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Abstract: To study the corrosion characteristics of high-strength sucker rods in high-salinity well
fluids under alternating stresses, a single-factor stress corrosion test was designed. The slow strain
rate tensile test (SSRT) was carried out for four kinds of high-strength sucker rods under different
Cl− and HCO3

− concentrations and with different service strengths, and the variable stress corrosion
cracking susceptibility was analyzed. The results show that the elongation loss and absorbed work
loss of the H-grade ultra-high-strength 4330 sucker rod after stress corrosion are greater than those of
both the high-strength 4142 sucker rod and the high-strength 20CrMoA sucker rod. The elongation
and absorbed work loss of the 30CrMoA and 20CrMoA sucker rods are less affected by the changes
in Cl− and HCO3

−. With the increase in use strength, the elongation and absorbed work loss of the
high-strength sucker rod increase. The change in the surface of the sucker rod during the corrosion
process is inconsistent with the actual elongation of the sucker rod and the absorbed work loss. It
can be concluded that the stress corrosion cracking susceptibility of the sucker rod is not necessarily
related to the tensile strength of the sucker rod. The 4330 sucker rod is not suitable for applications in
wells with a high concentration of Cl−, but it is suitable for operation in alkaline conditions where
corrosive media such as HCO3

− and Cl− coexist. Under highly corrosive and highly mineralized
conditions, the 30CrMoA sucker rod is less susceptible to stress corrosion. The stress corrosion
cracking susceptibility of the 20CrMoA sucker rod is lower than that of the 4142 sucker rod. In high-
salinity well fluids, the higher the use strength, the higher the stress corrosion cracking susceptibility
of the high-strength sucker rod is. The test results for the weight-loss-based corrosion rate and
plastic loss may contradict the determination of the corrosion susceptibility of the material under
working conditions.

Keywords: high-strength sucker rod; single-factor test; SSRT; stress corrosion cracking susceptibility;
high-salinity conditions

1. Introduction

With the development of oil production engineering in corrosion wells, deep wells,
and ultra-deep wells, the corrosion resistance, tensile strength, and fatigue strength of
ordinary sucker rods cannot meet production requirements [1]. Grade D and grade H high-
strength sucker rods are widely used in oil production engineering due to their excellent
mechanical properties and bearing capacity [2,3]. However, in their actual application in oil
wells, the produced water reinjection in the middle and late period of the oil field causes an
increase in the water content and the salinity of the well fluid, the working environment
of the sucker rod worsens, and the corrosion failure of the sucker rod under variable
tensile stress becomes increasingly serious, making the service life of the high-strength
sucker rod generally shorter than its expected life [4–10]. At present, the used pumping
rod is designed according to the requirements of an SY/T5029-2006 sucker rod [11]. Al-
though its mechanical properties and structural dimensions meet the requirements, the
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service life of the rod is very different from its expected life. The performance specified
in the SY/T5029-2006 standard cannot reflect the corrosion fatigue resistance of sucker
rods [12–14]. Therefore, it is critical to study the corrosion performance of high-strength
sucker rods under variable tensile stresses to provide a basis for the design of sucker rods
in stress corrosion environments.

Many researchers have measured the corrosion characteristics of various corrosion
media on sucker rods using the static coupon corrosion test via weight loss, electrochemical
analysis, and other research methods [15–22]. These tests try to determine the corrosion
mechanisms of different sucker rods in different corrosion environments and provide the
basis for the design of an oil field sucker rod string. However, the accelerated effect of
alternating tensile stress on corrosion is not considered in this kind of test, and the research
results cannot truly reflect the stress corrosion characteristics of the sucker rod string.
Song et al. [23] studied the impact of Cl− on the stress corrosion of cold-deformed 316 L
austenitic stainless steel in an H2S environment and found that the stress corrosion sensi-
tivity of metal increases with the increase in Cl− concentration. Song et al. [24] established
the stress corrosion model of stainless steel by carrying out a chloride stress corrosion
cracking test. They found that the existence of stress makes the passive film surface in
the stress concentration area richer in chloride ions, thereby reducing the thickness, in-
tegrity, and pitting resistance of the passive film, and that SCC is the most destructive of all
corrosion types.

Chang et al. [25] studied the stress corrosion cracking mechanism of super 13Cr stain-
less steel in an environment of high-temperature phosphate well fluids and concluded that
the stress corrosion cracking sensitivity of super 13Cr stainless steel in the test environment
is positively correlated with the corrosion behavior of the material surface. However, in
different well-fluid environments, there may be different relationships between the corro-
sion behavior of different material surfaces and their stress corrosion susceptibility. Some
researchers studied the stress corrosion resistance of high-strength steel, aluminum alloys,
and magnesium alloys, measuring the stress corrosion resistance characteristics of specific
materials in specific environments [26–42]. However, in these studies, the material stress
was constant, and the stress and corrosion environments were greatly different from the
working environment of a high-strength sucker rod. Therefore, these research results do
not apply to a sucker rod under high-salinity conditions.

In this study, a single-factor variable stress corrosion test was designed. Combined
with the interaction between stress and corrosion, the levels of stress corrosion sensitivity
of the grade H ultra-high-strength 4330 and 30CrMoA sucker rods and the grade D high-
strength 20CrMoA and 4142 sucker rods in a corrosion solution containing Cl− and HCO3

−

were analyzed by simulating the actual working conditions of a sucker rod. These research
results are expected to provide a basis for the selection and design of sucker rods in
high-salinity corrosion environments.

2. Experimental Design
2.1. Experimental Equipment and Materials

The test platform was built according to the stress corrosion characteristics. The test
instruments and equipment mainly included a stress ring test system, a WDML-10 slow-
rate tensile testing machine from Lichuang company in Xi’an, China, an industrial camera
from JPLY Electronic Tech in Guangzhou, China, and a VMS-2010 manual image measuring
instrument from Zhongte Precision Instrument Technology Co., Ltd in Dongguan, China.
To be closer to the actual sucker rod, the test samples were bar samples, which were
loaded axially to ensure that the simulated stress was closer to that of actual conditions.
The sample was processed and provided by a sucker rod manufacturer, and its material
composition and heat treatment processes are the same as the actual sucker rod used on site.
The size of the sample was determined according to the provisions of the stress corrosion
sample in the NACE TM 0177-2005 standard [43] of the National Association of Corrosion
Engineers. The detailed dimensions of the sample are shown in Figure 1. The sucker rod
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samples used in the test were high-strength sucker rods mainly used in the oilfield: the
H-grade ultra-high-strength 4330 and 30CrMoA sucker rods and the D-grade high-strength
20CrMoA and 4142 sucker rods.
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Figure 1. Detailed dimensions of the high-strength sucker rod test samples.

According to the standard GB/T 228.1-2010 [44] Metallic Materials Tensile Test, Part
1, the room-temperature test method, the non-corroded 4330, 30CrMoA, 20CrMoA, and
4142 sucker rod samples were broken by a tensile testing machine, and the tensile strength
was calculated as σb. The tensile strengths of four high-strength sucker rod materials are
shown in Table 1.

Table 1. The tensile strength of four high-strength sucker rod materials.

Sample Material Diameter/mm Tensile Strength (σb)/MPa

4330 4.961 1007
30CrMoA 4.957 1055
20CrMoA 4.903 850

4142 4.957 892

2.2. Evaluation Method for Stress Corrosion Test of the Sucker Rods

In the test of the stress corrosion resistance of the high-strength sucker rods under high
water cut conditions, the stress loading was set as 65% σb, 70% σb, 75% σb, 80% σb, and 85%
σb (five different service strengths). Four kinds of high-strength sucker rod materials were
used in the test. A constant stress was loaded in the corrosive environment and corroded
simultaneously, and then the tensile test was carried out on the samples. Elongation loss
(plastic loss) and absorbed work loss were used as the evaluation indexes of the stress
corrosion sensitivity of the test samples to study the adaptability of these four kinds of rods
to corrosion environments.

The absorbed work was obtained by calculating the area between the stress–strain
curve and the coordinate axis of the tensile sample. The elongation loss and absorbed work
loss are calculated according to the following equations:

Iδ =
δa − δc

δa
× 100% (1)

Iw =
wa − wc

wa
× 100% (2)

where δa is the elongation of the material in the air; δc is the elongation of the material in
the corrosive medium; wa is the absorbed work before the material breaks in the air; and
wc is the absorbed energy before the material breaks in the corrosive medium.

2.3. Design of the Corrosive Medium Concentration

In the stress corrosion test, to make the composition of the corrosion solution similar
to that of genuine well fluid, the corrosion solution medium was analyzed according to the
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water quality data of 3962 wells, as provided by the Shengli Oilfield Testing Center. The
results show that [8]: the 3962 wells mainly contain Cl−, HCO3

−, Ca2+, Mg2+, Na+, and
K+, and a few wells also contain SO4

2− and CO3
2−. The oil wells with a Cl− concentration

exceeding 20,000 mg/L only account for 2.46% of the total number of wells. The Cl−

concentration of most oil wells is distributed in the range of 0–20,000 mg/L; the HCO3
−

concentration is mainly distributed in the range of 0–800 mg/L, and the proportion of oil
wells exceeding 800 mg/L is only about 6.5%; the Ca2+ and Mg2+ concentrations are mainly
concentrated in the range of 0–800 mg/L, and the number of oil wells with concentrations
that are more significant than 800 mg/L is tiny. Because the influence periods of Ca2+

and Mg2+ are long and the influence factors are small, these two ions were not considered
in the test. Sodium and potassium ions have high activity and hardly participate in rod
corrosion behavior in well fluid, so their influence was not considered in the experiment.
According to the above-mentioned water quality analysis and ion corrosion mechanism, it
was determined that the medium of the stress corrosion test solution should consist of Cl−,
HCO3

−, and Na+. Based on the data from 3962 well fluids, the concentration distribution
of the Cl− and HCO3

− ions is shown in Figures 2 and 3.
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In order to study the influence of Cl− and HCO3
− on the stress corrosion of four

kinds of high-strength sucker rods, i.e., grade H 4330 and 30CrMoA and grade D 20CrMoA
and 4142, a single-factor stress corrosion test was designed; that is, only the concentration
of Cl− or HCO3

− was taken as a single variable. The test solution was prepared with
NaCl and NaHCO3 as solutes. The concentration of Cl− in the solution was set to the
5 values of 5000 mg/L, 10,000 mg/L, 15,000 mg/L, 20,000 mg/L, and 25,000 mg/L, and
the concentration of HCO3

− was set to the 5 values of 200 mg/L, 400 mg/L, 600 mg/L,
800 mg/L, and 1000 mg/L. The stress corrosion test was carried out on 4 kinds of high-
strength sucker rods, i.e., the grade H 4330 and 30CrMoA sucker rods and the grade D
20CrMoA and 4142 sucker rods, respectively, and the stress loading was set as 70% σb. The
specific design scheme is shown in Table 2.

Table 2. Design scheme for the ion concentrations in different corrosion solutions.

No. ρ(Cl−)
(mg/L)

ρ(HCO3−)
(mg/L)

1 5000 0

2 10,000 0

3 15,000 0

4 20,000 0

5 25,000 0

6 15,000 200

7 15,000 400

8 15,000 600

9 15,000 800

10 15,000 1000

3. Analysis of Experimental Results
3.1. Corrosion Analysis

The corrosion of the grade H ultra-high-strength 4330 and 30CrMoA sucker rods and
the grade D 4142 and 20CrMoA high-strength sucker rods was observed and recorded with
an industrial camera after 10 days and 30 days, respectively.

It can be seen from samples 1–5, shown in Figures 4 and 5, that the initial corrosion
rates of the 4330 and 30CrMoA materials in the Cl− environment are slightly related to
the Cl− concentration, and the corrosion is slow, but light-yellow powdery corrosives
appear at first, and the sample surface is smooth. With the increase in time, under the
action of the stress and corrosion medium, the oxidation film on the surface of the sample
is corroded and damaged. The damaged surface and the undamaged surface form the
anode and cathode, respectively. The metal at the anode converts into ions and is dissolved,
and the generated current flows to the cathode. Since the anode area is much smaller
than that of the cathode, the current density of the anode is large, further corroding the
damaged surface. With the action of the tensile stress, cracks are gradually formed at the
damaged part, and Cl− penetrates into the cracks, which further damages the oxidation
film and prevent the formation of the oxidation film. The corrosion rate of the sample thus
increases. After 30 days of stress corrosion, the color of the sample surface becomes darker,
the metallic luster is lost, and the local corrosion is serious, as shown in Figure 6.
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When Cl− penetrates the surface of the specimen, the higher the Cl− concentration,
the faster the local corrosion rate, and the corrosion becomes more serious. It can be seen
from samples 6–10, as shown in Figures 4 and 5, that the initial corrosion rate of the samples
is faster, and the degree of corrosion is obvious in the alkaline environment containing
HCO3

− ions. The yellowish-brown granular corrosion product is FeCO3
−. With time, the

corrosion degree of the sample did not change significantly, and the corrosion rate was
slow. After 10 days of stress corrosion, the corrosion rate of the sample remained slow, and
the surface corrosion was uniform with fewer products, as shown in Figure 7. According
to the comparison of groups (a) and (b) in Figures 4 and 5, it can be seen intuitively that,
under the same corrosion conditions, whether the Cl− corrosion medium is alone or the
Cl− and HCO3

− are acting together, the number of corrosion products on the surface of
the 30CrMoA material, as visible to the naked eye, is greater than that on 4330, and the
corrosion rate was also faster. Based on the surface corrosion of the sample, the stress
corrosion resistance of the 30CrMoA sample is weaker than that of the 4330 sample.
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Figures 8 and 9 show the corrosion of two D-strength pumping rod specimens, 20Cr-
MoA and 4142, at a service strength of 70% σb after 10 and 30 days of stress corrosion
tests, respectively.
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According to the comparison between groups (a) and (b) in Figures 8 and 9, it can be 
seen that the corrosion conditions of the grade D high-strength 4142 and 20CrMoA sucker 
rods in the Cl−-containing solution are similar to those of the 4330 and 30CrMoA sucker 
rods. However, the corrosion rate is higher. After 10 days of corrosion, the corrosion prod-
ucts on their surfaces are much greater than those of the 4330 and 30CrMoA specimens. 

Figure 8. Photos of 4142 and 20CrMoA after 10 days of stress corrosion: (a) 4142; (b) 20CrMoA. (The
labels in the figure designate solutions with different media concentrations: c1: ρ(Cl−) = 5000 mg/L,
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−) = 0 mg/L; c3: ρ(Cl−) = 15,000 mg/L, ρ(HCO3
−) = 0 mg/L; c5: ρ(Cl−) = 25,000 mg/L,

ρ(HCO3
−) = 0 mg/L; c6: ρ(Cl−) = 15,000 mg/L, ρ(HCO3

−) = 200 mg/L; c8: ρ(Cl−) = 15,000 mg/L,
ρ(HCO3

−) = 600 mg/L; c10: ρ(Cl−) = 15,000 mg/L, ρ(HCO3
−) = 1000 mg/L).
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−) = 0 mg/L; c3: ρ(Cl−) = 15,000 mg/L, ρ(HCO3
−) = 0 mg/L; c5: ρ(Cl−) = 25,000 mg/L,

ρ(HCO3
−) = 0 mg/L; c6: ρ(Cl−) = 15,000 mg/L, ρ(HCO3

−) = 200 mg/L; c8: ρ(Cl−) = 15,000 mg/L,
ρ(HCO3

−) = 600 mg/L; c10: ρ(Cl−) = 15,000 mg/L, ρ(HCO3
−) = 1000 mg/L).

According to the comparison between groups (a) and (b) in Figures 8 and 9, it can
be seen that the corrosion conditions of the grade D high-strength 4142 and 20CrMoA
sucker rods in the Cl−-containing solution are similar to those of the 4330 and 30CrMoA
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sucker rods. However, the corrosion rate is higher. After 10 days of corrosion, the corrosion
products on their surfaces are much greater than those of the 4330 and 30CrMoA specimens.
With the increase in bicarbonate concentration, the fewer the corrosion products and the
more obvious the inhibition of Cl− corrosion. The products on the surface of samples
6–10 are significantly fewer than those of sample 3 in the 1500 mg/L Cl− solution. Compar-
ing the 20CrMoA specimen with the 4142 specimen, the stress corrosion resistance of the
20CrMoA specimen is better in the solution containing only Cl−, but that is not obvious. On
the contrary, the corrosion inhibition of the 4142 specimen in the Cl− solution by HCO3

− is
more obvious. After the specimen was disassembled and cleaned after 30 days of corrosion,
as shown in Figures 10 and 11, the surfaces of both the 20CrMoA and 4142 specimens were
found to have no obvious pitting under 180× magnification, and the main traces were the
processing traces on the surfaces of the specimens, indicating that the surfaces were, in
general, uniformly corroded.
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3.2. Tensile Test Results

After 30 days of stress corrosion, we removed the sample from the stress ring and
cleaned it, and then we removed it from the WDML-10 slow-rate tensile testing machine to
obtain the stress–strain curve, as shown in Figure 12.
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Curve No. 0 in Figure 12 is the stress–strain curve of the sample without stress
corrosion in air at a normal temperature. It can be seen from Figure 12a that, after the
stress corrosion of the 4330 sample by the Cl− corrosive medium, its elastic deformation
zone increases, the plastic deformation zone decreases, the fracture time of the material is
significantly shortened, and the plastic loss of the material is obvious. Figure 12b shows
that, for the 4330 sample, when Cl− and HCO3

− coexist, the concentration of Cl− is fixed.
With an increase in HCO3

− concentration, the plastic deformation zone of the material
increases. When the HCO3

− concentration is lower than 600 mg/L, the plastic deformation
zone of the material is smaller because, when the HCO3

− concentration is lower, the
inhibition effect on Cl− corrosion is smaller. When the HCO3

− concentration increases
to 800 mg/L or greater, the plastic deformation zone of the material is similar to that of
the stress-free corrosion specimen, and the inhibitory effect of HCO3

− on Cl− corrosion
is obvious.

In Figure 12c,d, the elastic deformation zone of the 30CrMoA sample is unchanged,
both under the Cl− stress corrosion environment and under the combined action of HCO3

−

and Cl−, and only the plastic deformation zone is changed; along with the increase in
ρ(Cl−), the plastic deformation zone of the 30CrMoA sample becomes smaller and the
plastic loss increases.

The tensile curves of the 20CrMoA and 4142 samples are shown in Figure 13.
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The test results for the four materials of stress corrosion sensitivity measured through 
elongation and fracture absorption work are shown in Figures 14 and 15. In the corrosive 
well fluid containing Cl−, the plasticity loss of the 4330, 30CrMoA, and 4142 materials en-
larged continuously with the increase in ρ(Cl−), which indicates that the higher the con-
centration of Cl−, the more sensitive the stress corrosion of high-strength pumping rods. 
However, the plastic loss in the 20CrMoA material pumping rod demonstrates a decreas-
ing trend, and the 20CrMoA material shows a more stable level of stress corrosion in a 
medium with a high Cl− concentration. Therefore, the stress corrosion resistance of the 
4330 and 30CrMoA ultra-high-strength rods in a medium with a high Cl− concentration is 
not necessarily greater than that of the D-grade rods, and the sensitivity of the H-grade 
pumping rods to Cl− stress corrosion is more obvious than that of the D-grade rods. Con-
sidering the high mineralization and high water content of well fluids entering mid-to-

Figure 13. Stress–strain curves of the 20CrMoA and 4142 sucker rod samples after stress corrosion:
(a) Nos. 1–5: 20CrMoA strain curve; (b) Nos. 6–10: 20CrMoA strain curve; (c) Nos. 1–5: 4142 strain
curve; (d) Nos. 6–10: 4142 strain curve.

A comparison of Figures 12 and 13 shows that the tensile strengths of the 20CrMoA
and 4142 samples were significantly lower than those of the 4330 and 30CrMoA samples,
which belonged to grade D high-strength pumping rods. The tensile curves of these two
materials after corrosion in different environments were also relatively consistent, and the
elastic zone did not change significantly after stress corrosion. However, Figure 13d shows
that HCO3

− has a greater effect on the stress corrosion of the 4142 sample.

3.3. Stress Corrosion Sensitivity Analysis

Obtained via the collection and processing of the test data, the elongation loss and
absorbed work loss statistics of the four materials, 4330, 30CrMoA, 4142, and 20CrMoA,
after using a 70% σb strength stress corrosion test are shown in Table 3 below.
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Table 3. Elongation and absorbed work loss statistics of four materials after stress corrosion.

Test Number ρ(Cl−)/mg/L ρ(HCO3−)/mg/L

4330 30CrMoA 4142 20CrMoA

Elongation
Loss/%

Absorbed
Work

Loss/%

Elongation
Loss/%

Absorbed
Work

Loss/%

Elongation
Loss/%

Absorbed
Work

Loss/%

Elongation
Loss/%

Absorbed Work
Loss/%

1 5000 0 13.88 19.40 7.49 8.21 0.15 2.27 10.89 11.04
2 10,000 0 14.08 20.36 9.09 11.31 4.05 5.71 6.83 3.45
3 15,000 0 25.65 32.02 7.99 10.95 6.27 8.78 8.38 8.92
4 20,000 0 41.51 47.98 13.38 16.79 9.63 11.04 5.30 3.75
5 25,000 0 45.90 53.21 15.47 17.50 38.73 41.97 3.91 4.58
6 15,000 200 47.54 34.95 18.00 12.32 3.47 6.18 6.43 3.33
7 15,000 400 35.60 24.00 15.42 10.84 7.39 9.58 3.74 2.21
8 15,000 600 2.25 1.37 12.34 10.00 46.20 54.73 8.00 8.63
9 15,000 800 1.75 1.05 11.85 8.53 1.37 1.59 5.60 7.53
10 15,000 1000 1.02 3.05 7.66 7.68 14.64 17.83 9.15 9.64
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The test results for the four materials of stress corrosion sensitivity measured through
elongation and fracture absorption work are shown in Figures 14 and 15. In the corrosive
well fluid containing Cl−, the plasticity loss of the 4330, 30CrMoA, and 4142 materials
enlarged continuously with the increase in ρ(Cl−), which indicates that the higher the
concentration of Cl−, the more sensitive the stress corrosion of high-strength pumping
rods. However, the plastic loss in the 20CrMoA material pumping rod demonstrates a
decreasing trend, and the 20CrMoA material shows a more stable level of stress corrosion
in a medium with a high Cl− concentration. Therefore, the stress corrosion resistance of the
4330 and 30CrMoA ultra-high-strength rods in a medium with a high Cl− concentration is
not necessarily greater than that of the D-grade rods, and the sensitivity of the H-grade
pumping rods to Cl− stress corrosion is more obvious than that of the D-grade rods.
Considering the high mineralization and high water content of well fluids entering mid-
to-late-stage extraction wells, Cl− is the most important corrosive medium, and the stress
corrosion resistance of different materials to specific well fluids must be considered when
selecting high-strength rods.
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conditions, the analysis of the elongation loss test results showed that the 30CrMoA and
20CrMoA rods were more stable than the 4330 and 4142 rods of the same strength level.
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Based on the above analysis of the corrosion of sucker rods, obtained through the
photo comparison of the corrosion process and the weighing of the sucker rod samples after
30 days of corrosion, we found that the corrosion products on the surface of the 30CrMoA
sample piece were greater in number than those on the 4330 sample piece, and the corrosion
products on the surface of the 20CrMoA sample piece were greater in number than those on
the 4142 sample piece with the same amount of corrosion time. If the corrosion resistance
of the sucker rod is described according to the weight loss method in the static coupon
corrosion test, it can be concluded that the 30CrMoA sample is more susceptible to corrosion
than the 4330 sample, and the 20CrMoA sample is more susceptible to corrosion than the
4142 sample. However, through the stress corrosion sensitivity analysis, we found that the
results of elongation loss and absorption work loss of the two materials were opposite to the
surface phenomenon of the corrosion process under different Cl− concentrations. Usually,
the degree of corrosion is measured by the number of corrosion products or the weight
loss of a sample piece in the corrosion solution, but for the components bearing a large
working load, the measurement index of a static corrosion test under no-load conditions
is not necessarily able to accurately measure the stress corrosion characteristics. It can be
concluded that the test results described by the corrosion rate and plastic loss based on the
weight loss may be contradictory to the determination of the corrosion sensitivity of the
material under working conditions.

A stress corrosion test of four kinds of high-strength sucker rods under different use
strengths was further designed. The changes in the elongation loss of the four materials
under different use strengths, when the concentration of Cl− was 10,000 mg/L and the
concentration of HCO3

− was 0, are shown in Figure 16, and the changes in the absorbed
work loss of the four materials under different use strengths, when the concentration of Cl−

was 15,000 mg/L and the concentration of HCO3
− was 400 mg/L, are shown in Figure 17.

It can be seen from Figures 16 and 17 that the elongation loss and absorbed work loss of
the four kinds of high-strength pumping rods increased gradually with the increase in use
strength, which indicates that the higher the use strength, the more sensitive the stress
corrosion is, and an increase in stress can promote corrosion. It can be seen from Figure 16
that the changing trend of the H-grade 4330 and 30CrMoA sucker rods is consistent, and
the increasing trend of elongation loss slows down when the use intensity is greater than
75% σb; the changing trend of the D-grade 20CrMoA and 4142 sucker rods is consistent,
and the increasing trend of elongation loss steepens when the use intensity is greater than
75% σb, which suggests that the higher the use intensity, the more sensitive the stress
corrosion of the D-grade pumping rods is.
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4. Conclusions

(1) The stress corrosion resistance of a sucker rod is not necessarily related to the tensile
strength of the sucker rod. The elongation loss and absorbed work loss of the grade
H ultra-high-strength 4330 sucker rod after stress corrosion in the Cl− and HCO3

−

solution are greater than those of the grade D high-strength 4142 and 20CrMoA sucker
rods, so the stress corrosion resistance of the grade H ultra-high-strength sucker rod
is not necessarily superior to that of the grade D high-strength sucker rod.

(2) The class H ultra-high-strength 4330 sucker rod is not suitable for high-Cl−-concentration
well conditions, but it is suitable for operation under alkaline conditions with the
coexistence of corrosive media such as HCO3

− and Cl−. Under the condition of
high salinity with strong corrosivity, the stress corrosion cracking susceptibility of
the 30CrMoA rod is lower, so it is more stable. For the grade D high-strength sucker
rods, the 20CrMoA rod is less susceptible to stress corrosion than the 4142 rod, and
the 20CrMoA rod is more stable.

(3) In high-salinity well fluid, with an increase in use strength, the stress corrosion
cracking susceptibility of high-strength sucker rods increases. Among them, the grade
D high-strength 4142 and 20CrMoA sucker rods are more affected by stress corrosion
when the service strength is greater than 75% σb.

(4) The test results described by the weight-loss-based corrosion rate and plastic loss may
be contradictory to the determination of the corrosion susceptibility of the material
under working conditions.
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