaly. Integrality anomalies include
incomplete message and intermittent incomplete message. Frequency anomalies include
frequent uploading of remote message and collective uploading of telemetry messages.

Because the traditional power grid anomaly detection is mainly based on functional
anomalies and timeliness anomalies, the accuracy and real‑time performance are poor, so
this paper makes correlations based on the experience of experts and mainly analyzes the
correlation between some communication anomalies, timeliness anomalies and message
parameters. Among them, communication anomalies include device reboot error and de‑
vice alternate channel error. Timeliness anomalies include telemetry errors and total call
error, as shown in Tables 1 and 2.

2.3. Abnormal Characteristics and Fault Identification Process Based on Massive
Information Flow

Aiming at the characteristics of the power grid’s abnormal data, this paper designs
the abnormal characteristics and fault discrimination and counting framework based on
massive information flow, as shown in Figure 2. First of all, the data generated by the
power dispatching data network are obtained by nondestructive collection to obtain mes‑
sage information flow. For the problemof insufficient abnormal data, we use Time‑GAN to
obtain a large number of reliable datasets based on a small number of datasets. The dataset
is used for training the fault diagnosismodel. Then, supervised learning and unsupervised
learning are compared for the accuracy of the power network’s anomaly recognition. For
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unknown anomalies thatmay exist in the power grid, unsupervised learningmethods such
as DBSCAN and K‑means are used to detect them. These methods can achieve an accurate
and efficient grid fault diagnosis and prediction effect. It lays a good foundation for the
safe, stable, high‑quality and economical operation of the power grid.

Table 1. Network KPI parameters.

KPI Parameters Symbolic KPI Parameters Symbolic

104 message 104_M TCP Keep‑Alive message explosion TCP_KA_E

Type ID TY The number of retransmission packets exploded RET_E

Timestamp TS Remote letters explosion RL_E

Telemetry message explosion TM_E Status value SV

Table 2. Correlations between fault cause and message parameters.

Anomaly Classification Representational Phenomenon KPI

Device reboot error A large number of devices restart recovery 104_M, TY, TS, TCP_KA_E

Device Alternate Channel Error Can’t connect to backup channel 104_M, TY, TS, TCP_KA_E, RET_E

telemetry error Collective telemetry upload 104_M, TY, TS, TM_E

Total call error The total summoning frequency is abnormal 104_M, TY, TS, TCP_KA_EProcesses 2023, 11, x FOR PEER REVIEW 6 of 19 
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information flow.

3. System Fault Diagnosis and Prediction Based on Time‑GAN and DBSCAN
This paper proposes a system fault diagnosis and prediction model based on the gen‑

eration adversarial network, as shown in Figure 3. Firstly, a small amount of KPI data
under different system states are collected by the power dispatching automation system
and the correlation between the fault causes andmessage parameters is sorted out by com‑
bining expert knowledge. Secondly, feature selection is carried out on the power data to
select the best feature combination and thenwe input the processed small sample data into
the generated adversarial network for data fitting under various network states, so as to
obtain a large number of marked simulation data and unmarked data under various net‑
work states. Next, the generated adversarial network generates a simulation dataset and
the original dataset is processed simultaneously. The finally processed data are divided
into a training set and a test set. Themarked dataset is input into the unsupervised learning
fault detection module and the recognition result of known anomalies is obtained, which
is compared with that of supervised learning. Finally, the unmarked data is input into the
unsupervised learning anomaly recognition module to output the recognition results of
possible unknown anomalies.
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3.1. Data Generation by Time‑GAN
Time‑GAN is a time‑series data generation model. Its main idea is to combine the

versatility of the unsupervised GAN method with the conditional probability principle
provided by the supervised autoregressive model; it contains a generator, a discriminator
and a time aligner. The generator uses random noise to generate fake time series data,
the discriminator distinguishes real and fake data, and the time aligner aligns the data to
handle different time scales. The generator uses convolutional and deconvolutional layers
to generate data, and the discriminator is a convolutional neural network classifier. The
time aligner uses a self‑attention mechanism to align data on the time axis. The model
optimizes the generator and discriminator through adversarial training to generate more
realistic time series data. To generate a time series with dynamic retention time, Time‑
GAN is used in this paper to expand the grid data.

This paper uses the data generation model of Time‑GAN proposed by Jinsung
Yoon et al. [14], which is specially designed for the generation of real Time series. Firstly,
the generation model not only introduces the unsupervised antagonistic loss of real data
and synthetic data, but also introduces the gradual supervisory loss of original data as su‑
pervision. Secondly, the method introduces an embedded network to provide reversible
mapping between feature space and latent space, which reduces the dimension of adver‑
sarial learning space. Finally, supervision losses are minimized by training the embedded
network and the generator network jointly, so that the latent space not only helps to im‑
prove parametric efficiency, but also helps the generator to learn time relationships.

After the IEC104 packet is obtained, the packet is segmented according to the packet’s
structure. Then, the features selected by Principal Component Analysis (PCA) are ex‑
tracted and taken as the sample set to be expanded, in which the timestamp features of
the message are retained. Then, after the extended sample set is normalized, the batch
is processed and converted into the data form suitable for Time‑GAN processing. Finally,
according to the common generation ratio of 1:1, through the game between generator and
discriminator in the Algorithm 1, the extended sample set of power dispatching network
is obtained after 50 iterations of output.

The hyperparameter λ is used to balance the target loss function LS and LR, while η
is used to balance the target loss function LS and LU. In practice, we find that Time‑GAN
is insensitive to λ and η, so for all of our experiments, we set λ = 1 and η = 10.
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Algorithm 1 Time‑GAN Algorithm [14]

1 Input: λ = 1, η = 10, training set D, input size per batch nmb, learning rate γ

2 Initialization: θe, θr, θg, θd
3 while generator does not converge do
4 Transformation between feature space and latent space
5  Sample (s1, x1,1:Tn ), . . . ,

(
snmb , xnmb ,1:Tnmb

)
i.i.d
∼ D

6  for n = 1, . . . , nmb, t = 1, . . . , Tn do
7   (hn,S, hn,t) = (eS(sn), eX (hn,S, hn,t−1, xn,t))
8   (s̃n, x̃n,t) = (rS(hn,S), rX(hn,t))
9 Generate latent space codes
10  Sample (zS,1, z1,1:Tn ), . . . ,

(
zS,nmb , znmb ,1:Tnmb

)
i.i.d
∼ pZs×x

11  for n = 1, . . . , nmb, t = 1, . . . , Tn do
12   

(
ĥn,S, ĥn,t

)
=

(
gS(zS,n), gX

(
ĥn,S, ĥn,t−1, zn,t

))
13 Discrimination between real data and synthetic data
14  for n = 1, . . . , nmb, t = 1, . . . , Tn do
15   

(
yn,S,yn,t

)
=

(
dS(hn,S),dX

(←
un,t,

→
un,t

))
16   

(
ŷn,S, ŷn,t

)
=

(
dS

(
ĥn,S

)
,dX

(←
un,t,

→
un,t

))
17 Calculate reconstruction loss, unsupervised and supervised loss
18  L̂R = 1

nmb
∑nmb

n=1[∥sn − s̃n∥2 + ∑t ∥xn − x̃n,t∥2]

19  L̂U = 1
nmb

∑nmb
n=1

[
[logyn,S + ∑t logyn,t] +

[
log(1− ŷn,S) + ∑t log(1− ŷn,t)

]]
20  L̂S = 1

nmb
∑nmb

n=1
[
∑t ∥ht − gX(hn,S, hn,t−1, zn,t)∥2

]
21 Update by gradient operator θe, θr, θg, θd
22  θe = θe − γ∇θe −

[
λL̂S + L̂R

]
23  θr = θr − γ∇θr −

[
λL̂S + L̂R

]
24   θg = θg − γ∇θg −

[
ηL̂S + L̂U

]
25  θd = θd + γ∇θd

− L̂U
26 Generate synthetic data
27  Sample (zS,1, z1,1:Tn ), . . . , (zS,N , zN,1:TN )

i.i.d
∼ pZs×x

28 Generate synthetic hidden space codes
29  for n = 1, . . . , N, t = 1, . . . , Tn do
30   

(
ĥn,S, ĥn,t

)
=

(
gS(zS,n), gX

(
ĥn,S, ĥn,t−1, zn,t

))
31 Convert latent space code to feature space
32  for n = 1, . . . , N, t = 1, . . . , Tn do
33   (ŝn, x̂1,Tn ) = (rS(hn,S), rX(hn,t))
34 end while
35 output: D̂ = { ŝn, x̂1:Tn}

N
n=1

3.2. DBSCAN Algorithm
DBSCAN is a density‑based spatial clustering algorithm. The algorithm divides re‑

gions with sufficient density into clusters and finds clusters of arbitrary shape in the noisy
spatial database. The cluster is defined as the maximum set of density‑connected points.
It types the samples according to the density of the sample space and separates the sample
points that do not belong to the density region. A DBSCAN algorithm can learn the data
distribution from a group of power grid datasets, classify the message samples with simi‑
lar patterns into a cluster and mark the samples that are out of the cluster in the dataset as
abnormal samples.

However, a DBSCAN algorithm itself also has limitations. In its working process, it
needs a large amount of data to participate in clustering to achieve better results. This is
because a relatively dense data cluster cannot be formedwhen the amount of data involved
in clustering is too small, so the cluster cannot be formed. At the same time, when process‑
ing anomaly detection tasks, a too small amount of data can not help distinguish abnormal
samples from normal samples, resulting in the algorithm failure in anomaly detection. In
this paper, the limitations of a DBSCAN algorithm can bewell circumvented because there
is a large amount of normal message data in the power dispatching network environment.
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Here’s how it works. A DBSCAN algorithm firstly collects a dataset D containing n
data samples, determines the parameter ε by elbow point method and then determines the
parameter µ by empirical method. The function of the parameter epsilon is to describe the
radius of the core neighborhood, and µ is to describe the minimum sample number in the
core neighborhood. Only when these two parameters are determined, the algorithm can
carry out the next calculation. In this paper, the values of ε is 2.5 and µ is 14. The specific
value process is described in detail in Section 4.4. Then, the D. Cluster of all samples in
dataset D is set to the initial state of unclustered. The D. Cluster denotes the cluster classi‑
fication tag of the samples. For each sample Di, we first judge whether there are at least µ
number of samples in the neighborhood radius of ε. If so, a new cluster C is created and is
classified into clusterC. Then, all samples Ni in the ε radius of Di are extracted to determine
whether there are at least µ number of samples in the neighborhood radius of ε. If so, Ni
will be classified into cluster C. Otherwise, the classification cluster markerN. cluster of Ni
will be tagged unclustered. In the end, the samples tagged unclustered will be considered
outliers. Compared with the K‑means algorithm, this algorithm does not need to specify
the cluster number in advance. The specific pseudocode is shown as follows (Algorithm 2).

Algorithm 2 DBSCAN algorithm [15]

1 Input: dataset D containing n objects, radius parameter ε, minimum number of samples µ

2 Initialization: ε = 2.5, µ = 14, Cluster list[ ]
3 Set the cluster classification tag D.cluster of Di data in the dataset as unclustered
4 For i = 1, . . . , N, do
5 If there are at least µ samples within the domain radius ε of Di (whether the sample is a core
instance)
6   Create a new cluster C, add C to the Cluster list[ ], and add Di to C
7    Take all samples in the ε‑neighborhood radius of Di to form a set N (N is consisted
of Ni)
8   for each sample Ni in N
9     mark Ni as clustered
10     If there are at least µ samples within the neighborhood radius ε

11      Add sample Ni to C
12     If Ni does not belong to C
13      Set the cluster classification tag D.cluster of Ni data in the dataset as unclustered
14 End while
15 Data that are still marked as unclustered are classified as outliers, marked as−1 and placed
in the Cluster
16 list[]
17 Output: the samples tagged as unclustered

4. Performance Analysis
The dataset used in this paper was provided by the Nanjing Power Supply Branch

of Jiangsu Electric Power Co., Ltd. (Nanjing, China) during 2021–2022. There are nearly
12 million pieces of data in total. Among them, 9868 pieces are faulty data; it is also a data
set; the ratio of training set and test set is 0.7:0.3, respectively. The parameter settings of
the Time‑GAN algorithm and the parameter settings of DBSCAN are shown in Section 3.
The model parameters of other algorithms are set by default, such as PCA, GAN, WGAN,
SVM, XGBoost and CNN.

In this paper, the collected dataset is saved as K12 text file format. In the K12 text
file format, the hexadecimal bytes of information are stored as ‘ | ’ character segmentation.
Each piece of data contains layer headers and 104 protocol information. The packet infor‑
mation starts with the MAC address. The first 12 bytes correspond to the MAC source
address and MAC destination address. Protocol 104 starts with 68 and the next byte rep‑
resents the length of the Application Protocol Data Unit (APDU).
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4.1. Optimal Feature Selection
The timing exception and frequency exception correlate the characteristics of protocol

header information at each layer of the dataset and the characteristics of 104 packets. The
feature dimension of the dataset is greatly increased, so it is necessary to reduce the feature
dimension of the entire dataset first.

We perform feature dimensionality reduction on the entire dataset by means of com‑
bining expert knowledge and PCA. Expert knowledge refers to the classification table es‑
tablished by experts based on previous abnormal diagnosis, as shown in Tables 1 and 2.
PCA is a data dimension reduction algorithm. The main idea of PCA is to reconstruct
k—dimensional features on the basis of original n—dimensional features. To be specific,
we first find a set of mutually orthogonal axes in sequence from the original space and the
selection of new axes is closely related to the data itself. The first new axis selected has the
direction with the largest difference in the original data. The second new axis selected has
the plane orthogonal to the first axis with the largest variance. The third axis selected has
the plane orthogonal to the first and second axes with the largest difference. By analogy,
we find that most of the variance is contained in the first k axes and the variance of the
later axes is almost zero. So, we can ignore the rest of the axes and just keep the first k axes
with most of the variance. In fact, this is equivalent to retaining only the dimensional fea‑
tures containing most of the variance, while ignoring the dimensional features containing
almost zero variance, so as to achieve dimensionality reduction of the dataset.

The dataset’s features mainly consist of the header information of each layer proto‑
col and 104 packets. The header information of each layer includes Media Access Con‑
trol (MAC) source address, MAC destination address, IP type, IP header length, protocol,
timestamp, timestamp echo reply, etc. The features of the packet contain start character,
APDU length, control field, type flag, transmission reason, etc.

The process of feature selection is shown in Figure 4. Firstly, we preprocess the
dataset; preprocessing of the dataset mainly includes format conversion, truncation and
filling, base conversion and annotation. The format conversion is to convert the dataset’s
K12 text file format into comma‑separated values (CSV) format. Truncation and filling are
to unify the number of bytes of the packet into 40. When the number of bytes of the packet
exceeds 40 bits, the excess bytes will be truncated. When the number of bytes of the packet
is less than 40 bits, −9999 will be used to supplement the vacancy. Base conversion is to
convert hexadecimal byte information to decimal, because the hexadecimal notation con‑
tains more letters. Marking is to mark data according to existing exception categories. For
example, device reboot error is marked as 0. Secondly, the importance of transport layer
features and 104 message features are sorted according to the expert knowledge and PCA.
Then, the model complexity andmodel accuracy are comprehensively considered to select
the appropriate number of features to obtain the best feature combination in the order of
importance. Finally, the dataset dimension was reduced from 40 to 15 dimensions.

In this paper, a PCA algorithm is first used to screen features. We use the PCA al‑
gorithm model to sort the importance of the features, which reflects the influence of each
feature in the network fault diagnosis process. We mark the 40 features with the numbers
1 through 40, for example, the type of flag feature is labeled 19. We use a PCA algorithm
to obtain their weight values f1 through f40 successively and arrange the obtained weight
values in descending order. We delete the features with low feature weight value suc‑
cessively and select the feature combination with a high special weight value for model
training. A different number of feature selection will obtain a different model accuracy.
The importance ranking of features and the influence of different feature combinations on
model accuracy are shown in Figure 5a,b.

According to Figure 5a,b, only the top 14 features have a high impact on the accuracy
of the model. Among them, f19 has the highest weight value, which represents the weight
value of the type of flag. When the number of KPIs reaches 15, the accuracy reaches the
highest. We first use the PCA method to sort the importance of features in the dataset,
and we select the top 14 features. When the number of features is 15, the model accu‑
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racy reaches the highest and adding new features again would not improve the model’s
accuracy. This suggests that our feature selection does not screen out important features.
Based on the PCA’s feature selection and expert knowledge, the best feature combination
is selected, including IP length, protocol, source address, destination address, TCP serial
number, acknowledgement number, time stamp, 104 packet start character, APDU length,
type flag, control field, transmission reason, application service data unit, information ele‑
ment and information object address.
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As shown in Figure 5a,b, the original training set contains all features, and its accuracy
is the accuracy when the number of features is 40. However, when we selected the most
important 15 features as the training set, the accuracy reached the highest. Moreover, the
dimension of the training set decreases after feature selection, so the training time of the
model can be reduced.

4.2. Comparison of Accuracy of Various Algorithms on Known Anomalies
We hope that the generated samples can be used not only as a test set to detect the

model, but also as a training set to solve the problemof insufficient training samples. There‑
fore, this paper sets up twomethods to test the generated samples. Onemethod is to use the
model trained by the original data to test the generated samples, while the other method
is to use the model trained by generated samples to test the original data. The samples
generated by the three algorithms of classic GAN, WGAN and Time‑GAN are compared.
The test set used in the second method is the same as the original dataset used for gener‑
ating samples. Taking the anomalies of device restart error as an example, the number of
original samples with anomalies is 1008.

Firstly, we test the accuracy of generated data and the results are shown in Figure 6.
It can be seen that the optimal generation ratio of Time‑GAN is much larger than the other
two algorithms of classic GAN and WGAN. Moreover, the accuracy rate of Time‑GAN is
100% when the generation ratio is a number between 1 and 4.
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Next, we test the accuracy of the generated model. Because a CNN algorithm has the
highest accuracy in anomaly identification compared with other supervised learning algo‑
rithms, the data generated by selecting the optimal generation ratio of each algorithm are
input into the CNN algorithm to train the model and the same original abnormal samples
are used to test the generated model. The results are shown in Table 3 and it can be seen
that the accuracy of the generation model of Time‑GAN is slightly higher than that of the
classic GAN and WGAN generation algorithms.
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Table 3. Best generating scale model accuracy.

Generating Algorithm Classic GAN WGAN Time‑GAN

Optimal generation ratio 1:1 1:2.1 1:4

Generating model accuracy 0.93 0.96 1

Generating model precision 0.92 0.96 1

Generating model recall 0.94 0.96 1

As can be seen from Figure 6 and Table 3, Time‑GAN is the algorithmwith the highest
expansion ratio and more abnormal samples are helpful to our model training. Because
the Time‑GAN algorithm considers the time characteristics between datasets, the accuracy
of the model is the highest. State Grid tried to use classical GAN to enlarge the samples
before, but the enlarged samples had serious distortion and could not be used as a dataset.
Therefore, this paper chooses Time‑GAN as the generation method.

4.3. Comparison of Accuracy of Various Algorithms on Unknown Anomalies
It can be seen from Section 4.2 that Time‑GAN has the best performance in enlarg‑

ing the power grid’s samples, so in this section we would adopt Time‑GAN to enlarge
abnormal samples whether marked or unmarked with the optimal generation ratio of 1:4.
The supervised learningmethods commonly used include SVM, XGBoost and CNN,while
unsupervised learning methods include DBSCAN and K‑means.

We select four kinds of anomalies for comparison, including device restart error, com‑
munication interruption, telemetry collective uplink and total call error. In the test dataset,
there are four types of abnormal message data that are the most critical. In addition to
collecting the small number of abnormal message data from the real power grid’s envi‑
ronment, we enlarge the abnormal sample data with a generation ratio of 1:4 through the
Time‑GAN method. Apart from abnormal message data, the test set also includes a large
number of normal message data collected from the real power grid’s automated dispatch‑
ing system. This implies that the sample set obtained is unbalanced, since the proportion
of abnormal message data is very small. As to the supervised learning methods, namely
SVM, XGBoost and CNN+LSTM methods, we mark the messages during training, while
in terms of the unsupervised learning methods which include DBSCAN and K‑means, we
do not mark any data during training. In the final test, each algorithm classifies each mes‑
sage using the above test set. The category labels are named normal, device restart error,
communication interruption, telemetry collective uplink and total call error. The accuracy
of the test set is shown in the following table.

As can be seen from Table 4, the DBSCANmethod has the highest accuracy. In super‑
vised learning methods, the model test set of a CNN combined algorithm has the highest
accuracy, but it is far less than DBSCAN, the unsupervised learning method. Considering
that DBSCAN can effectively isolate abnormal data, we intend to use DBSCAN to isolate
possible unknown exceptions from the dataset and let experts further analyze whether it
is a new exception.

Table 4. Various abnormal accuracy.

SVM XGBoost CNN DBSCAN K‑Means

Device restart error 0.12 1 0.92 1 0.37

Communication interruption 0.74 0.65 0.72 1 0.45

Collective telemetry upload 0.23 0.52 0.82 1 0.76

Total call error 0.46 0.92 1 1 0.49
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4.4. Unknown Anomaly Detection
Grid data are constantly being transmitted and there could exist various kinds of un‑

known anomalies in the existing electric power grid in addition to the ones we’ve already
found and documented. However, supervised learning requires a large number ofmarked
anomaly samples as a training set to train the model for identifying anomalies. Under this
circumstance, we propose applying the unsupervised learning method to detect unknown
anomalies in the power grid. According to the characteristics of power data, K‑means and
DBSCAN are selected for comparison with the unsupervised learning methods commonly
used. The sample adopted is the dataset with known anomalies removed and the dataset
may contain other unknown anomalies, which is called the preliminary screening dataset.

4.4.1. Applying DBSCAN Algorithm to Detect Unknown Anomalies
In this paper, 85,033 preliminary screening datasets are taken as input and aDBSCAN

clustering algorithm is performed on them. Firstly, we should determine the parameters
of the algorithm, including the neighborhood radius ε and theminimum number of points
within the domain radius that become the core object µ. The minimum number of points µ
is determined empirically, which is usually twice the number of selected features, and it is
in this paper determined as 30. The common way to determine the neighborhood radius ε
is the elbow point method and it is determined here as 2.5. The result is shown in Figure 7,
where 18,000 samples are selected to draw the k‑distance diagram.
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We find that only telemetry messages may have unknown anomalies. So, we analyze
the classification results of telemetry messages as well, and we only show the analysis re‑
sults of the telemetry information. The result of clustering byDBSCANalgorithm is shown
in Figure 8. After the preliminary screening of 85,033 datasets is processed by DBSCAN,
the number of transmitted telemetry packets with cause 3 is 67,947, the number of trans‑
mitted S messages with cause 0 is 17,013, the number of transmitted telemetry message
with cause 20 is 48 and the number of transmitted telemetry messages with cause 6, 7, 10 is
11, 11, 4, respectively. With the analysis of expert knowledge, we know that both type 0
and type 2 are composed of telemetry messages with cause 3, type 1 is composed of the S
message with cause 0 and type 3 is composed of telemetry messages with cause 20. The
result is in line with our expectations, which are that similar packets are classified into one
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type. Next, we will focus on analyzing packets with type−1, which are abnormal samples
that do not belong to any type.
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As mentioned before, type −1 includes telemetry packets with cause 6, 7 and 10. Be‑
cause few telemetry packets with cause 6, 7 and 10 are sent, they are misjudged as outliers.
However, if the number of these telemetry packets increases appropriately, these packets
can establish their own type and will not be regarded as abnormal samples. Therefore,
telemetry packets with cause 6, 7 and 10 are not outliers. After removing the 26 telemetry
packets, there are only three abnormal packets actually, as shown in Table 5.

Table 5. Unknown exceptions isolated by DBSCAN algorithm.

Length Control
Bit 1

Control
Bit 2

Control
Bit 3

Control
Bit 4

Send
Reason

Address
1

Address
2

Telemetry
Value 1

Telemetry
Value 2

Cluster
Class

70 60 58 238 9 3 12 64 99 122 −1
154 22 124 242 9 3 7 64 0 0 −1
124 88 235 244 9 3 145 64 46 9 −1

As to the first abnormal message, the length of the packet sent by the device with an
address of 64, 12 (64 and 12 represent two parts of a device address, separated by commas
for better distinction) should not be larger than 30. However, the length of this telemetry
packet is 70. As to the third abnormal packet sent by the device with an address of 64,145,
it has a length of 124. However, we cannot simply conclude that the first and third abnor‑
mal messages are not misjudged. We also need to see the messages associated with this
message before and after and their original packets. The sudden increase in the telemetry
message’s value is probably due to the fact that the telemetry value of a single address is
sent in the previous packet. In this section, the telemetry value of multiple addresses is
sent. Therefore, the sudden increase in the length of the packet is allowed.

As to the second abnormal message, it is the only one packet with the telemetry value
of 0 sent by the device with address of 64, 7. Normally, if the telemetry value suddenly
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drops to 0, it may be caused by a sudden failure of the power protection device. If a fault
really occurs, the telemetry value should be 0 many times. And we also need to check the
duration of the telemetry value of 0. By analyzing the messages before and after the po‑
tential anomaly message, we find that it is indeed an unknown anomaly which means the
sudden failure of the power protection device and it should be recorded in the scheduling
automation system’s data flow anomaly classification of functional anomaly.

4.4.2. Applying K‑Means to Detect Unknown Anomalies
There are two main algorithm parameters of the K‑means algorithm. The first is the

number of categories after clustering, namely k. The second is the k initial cluster cen‑
ters. When the number of clustered sample categories is determined, the value of k is also
determined. When the number of sample categories is uncertain, the k value is usually
determined by the elbow method or the silhouette coefficient method. The initial cluster
centers are generally randomly assigned. The clustering dataset selected in this paper is
the same as the DBSCAN dataset in Section 4.4.1, because there are only normal samples
and samples thatmay be abnormal, so the k value is determined to be 1 and then the cluster
center c is calculated. The criterion for judging outliers is the Euclidean distance, namely di
between the input data, namely Ii and the cluster center c. Then, the threshold x = µ + 3δ
is given for judging outliers, where µ refers to the mean value of the Euclidean distance
from the input data to the cluster center and δ refers to the standard deviation of the Eu‑
clidean distance from the input data to the cluster center. Finally, input data satisfying
di > x are classified as outliers, that is, abnormal data.

It can be seen from Table 6 that the APDU length of the abnormalmessage is relatively
large and the last few digits of the characteristic value are nonzero, while the last few digits
of the packet with a small APDU length is padded by zero. Since the number of the last few
digits accounted for an excessively large proportion in calculating the Euclidean distance,
the packets with large APDU lengths would be judged as outliers and thus misjudged as
abnormal packets.

Table 6. Unknown abnormal fields identified by K‑means.

APDU Length Type
ID Transmission Reason ASDU Public Address Information Object Address Telemetry

Value

58 9 3 1 0x4001 10,441

58 9 3 1 0x4039 10,462

64 9 3 1 0x4037 10,442

64 9 3 1 0x4037 10,458

64 9 3 1 0x4037 10,431

Because Time‑GAN divides categories based on the density of the dataset, it does
not need to determine the number of clusters in advance. However, a K‑means algorithm
is greatly influenced by the number of clusters. In reality, we do not know how many
unknown anomalies exist in the dataset, so it is impossible to determine the number of
clusters. As a result, the effect of a K‑means algorithm is relatively poor. In addition,
experimental results in Section 4.4 show that a DBSCAN algorithm can detect unknown
anomalies, while K‑means cannot do it. In general, this paper chooses a DBSCAN algo‑
rithm for anomaly identification.

4.4.3. The Practical Application of the Algorithm
The method proposed in this paper has been applied to the main station platform of

a distribution automation dispatching system in Nanjing, Jiangsu Province. The main sta‑
tion is connected to tens of thousands of distribution slave stations and the main station
receives an average of about 2000 packets per second. We start by selecting the targeted
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static power grid data to define parameters for various DBSCAN algorithms. Additionally,
we process stream data using a sliding window approach, where every 20,000 data points
constitute a fixed‑size window that is stored in a database. A DBSCAN algorithm is then
applied to each window using the previously defined parameters. In a real‑world opera‑
tion, the average time taken for detecting 20,000 data points is 10.6 s. By analyzing and
processing each message, all already known anomalies in the scheduling network can be
analyzed quickly and efficiently, like device restart errors, communication interruptions,
telemetry collective uplink and total call errors. Moreover, the method can also analyze
the possible unknown anomalies because a DBSCAN algorithm is used to separate pos‑
sible anomalies and determine whether they are new anomalies after further analysis by
experts. And, we have successfully discovered a new unknown anomaly called failure of
the relay protection device. So, the algorithm proposed in this paper is helpful to the safe
and stable operation of power system.

5. Conclusions
In this paper, we focus on identification, diagnosis andprediction ofmassive data flow

in a dispatching automation system. Considering the problem of insufficient abnormal
data or training dataset, Time‑GAN is firstly used to enlarge the dataset and we can thus
obtain a large number of reliable data which conform to the characteristics of the power
grid’s actual data. By introducing Time‑GAN, we can reduce the time of manually label‑
ing training data and balance various types of power data. Secondly, the enlarged data are
input into the fault diagnosis model which consists of CNN and LSTM. Finally, the unsu‑
pervised learning method is used to detect the possible unknown anomalies in the power
grid. As to the proposedmethod, we first compare the unsupervised learning method and
supervised learning method in terms of accuracy of known anomalies and it verifies that
a DBSCAN algorithm outperforms other algorithms and it can identify the abnormality
of the power grid. Then, we conduct some other experiments and numerical results show
that the proposed algorithm can realize efficient and reliable fault diagnosis. In the actual
deployment, we find that samples’ slow generation limits the rapid detection of samples
and lots of data are needed to participate in the clustering process. This paper mainly
studies the problem of identification, diagnosis and prediction of massive data flow in the
scheduling automation system. Considering the problem of insufficient abnormal data or
training data, Time‑GAN is first used to expand the data set, so as to obtain a large number
of reliable data conforming to the characteristics of actual power grid data. By introducing
Time‑GAN, we can reduce the time it takes to manually label training data and balance the
various types of power data. Secondly, the amplified data is input into the fault diagnosis
model composed of CNN and LSTM. Finally, the unsupervised learningmethod is used to
detect the possible unknown anomalies in the power grid. For the proposed method, we
first compare the accuracy of the unsupervised learning method and supervised learning
method for known anomalies, and verify that a DBSCAN algorithm is superior to other
algorithms and can identify power grid anomalies. Experimental results show that this
algorithm can realize efficient and reliable fault diagnosis. In the actual deployment, we
found that slow sample generation limited the rapid detection of samples and required a
large amount of data to participate in the clustering process. In further research, we in‑
tend to address these issues. We will improve the Time‑GAN algorithm or choose a more
appropriate Time series generation algorithm, such as a Transformer‑based Time‑Series
Generative Adversarial Network (TTS‑GAN) or a Progressive Self Attention GANs (PSA‑
GAN) algorithm. In the further research, we would intend to solve the above problems.
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