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Abstract: Double casing joints are flexible pipe joints used for connecting aircraft fuel pipelines,
which can compensate for the displacement and corner of the connected pipes and have complex
mechanical characteristics. However, it is difficult to use sensors to directly measure the mechanical
connection parameters of flexible joints. In this paper, we construct a coupling dynamics model
and parameter identification of a double casing joint. Firstly, we analyze the structure and working
principle of double-layer casing joints and establish the dynamics model of a single-layer flexible joint
based on the transfer matrix method. Then, we deduce the coupling matrix of the inner and outer
pipeline according to the deformation coordination conditions combined with matrix dimension
extension. We establish the coupling dynamics model of flow–solid coupling of double casing joints.
Furthermore, parameters such as equivalent stiffness and damping of each motion of the double
casing joint in the casing unit are identified using the force-state mapping (FSM) method, and an
analytical solution in the frequency domain under hammering excitation is given by the dynamics
model. Finally, the dynamics test bench of the double casing joint for aircraft fuel is set up, and the
free mode test of the double casing joint assembly is carried out. The results show that under free
boundary hammering excitation, the theoretical and experimental frequency-domain response results
are well matched, both obtaining seven main resonance peaks, and the maximum error is 9.45%,
which shows the validity of the pipeline dynamics modeling method with a double casing joint.

Keywords: double casing joint; flow–solid coupling; parameters identification; free modal

1. Introduction

A fuel system is an important airborne system of civil aircraft, and serious accidents
may occur when the fuel system is faulty or damaged [1–5]. Therefore, it is of great
significance to carry out dynamic analysis of fuel systems for preventing and solving the
rupture and leakage problems of fuel pipes. Fuel pipes are installed in sections due to body
deformation as well as the need for installation and maintenance. Fuel pipes are installed
in sections due to body deformation as well as the need for installation and maintenance.
This connection allows a certain degree of axial relative displacement and angular relative
change between fuel pipes on both sides of the flexible joint, as to better adapt to the
deformation of the airframe and reduce the load generated by the structural deformation
of the pipeline [6–8].

Flexible joints are categorized into single-layer and double-layer joints, of which
double-layer flexible joints are also known as double casing joints. Generally, single-layer
flexible joints are used for the pressure fueling system, water removal system, aeration
system, and fuel supply system in the aircraft fuel system. The fuel supply system, which
delivers fuel to the engine and the auxiliary power unit of the aircraft, uses double casing
joints in order to guarantee its safety [9]. However, this type of connection leads to many
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contact problems that need to be considered in the actual analysis process, involving
material, geometry, and contact nonlinearities. Especially since double casing joints are
tightly combined with small gaps between components, it is extremely difficult to measure
connection parameters using sensors. This makes it difficult to accurately analyze the
dynamic characteristics of the fuel system. Therefore, it is of great theoretical significance
and engineering application value to carry out research on the dynamic modeling and
parameter identification of aircraft double casing joints.

In recent years, scholars have carried out a lot of research work on flexible joints.
Shi et al. investigated the damage rules of bonding interfaces during flexible joint swinging
under a wide temperature range. They proposed a computational method to calculate the
sealing reliability of flexible joints. The results show that flexible joints are more prone to
failure at high temperatures [10]. Song et al. proposed a parameter identification method
for flexible joints combined with offline identification and online compensation. They
found that feedforward compensation control can effectively correct model parameters
and improve control accuracy [11]. Xu et al. established the special casing of the nipple
analysis model using the MARC contact module and simulated the stress of the special
thread casing distribution rule and the mechanical properties of the threaded nipple [12].
Vasileios et al. compared the response of continuous pipes and pipes with internal flexible
joints under imposed transverse displacement. The experimental results confirmed the
very significant contribution of the flexible joints in strain reduction [13]. Konstantino et al.
established a mathematical model of an interconnected system and studied the influence of
the inherent characteristics of the system, including the flexible joint, on the aircraft power
efficiency [14]. Ramezani et al. analyzed the flexible joint of aero-engines using the finite
element method and studied the influence of geometric parameters on the performance of
flexible joints in detail [15]. While many scholars have carried out research work on flexible
joints, there are fewer studies related to the mechanical mechanism, dynamic modeling,
and analysis of aircraft double casing joints. As an essential part of the fuel piping system,
exploring its dynamic characteristics can contribute to a better iterative design of the
fuel system.

Considerable research regarding the fluid–solid coupling dynamics has been reported
in the past years. Li et al. proposed a novel fluid–structure coupling modeling and sensing
method for a multiphase-free sink vortex-induced vibration mechanism, revealing the
vibration evolution mechanism [16,17]. Zhang et al. analyzed the effects of the structural
parameters of the pipe on the axial and annular modes of the pipeline and the conversion
mechanism of the two modes [18]. Xu et al. used a fourteen-equation model to describe
the FSI in a fluid-filled complex pipeline and proposed a generalized solution method for
predicting the frequency response of a multi-branch pipeline based on the transfer matrix
method [19]. On the foundation of general pipe research, combined with the structural
characteristics of the double casing joint, we develop a theoretical analysis of fluid–solid
coupling vibration characteristics and summarize its vibration regulation, which is of great
significance for predicting the interaction between fluid flow and solid structure.

Force-state mapping (FSM) is a method to identify the equivalent dynamic parameters
of a nonlinear connection structure. It considers the nonlinear restoring force generated
by the connection structure as a polynomial function of the displacement and velocity of
the connection bonding surface. Compared with other methods, this method can establish
a complete equation for the force state of the joint surface and can directly represent the
stiffness and damping characteristics of the system [20–22]. Hadid et al. used the FSM
method to study nonlinear systems with single and multiple degrees of freedom. They
proposed a method to obtain an accurate equivalent mass in a nonlinear model using
linear fitting and iteration and estimated the sensitivity of the mass or modal mass using
excitation frequencies. This led to more accurate identification of the parameters [23].
Kim et al. proposed a method to identify nonlinear connection characteristics from the
frequency response function of structural nonlinear connection points. The method utilizes
the frequency response of each substructure in the frequency domain and is applicable to
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complex structures with nonlinear nodes. The conclusions show that the method has high-
accuracy identification [24]. Wang et al. proposed that a nonlinear joint model and dynamic
parameters should be recognized simultaneously in practical applications. Therefore, they
used the FSM method based on the frequency domain to simultaneously identify the
model and dynamic parameters of nonlinear joints [25]. Shu et al. obtained an accurate
mathematical model in the blanking stage of a hydraulic fine-blanking press through a
least-squares method system identification experiment and proposed a phased PID control
strategy. The results show that the new control strategy is very effective in reducing the
impact vibration of the hydraulic system [26].

In this paper, a coupling dynamics model is constructed based on the structure and
working principle of the double casing joint. Then, the FSM method is adopted to identify
the equivalent connection stiffness, damping, and other parameters of the flexible joint in
order to solve the numerical solution in the frequency domain under the free boundary.
Finally, the validity of the coupling dynamics model and the results of the parameter
identification are verified through experiments. The aim of this paper is to lay a theoretical
foundation for the accurate modeling of aircraft fuel systems.

2. Working Principle

The double casing joint consists of two parts: the inner joint and the outer joint, as
shown in Figure 1. The inner joint is fixed in the form of a clamp, and the outer joint is
fixed in the form of a threaded connection and a clip spring. The clamp fixing enables
disengaging the pipes in a radial direction, while the clip spring fixing structure disengages
the pipes in an axial direction.
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Figure 1. Double casing joint object. (a) Object, (b) section. 

The double casing joint has a dynamic seal formed by the inner and outer sealing 
rings. In practice, the fuel flows in the inner joint, and there is only air in the outer joint. 
When the inner seal is damaged, fuel leaks from the inner joint into the outer joint. 

When compensating for the displacement and angle of the connected pipe, the work-
ing principle of the double casing joint is that the pipe and the sleeve are connected by 
welding or rotary extrusion forming, which makes the movement between the pipe and 
the sleeve synchronized. The end of the outer sleeve is equipped with a retaining ring to 
limit the axial movement of the outer casing, while the end of the inner sleeve has a convex 
shoulder structure to limit the axial movement of the inner casing. In addition, double 
casing joints allow both ends of the pipe to twist around the axis. The two layers of the 
pipe are connected by a support block to ensure the synchronization of the movement of 
the inner and outer layers of the pipe. However, this synchronization can be lost in the 
event of plastic deformation of the support block or the pipe itself or in the event of failure 
of the connection. 

Figure 1. Double casing joint object. (a) Object, (b) section.

The double casing joint has a dynamic seal formed by the inner and outer sealing
rings. In practice, the fuel flows in the inner joint, and there is only air in the outer joint.
When the inner seal is damaged, fuel leaks from the inner joint into the outer joint.

When compensating for the displacement and angle of the connected pipe, the working
principle of the double casing joint is that the pipe and the sleeve are connected by welding
or rotary extrusion forming, which makes the movement between the pipe and the sleeve
synchronized. The end of the outer sleeve is equipped with a retaining ring to limit the
axial movement of the outer casing, while the end of the inner sleeve has a convex shoulder
structure to limit the axial movement of the inner casing. In addition, double casing
joints allow both ends of the pipe to twist around the axis. The two layers of the pipe
are connected by a support block to ensure the synchronization of the movement of the
inner and outer layers of the pipe. However, this synchronization can be lost in the event
of plastic deformation of the support block or the pipe itself or in the event of failure of
the connection.
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3. Theoretical Modeling
3.1. Force Analysis and Dynamic Modeling of Single-Layer Flexible Joints

The force state and working principle of double casing joints are similar to those of
single-layer flexible joints. Therefore, the dynamic model of the single-layer flexible joint is
established and then extended to the double casing joint. The basic motion of the flexible
joint during operation can be divided into translation along the Y-axis, torsion around the
Y-axis, deflection around the X-axis, and deflection around the Z-axis. These four motions
can be carried out separately or simultaneously.

According to the structure and working principle of the joint, assuming that there is no
relative motion between the O-ring and the sealing groove, the sealing ring and pipe sleeve
are regarded as a whole. Since rubber material has triple the nonlinear characteristics of
material nonlinearity, geometric nonlinearity, and contact nonlinearity, a parallel nonlinear
spring-damping element is used to describe this relationship. The dynamic model of the
flexible joint is shown in Figure 2.
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In Figure 2, the convex shoulder of the sleeve and the variable diameter transition
structure from the sleeve to the pipeline, as well as the fixing and limiting mechanism
outside the socket, are neglected. The sleeve and socket are equivalent to straight pipe units,
and the straight pipe units are connected by four sets of parallel nonlinear spring-damping
units, which are designated as connection units. There are two connection units in the
dynamic model of the flexible joint, and the stiffness and damping parameters contained in
the two connection units are the same. The dynamic characteristics can be solved using the
method of fluid–solid coupling equation and transfer matrix.

In this paper, the fourteen-equation model is used to establish the dynamic model of
the double casing joint. The pipe forces are mainly composed of inertial force, axial internal
and external force on the pipe wall, friction between the pipe wall and fluid, fluid pressure,
and gravity. Fourteen system variables in the fourteen-equation model can be written as a
state vector [27]:

η(z, t) =
[
V P

.
ωz fz My

.
θy

.
ωx fx Mx

.
θx

.
ωy fy

.
θz Mz

]T
(1)

where V represents the fluid velocity; P represents the fluid pressure;
.

ω represents the pipe
velocity; f represents the forces in the cross-section; M represents the moment; x, y, and
z are the directional subscripts; θ represents the deflection angle of pipe;

.
θ represents the

angular velocity of pipe wall; and m0 represents plug mass.
The matrix expression of the fluid–solid coupling fourteen-equation model of the pipe

can be written as follows:

A
∂η(z, t)

∂t
+ B

∂η(z, t)
∂z

+ Cη(z, t) + D = y(z, t) (2)
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Here, A, B, and C are coefficient matrices within the dimensional scales, multiplied by
A and B, which are the constant terms of time and space differentiation, respectively. C and
D are coefficient matrices, including friction and viscous damping and gravity, respectively.
Vector y describes the external excitation.

η̃(z, s) =
∫ ∞

0 e−stη(z, t)dt, ỹ(z, s) =
∫ ∞

0 e−sty(z, t)dt. The Laplace transform of Equa-
tion (2) can be simplified to give the frequency-domain differential equation:

η̃(z, s) + A∗−1B
∂η̃(z, s)

∂z
= A∗−1y∗(z, s) (3)

where A∗ = sA + C, y∗(z, s) = ỹ(z, s)− 1
s D− Aη(z, t)|t=0.

Given that the eigenvalue of A∗−1B is T and the eigenvector matrix is V, V−1A∗−1BV = T,
T and V can be written as:

T =


λ1(s)

λ2(s)
. . .

λ14(s)

 (4)

V =
[
ξ1(s) ξ2(s) · · · ξ14(s)

]T (5)

where eigenvectors, ξi(s), and eigenvalues, λi(s), correspond to each other.
Given that Φ̃(z, s) = V−1η̃(z, s), Φ̃r(z, s) = V−1A−1y∗(z, s), Equation (3) can be

expressed as:
∂Φ̃(z, s)

∂z
+ T−1Φ̃(z, s) = T−1Φ̃r(z, s) (6)

The linear ordinary differential Equation (6) can be solved as:

Φ̃(z, s) = E(z, s)Φ̃0(s) + Φ̃∗r (z, s) (7)

where
E(z, s) = diag{e(−sz/λ1(s)), e(−sz/λ2(s)), · · · e(−sz/λ14(s))}
Φ̃∗r (z, s) =

(
Φ̃1(z, s) Φ̃2(z, s) · · · Φ̃14(z, s)

)
Φ̃i(z, s) = se−sz/λi(s)

λi(s)

∫ z
0 Φ̃ri(x, s)esx/λi(s)dx = Φ̃ri(z, s)

(
1− esx/λi(s)

)
, (1 ≤ i ≤ 14)

(8)

Substituting Φ̃(z, s) = V−1η̃(z, s) into Equation (7) provides

η̃(z, s) = VE(z, s)Φ̃0(s) + VΦ̃∗r (z, s) (9)

For the piping system, the form of excitation is basically centralized, and there is no
spatially distributed excitation. Substituting z = 0, E(0, s) = I14×14 and Φ̃r(z, s) = 014×1
into Equation (9) provides:

Φ̃0(s) = V−1η̃(0, s) (10)

Substituting Equation (10) into (9) obtains the solution of the pipeline fluid–solid
coupling fourteen-equation model in the Rasch domain as follows:

η̃(z, s) = VE(z, s)V−1η̃(0, s) (11)

Define the transfer matrix of the pipeline field as:

U(z, s) = VE(z, s)V−1 (12)
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The frequency-domain solution of the pipeline fluid–solid coupling fourteen-equation
model expressed in terms of the transfer matrix can be written as:

η̃(z, s) = U(z, s)η̃(0, s) (13)

For a pipe of length L, the boundary conditions at both ends of the pipeline satisfy the
following relationship: {

[D0(s)]7×14[η̃0s]14×1 = [Q0(s)]7×1
[DL(s)]7×14[η̃Ls]14×1 = [QL(s)]7×1

(14)

where D0(s) and DL(s) are the constraint state matrix at the beginning and end of the pipe,
and Q0(s) and QL(s) are the excitation matrix at the beginning and the end of the pipe.

The relation of the two state vectors of the single-pipe section can be expressed as:

η̃(L, s) = U(L, s)η̃(0, s) (15)

Assuming that the total length of the pipe is L and that the pipe has n simple sections
consisting of pipe units, the overall transfer matrix of the pipe system is as follows:

Uall(s) = UN(LN , s) · · ·Ui(Li, s) · · ·U1(L1, s) (16)

where Ui is the transfer matrix of each pipe unit, and Li is the length of each pipe unit.
Then, the state variables at the beginning of the series pipe system can be represented

by the constrained state matrix and the excitation matrix as:

η̃1(0, s) = D∗−1(s)Q(s) (17)

where

D∗(s) =
(

D0(s)
DL(s)Uall(s)

)
, Q(s) =

(
Q0(s)
QL(s)

)
(18)

Similarly, the state variables, η̃(z, s), at any position of the piping system can be
obtained from the initial state variables, η̃1(0, s), and the overall transfer matrix of the
piping system.

3.2. Dynamical Model of Double Casing Joint

According to Figure 2, the fluid–solid coupling dynamic model of the inner and outer
joint is established respectively. Then, the metal support block is equivalent to a coupling
spring unit, which can further obtain the dynamic model of the double casing joint, as
shown in Figure 3.

In Figure 3, the dynamic model of the double casing joint is divided into eighteen
cross-sections, of which the first section is the beginning and the eighteenth section is the
end. The region between the first and second sections is designated as uncoupled region
1–2, where there is no connection between the inner and outer layers in the uncoupled
zone. There is no connection between the inner and outer layers in the uncoupled regions.
The region between the third cross-section and the fourth cross-section is designated as
coupling region 3–4. The inner and outer layers of the coupling region are connected by
the support blocks, and the connection relationship can be equated to six sets of spring
damping. There is also coupling region 15–16 in a similar condition. The uncoupled zones
5–6 and 13–14 contain outer joint connection units. The uncoupled zones 8–9 and 10–11
contain inner joint connection units. The form of the inner and outer joint connection units
is the same as that of the single-layer flexible joint connection unit.
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s + cτx3

)( .
θ

R
xI −

.
θ

R
xII

)
.
uL

xI =
.
uR

xI
.
θ

L
yI =

.
θ

R
yI

f L
xI = f R

xI +
(

kx3
s + cx3

)( .
uR

xI −
.
uR

xII

)
ML

yI = MR
yI +

(
kτy3

s + cτy3

)( .
θ

R
yI −

.
θ

R
yII

)
.
θ

L
zI =

.
θ

R
zI ML

zI = MR
zI +

(
kτz3

s + cτz3

)( .
θ

R
zI −

.
θ

R
zII

)



(19)
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Similarly, the coordination equation on the inner pipeline can be obtained as:

VL
II = VR

II
.
uL

zII =
.
uR

zII

PL
II = PR

II f L
zII = f R

zII +
(

kz3
s + cz3

)( .
uR

zII −
.
uR

zI

)
.
uL

yII =
.
uR

yII
.
θ

L
xII =

.
θ

R
xII

f L
yII = f R

yII +
(

ky3
s + cy3

)( .
uR

yII −
.
uR

yI

)
ML

xII = MR
xII +

(
kτx3

s + cτx3

)( .
θ

R
xII −

.
θ

R
xI

)
.
uL

xII =
.
uR

xII
.
θ

L
yII =

.
θ

R
yII

f L
xII = f R

xII +
(

kx3
s + cx3

)( .
uR

x2 −
.
uR

x1

)
ML

yII = MR
yII +

(
kτy3

s + cτz3

)( .
θ

R
yII −

.
θ

R
yI

)
.
θ

L
zII =

.
θ

R
zII ML

zII = MR
zIII +

(
kτz3

s + cτz3

)( .
θ

R
zII −

.
θ

R
zI

)



(20)

The subscripts “R” and “L” indicate the right and left ends of the coupling region,
respectively. The transfer matrix of the coupling region between the two regions is:[

VI PI
.
uzI · · · MzI VII PII

.
uzII · · · MzII

]T

L = NIII
[
VI PI

.
uzI · · · MzI VII PII

.
uzII · · · MzII

]T

R (21)

where

NIII =

[
Ñ14×14

_
N14×14

_
N14×14 Ñ14×14

]
(22)

Ñ14×14 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 kz3

s + cz3 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0
kτy3

s + cτy3 1 0 0 0 0 0 0 0
0 0 0 0 0 0 kx3

s + cx3 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 kτx3

s + cτx3 1 0 0 0

0 0 0 0 0 0 0 0 0 0
ky3
s + cy3 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 kτz3

s + cτz3 1



(23)

_
N14×14 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 − kz3

s − cz3 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 − kτy3

s − cτy3 1 0 0 0 0 0 0 0
0 0 0 0 0 0 − kx3

s − cx3 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 − kτx3

s − cτx3 1 0 0 0

0 0 0 0 0 0 0 0 0 0 − ky3
s − cy3 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 − kτz3

s − cτz3 1



(24)
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In uncoupled region 1–2, the transfer relation between the two pipe sections is satisfied:{
ηI

L1 = UI
1ηI

R1

ηII
L1 = UII

1 ηII
R1

(25)

The further matrix form can be written as:[
ηI

L1

ηII
L1

]
=

[
UI

1 0

0 UII
1

][
ηI

R1

ηII
R1

]
(26)

In coupling region 3–4, the transfer relation is satisfied:[
ηI

R2

ηII
R2

]
= NIII

[
ηI

R3

ηII
R3

]
(27)

Similarly, the coupled and uncoupled regions transfer relations are constructed in the same way.
Then, the total transfer matrix can be written as:[

φI
L1

φII
L1

]
= H

[
φI

R18

φII
R18

]
(28)

where

H =

[
UI

1 0
0 UII

1

][
UI

2 0
0 UII

2

]
NIII

[
UI

4 0
0 UII

4

][
NI 0
0 I

][
UI

6 0
0 UII

6

][
UI

7 0
0 UII

7

][
I 0
0 NII

][
UI

9 0
0 UII

9

]
[

I 0

0 NII

][
UI

11 0
0 UII

11

][
UI

12 0
0 UII

12

][
NI 0
0 I

][
UI

14 0
0 UII

14

]
NIII

[
UI

16 0
0 UII

16

][
UI

17 0
0 UII

17

] (29)

In the solution, the method of introducing boundary conditions corresponding to each state
vector is the same as that before matrix dimensioning. It also conforms to the principle of logical
alignment so the constraint and excitation matrices of the double casing joint can be expressed as:

D∗(s) =


DI

0(s)
DI

L
(s)H

014×14

014×14
DII

0 (s)
DII

L
(s)H


28×28

(30)

Q(s) =


QI

0
(s)

QI
L
(s)

QII
0
(s)

QII
L
(s)

 (31)

Equation (28) is the transfer matrix model of the double casing joint. In the flow–solid coupling
analysis of the pipeline containing a double casing joint, if the transfer matrix equation of the pipeline
system needs to be constructed, the transfer matrix model of the double casing joint can be added to
the corresponding part of the joint.

4. Parameter Identification
4.1. Principle of FSM Method

The double casing joints are tightly combined with small gaps between components, making it
very difficult to directly measure connection parameters such as casing joint stiffness and damping
by using sensors. Secondly, the casing joint dynamics model cannot be solved without accurate
connection parameters. Consequently, this makes it difficult to accurately analyze the dynamic
characteristics of the aircraft fuel pipelines. Therefore, this paper combines the numerical simulation
method and the force-state mapping (FSM) method to identify the equivalent connection parameters,
such as stiffness and damping. The double casing is a nonlinear system, and C and K are not only
related to x but also related to

.
x; they are functions of x and

.
x, and the equation of motion can be

expressed as:
M

..
x + C

(
x,

.
x
) .

x + K
(

x,
.
x
)

x = F(t) (32)
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where M is the system mass matrix, C is the damping matrix, K is the stiffness matrix,
..
x is the

acceleration,
.
x is the velocity, x is the displacement, and F(t) is the excitation force.

Variation in Equation (1) obtains the equation of motion of the nonlinear system as:

f
(

x,
.
x
)
= C

(
x,

.
x
) .

x + K
(

x,
.
x
)

x = F(t)−M
..
x (33)

where f
(

x,
.
x
)

is the restoring force generated by the nonlinear system.
The stiffness and damping are not constant. Thus, after obtaining the cross-section scatter

diagram when the velocity and displacement are 0, the data are fitted. The sinusoidal load in the
harmonic load is selected for the excitation force (torque):

F(t) = F sin(2π f t)
T(t) = T sin(2π f t)

(34)

where F is the amplitude of the excitation force, T is the amplitude of the excitation torque, and f is
the frequency of the excitation force (torque).

The excitation frequency should be far from the resonance frequency [28,29]. The parameter
identification of the double casing joint connection structure is divided into three steps. Firstly, the
constrained modal analysis with pre-stress is carried out for the inner and outer joints, and the sleeve
is fixedly supported in order to determine the frequency and amplitude of the sinusoidal excitation
force. Secondly, by applying the excitation to obtain the FSM scatter diagram, the inner and outer
joint models are fixed at one end and a sinusoidal excitation force (moment) is applied at the other
end; the moment is applied at the position of the coupling point RP at the end surface of the pipe.
Thirdly, MATLAB is used for data interpolation and fitting.

In order to reduce the influence of brackets, clamps, and pipes on the identification of the joint
connection parameters, the clamp, bolt nut, and bracket are removed from the double casing finite
element model. The pipes connected to the joint are shortened to a position 10 cm from the outer joint
sleeve. In addition, the internal constraints of the joint remain unchanged. The friction coefficient
between the O-ring and the metal parts is taken as 0.6. A schematic of the model used to identify the
parameters of the inner and outer joint is shown in Figure 4, including critical components, such as
the sleeve, socket, and pipe.
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of the finite element method and the number of elements is carried out to avoid the prob-
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(a) (b) (c) 

Figure 4. Schematic of the model. (a) Inner joint. (b) Outer joint.

In order to avoid system resonance when the excitation force (torque) is applied, the sleeve is
given a fixed constraint; then, the constrained modal analysis with pre-stress is carried out for the
inner and outer joints. The crucial components of the inner joint, such as the socket and pipe, are
meshed by the sweep method, the sleeve is meshed by the structured mesh method, and the element
type mainly adopts an eight-node linear hexahedron element, a reduction integral, and sand control
C3D8R. The sealing ring is a super-elastic material, and the unit type is chosen to be simulated using
a hybrid formulation, which can simulate the completely incompressible characteristics. The mesh
generation of the inner joint is shown in Figure 5.
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When the inner and outer joints are stressed, the seal ring will be in compression and their
pre-stress will have a large impact on the modal analysis. Also, the sealing performance is important
for the safety of the joints.

In order to ensure the stability and convergence of the simulation analysis, numerical simu-
lations considering the pre-stress of the seal ring are carried out. A convergence test of the finite
element method and the number of elements is carried out to avoid the problem of non-convergence
of the stress results due to stress singularities so that the appropriate mesh density can be determined
for subsequent studies. The results of the pre-stress analysis of the inner joint carried out for six
different element numbers of seal rings are shown in Figure 6.

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 6. Six different element numbers of seal rings: (a) 6272 elements, (b) 10,780 elements, (c) 
14,210 elements, (d) 17,885 elements, (e) 22,785 elements, (f) 36,260 elements. 
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Figure 6. Six different element numbers of seal rings: (a) 6272 elements, (b) 10,780 elements,
(c) 14,210 elements, (d) 17,885 elements, (e) 22,785 elements, (f) 36,260 elements.

The effect of different mesh densities on the maximum stress of the inner joints is further
analyzed, as shown in Figure 7. The numerical simulation mainly adjusts the mesh density of the
seal. From Figure 7, it can be seen that in the range of element numbers [6272, 142,101], the maximum
stress fluctuation is larger, and the increase is in the range of 18%. As the grid is encrypted and the
number of elements is in a range of [17,885, 36,260], the fluctuation of the maximum stress becomes
smaller, and it is kept in the range of 1%. At this point, the maximum stress can be considered to be
convergent. The subsequent simulation analysis of the inner joint uses the meshing method shown
in Figure 6d with good element quality, and the outer joints use the same method to determine the
mesh density.
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Table 1 is drawn to reflect the information on the number of units, number of nodes, etc.,
determined after the convergence analysis of the inner joint, outer joint, and support block in
Figures 8–10, respectively.
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Table 1. Number of different component element numbers.

Name Element Number Number of Mesh Nodes Mesh Quality

Outer joint 107,150 143,756 No warning and error
Inner joint 173,050 211,840 No warning and error

Support block 3272 4968 No warning and error
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From Figures 8 and 9, it can be seen that the inner and outer joints have no resonant 
intrinsic frequency between 10 and 60 Hz. Therefore, the excitation force frequency 
(torque), f, is taken as three groups of 20 Hz, 30 Hz, and 40 Hz. The friction torque of the 
sealing ring is generated by the friction between the sealing ring and the mating surface. 
Under the condition that the metal material and the sealing ring material are determined, 
the friction force (torque) is mainly determined by the compression of the sealing ring and 
the roughness of the metal surface [30]. The calculation parameters are shown in Table 2. 
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The simulation results of constrained modal analysis with pre-stress for the inner and outer
joints are shown in Figures 8 and 9.

From Figures 8 and 9, it can be seen that the inner and outer joints have no resonant intrinsic
frequency between 10 and 60 Hz. Therefore, the excitation force frequency (torque), f, is taken as
three groups of 20 Hz, 30 Hz, and 40 Hz. The friction torque of the sealing ring is generated by the
friction between the sealing ring and the mating surface. Under the condition that the metal material
and the sealing ring material are determined, the friction force (torque) is mainly determined by
the compression of the sealing ring and the roughness of the metal surface [30]. The calculation
parameters are shown in Table 2.

Table 2. Sealing ring parameters.

Name Section Diameter
d1 (mm)

Height after Compression
d2 (mm)

Friction Surface Diameter
D (mm)

Outer joint 3.52 2.94 47.304
Inner joint 1.78 1.43 14.757

According to the calculation parameters in Table 2, the friction forces of the inner and outer
joints are calculated to be 186.163 N and 40.002 N, respectively, and the friction torques are 4.403 N·m
and 0.295 N·m, respectively.

In order to ensure the joint movement, the excitation force (torque) should be greater than the
friction force. Through testing, it is found that when the excitation force amplitude of the inner
joint is 50 N, the excitation torque amplitude is 0.5 N·m. When the excitation force amplitude of the
outer joint is 1000 N, and its excitation torque amplitude is 5 N·m, the inner and outer joints have
enough motion.

4.2. Parameter Identification Results of Joint
Since each connection parameter identification process for both the inner and outer joint is

identical, we take an example of identifying motion equivalent connection parameters for an outer
joint with an excitation frequency of 20 Hz. We also obtain an FSM surface in this case using MATLAB
programming, as shown in Figure 10.

From Figure 10, it can be seen that when the speed is 0 mm/s, the relationship between the
restoring force and the displacement can be obtained, that is, the equivalent stiffness of the outer joint
when the displacement compensation is performed. When the displacement is 0 mm, the relationship
between the restoring force and the velocity can be obtained, that is, the equivalent damping of the
outer joint when the displacement compensation is performed. The kinematic stiffness and damping
curves of the outer joint during displacement compensation are obtained by the section method, as
shown in Figures 11 and 12.
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Figure 12. Damping curve.

It can be seen from Figures 11 and 12 that when the outer joint is compensated for displacement,
the equivalent stiffness generated by the positive and negative strokes is different and should be fitted
separately. The distribution of the damping scatter point is relatively scattered, and the linearization
is considered when the specific fitting equation is not determined. Using the least square method to
fit the data, it can be obtained that when the outer joint is sliding, the equivalent tensile stiffness of
the connection structure is 545.10 N·mm, the equivalent compression stiffness is 858.22 N·mm, and
the equivalent damping coefficient is 0.0101 N·mm·s−1.

Similarly, the equivalent connection parameters of the inner and outer joints at all excitation
frequencies can be obtained, as shown in Figure 13. The equivalent connection parameters of the
sliding, rotational, and torsional motion of the inner and outer joints at each frequency are shown in
Tables 3 and 4.
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Figure 13. FSM of outer joint: (a) 20 Hz rotational motion, (b) 20 Hz torsional motion, (c) 30 Hz 
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Figure 13. FSM of outer joint: (a) 20 Hz rotational motion, (b) 20 Hz torsional motion, (c) 30 Hz
sliding motion, (d) 30 Hz rotational motion, (e) 30 Hz torsional motion, (f) 40 Hz sliding motion,
(g) 40 Hz rotational motion, (h) 40 Hz torsional motion.

Table 3. Equivalent parameters of outer joint under loads with different excitation frequencies.

Frequency
(Hz)

Tensile
Stiffness
(N/mm)

Compressive
Stiffness
(N/mm)

Slide
Damping

(N/(mm·s−1))

Rotational
Stiffness

(N·mm/rad)

Rotational
Damping

(N·mm/(rad·s−1))

Torsional
Rigidity

(N·mm/rad)

Torsional
Damping

(N·mm/(rad·s−1))

20 545.10 858.22 0.0101 146,727.73 13.043 125,595.29 33.07
30 525.45 913.91 0.0177 140,404.97 19.422 111,308.34 28.65
40 551.65 820.28 0.0173 143,151.33 17.316 121,308.36 29.59

Average
value 540.73 864.14 0.0150 143,427.84 16.593 119,404.99 30.44
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Table 4. Equivalent parameters of inner joint under loads with different excitation frequencies.

Frequency
(Hz)

Tensile
Stiffness
(N/mm)

Compressive
Stiffness
(N/mm)

Slide
Damping

(N/(mm·s−1))

Rotational
Stiffness

(N·mm/rad)

Rotational
Damping

(N·mm/(rad·s−1))

Torsional
Rigidity

(N·mm/rad)

Torsional
Damping

(N·mm/(rad·s−1))

20 38.17 119.48 0.0012 346.75 3.10 888.94 3.08
30 39.32 123.06 0.0014 357.15 3.19 915.61 2.99
40 37.02 115.90 0.0012 336.65 3.01 862.47 3.17

Average
value 38.17 119.48 0.0013 346.85 3.10 889.01 3.09

4.3. Parameter Identification Results of Support Block
The equivalent connection parameters of the support block are derived from the linear elastic

characteristics of the metal material. According to the FSM surface of the linear system, the equivalent
connection parameters can be directly calculated by obtaining the corresponding displacement and
velocity under the excitation force.

The outer welding surface of the support block is coupled to one point, and the inner welding
surface of the support block is set fixed constraints. Since it has a symmetrical structure, only the
positive excitation force along the X-axis and the Y-axis and the clockwise excitation torque around
the X-axis and the Y-axis are applied to the coupling point of the support block. The torque is
1 N·mm, and the corresponding displacement and velocity nephograms similar to those are shown in
Figure 14.
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5. Free Modal Experiment 
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Figure 14. Support block analysis results. (a) X-direction displacement, (b) X-direction velocity,
(c) Y-direction displacement, (d) Y-direction velocity, (e) angular displacement around the X-axis,
(f) angular velocity around the X-axis, (g) angular displacement around the Y-axis, (h) angular velocity
around the Y-axis.

Thus, the equivalent connection stiffness and damping of the support block are obtained, as
shown in Tables 5 and 6.

Table 5. Equivalent connection stiffness of support block.

Kx (N/m) Ky (N/m) Kz (N/m) Kτx (N·m/rad) Kτy (N·m/rad) Kτz (N·m/rad)

2.38 × 108 2.38 × 108 2.38 × 108 1.53 × 104 8.42 × 104 1.53 × 104

Table 6. Equivalent connection damping of support block.

Cx (N·s/m) Cy (N·s/m) Cz (N·s/m) Cτx (N·m·s/rad) Cτy (N·m·s/rad) Cτz (N·m·s/rad)

4.66 × 109 4.66 × 109 4.66 × 109 1.06 × 105 6.97 × 105 1.06 × 105

5. Free Modal Experiment
5.1. Experimental Method

The test bench is mainly composed of test stands, test systems, sensors, excitation equipment,
and general measuring equipment. The principle of the test bench construction is shown in Figure 15.
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Figure 15. Principle of test bench construction. (1) Force hammer, (2) test pipe, (3) sensor, (4) signal
output, (5) signal input, (6) measurement and control system, (7) processor.

The modal experiment generally uses a hammer or the exciter as the excitation device. The ex-
perimental object in this paper is the double casing joint, which belongs to light and small equipment.
The hammer is used as the excitation equipment, and its specific technical parameters are shown in
Figure 16.
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5. Free Modal Experiment 
5.1. Experimental Method 

The test bench is mainly composed of test stands, test systems, sensors, excitation 
equipment, and general measuring equipment. The principle of the test bench construc-
tion is shown in Figure 15. 
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Figure 15. Principle of test bench construction. (1) Force hammer, (2) test pipe, (3) sensor, (4) signal 
output, (5) signal input, (6) measurement and control system, (7) processor. 

The modal experiment generally uses a hammer or the exciter as the excitation de-
vice. The experimental object in this paper is the double casing joint, which belongs to 
light and small equipment. The hammer is used as the excitation equipment, and its spe-
cific technical parameters are shown in Figure 16. 
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Figure 16. Hammer used in the modal test. Figure 16. Hammer used in the modal test.
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The installation of the test pipe is shown in Figure 17. Acceleration sensors are used to collect
vibration response signals and are normally mounted on the surface of the test piece under test
using screws and glue. This test uses the acquisition method of mobile excitation points and fixed
corresponding points.
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Figure 17. Free modal test installation.

The measurement control system and the data acquisition interface are shown in Figure 18. The
test process includes the calibration of test components and the installation of test assemblies. Then,
the force hammer is utilized to apply a load to the pipeline unit. The time-domain data acquisition
was achieved using an NI measurement control system. Finally, the acquired time-domain signals
are transformed into frequency-domain signals by performing fast Fourier transform (FFT) using
MATLAB.
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5.2. Experimental Result
Figure 19 shows the free modal test results of the double casing joint assembly obtained using

the hammering method.
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Table 7. Material parameters of metal parts of double casing joints. 

Name Density (Tone/mm3) Elastic Modulus (MPa) Poisson Ratio 
Inner and outer pipes 

Sleeve 
Inner and outer socket 

Support block 

7.92 × 10−9 199,950 0.27 

Clamp metal part 
Bracket 

2.73 × 10−9 73,100 0.33 

Nuts and bolts 7.85 × 10−9 200,000 0.28 

Table 8. Remaining geometric and material parameters of the test component. 
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Air volume modulus 
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Figure 19. Free modal test results of test pipes. (a) X-direction acceleration–frequency response
curve, (b) Y-direction acceleration–frequency response curve, (c) Z-direction acceleration–frequency
response curve.
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It can be seen from Figure 19 that there are seven main resonance peaks in the range of 0–150 Hz.
These seven main resonance peaks appear in the Y-direction, while only the second-order main
resonance peaks appear in the X-direction, and the first-order, second-order, and seventh-order main
resonance peaks appear in the Z-direction; the natural frequencies of the test component in the free
mode are extracted.

6. Numerical Examples
The test assembly dynamics model is established based on the double casing joint dynamics

model, and the length of each unit is shown schematically in Figure 20. The geometric and material
parameters of the test assembly are shown in Tables 7 and 8.
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Table 7. Material parameters of metal parts of double casing joints.

Name Density (Tone/mm3) Elastic Modulus (MPa) Poisson Ratio

Inner and outer pipes
Sleeve

Inner and outer socket
Support block

7.92 × 10−9 199,950 0.27

Clamp metal part
Bracket 2.73 × 10−9 73,100 0.33

Nuts and bolts 7.85 × 10−9 200,000 0.28

Table 8. Remaining geometric and material parameters of the test component.

Material Parameter Value Geometric Parameter Value Geometric Parameter Value

Air volume modulus
of elasticity (MPa) 0.142 L1 (mm) 75.38 L8 (mm) 9.10

Air density (kg/m3) 1.29 L2 (mm) 376.87 L9 (mm) 7.74
Plug quality (kg) 0.003 L3 (mm) 6.06 L10 (mm) 9.88

Sensor quality (kg) 0.006 L4 (mm) 13.92 L11 (mm) 13.92
- - L5 (mm) 9.88 L12 (mm) 6.06
- - L6 (mm) 7.74 L13 (mm) 376.87
- - L7 (mm) 9.10 L14 (mm) 75.38
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The sides of the test assembly are free boundary conditions, but the plug mass needs to be
taken into account; therefore, the boundary condition matrix of the established dynamic model is
expressed as:

D =



1 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 A f m0s 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 m0s 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 m0s 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1


(35)

The mechanical pulse excitation signal of the hammer at the beginning of the pipe is about 2000
N, and the excitation time is 2 ms. In numerical calculations, the input is in the form of a mechanical
pulse excitation, the excitation reversal is negative along the Y-axis, and its corresponding frequency-
domain excitation is (Fr/s)

(
e−sT − 1

)
. Here, Fr is excitation amplitude. When the excitation is in the

axial direction of the pipe, the frequency domain–velocity response results of numerical analysis and
test can be obtained, as shown in Figure 21.
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As shown in Figure 21, there are seven main resonance peaks obtained by numerical analy-
sis. The intrinsic frequency values corresponding to each main resonance peak are extracted and
compared with the intrinsic frequency values obtained from the modal test, as shown in Table 9.

Table 9. Comparison of test and numerical analysis for each order of intrinsic frequency.

Order f n1 f n2 f n3 f n4 f n5 f n6

Test (Hz) 1.978 4.527 8.967 18.152 40.910 83.345
Numerical analysis (Hz) 1.791 4.776 9.341 16.923 37.988 80.184

Error 9.45% 5.50% 4.17% 6.77% 7.14% 3.79%

In Table 9, the maximum error under test verification is 9.45%. The main sources of error include
the neglect of the outer sleeve reducer structure and the enlarged fluid cross-sectional area of the
outer pipe unit. In general, the numerical calculations are consistent with the test results, which
verifies the effectiveness of the established dynamic model in dealing with the intrinsic characteristics
of casing units containing double casing joints.
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7. Conclusions
In this paper, we investigated the dynamic characteristics of an aircraft fuel system pipeline

with double casing joints based on the force state and working principle of the inner and outer joints
of the double casing joint using a fluid–solid coupling fourteen-equation model and transfer matrices.

Firstly, the fluid–solid coupling dynamics model of the inner and outer joints were established,
and the parallel form of the model was adopted. The structural coupling of the inner and outer
piping systems was realized, and the analytical solutions were given in the frequency domain.
The FSM method was chosen to complete the identification of the connection parameters of the
inner and outer joints, which solves the problem of the double casing joint that makes it difficult
to measure data by using sensors, as the components are closely combined. Finally, we designed
and constructed a double casing joint test bench to test the frequency-domain response under free
boundary hammering excitation. The frequency-domain–velocity response under the same excitation
was solved by substituting the boundary condition matrix into the established dynamic model.

The accuracy of the theoretical model can be further improved by considering the pipe sleeve
reducer structure and experimental studies on the parameter identification in future work.
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Nomenclature

Nomenclature of parameters in theoretical and simulation models:

V Fluid velocity, m/s
P Fluid pressure, MPa
.

ω Pipe velocity, m/s
f Forces in cross-section, N
M Moment, Nm
x, y, z Directional subscripts
θ Deflection angle of pipe, rad
.
θ Angular velocity of pipe wall, rad/s
m0 Plug mass, kg

References
1. Wang, C.; Li, Y.G.; Yang, B.Y. Transient performance simulation of aircraft engine integrated with fuel and control systems. Appl.

Therm. Eng. 2017, 114, 1029–1037. [CrossRef]
2. Zhang, Z.; Li, B.; Yu, M.; Liu, Y.; Liu, W. Dynamic strength reliability analysis of an aircraft fuel pipe system. In Proceedings of

the 2017 Second International Conference on Reliability Systems Engineering (ICRSE), Milan, Italy, 20–22 December 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1–6.

https://doi.org/10.1016/j.applthermaleng.2016.12.036


Processes 2023, 11, 2767 22 of 23

3. Novichkov, V.M.; Filinov, N.I.; Kalinina, O.I. Assessment of the Technical Condition of the Aircraft Fuel System by Its Main
Elements in Flight. In Proceedings of the 2020 International Multi-Conference on Industrial Engineering and Modern Technologies
(FarEastCon), Vladivostok, Russia, 6–9 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4.

4. Lamoureux, B.; Massé, J.R.; Mechbal, N. An approach to the health monitoring of a pumping unit in an aircraft engine fuel system.
In PHM Society European Conference; PHM Society: Rochester, NY, USA, 2012.

5. Wang, Y.; Ruan, C.; Lu, S.; Li, Z. A Study on the Movement Characteristics of Fuel in the Fuel Tank during the Maneuvering
Process. Appl. Sci. 2023, 13, 8636. [CrossRef]

6. Fredricson, H.; Johansen, T.; Klarbring, A.; Petersson, J. Topology optimization of frame structures with flexible joints. Struct.
Multidiscip. Optim. 2003, 25, 199–214. [CrossRef]

7. Melissianos, V.E.; Korakitis, G.P.; Gantes, C.J.; Bouckovalas, G.D. Numerical evaluation of the effectiveness of flexible joints in
buried pipelines subjected to strike-slip fault rupture. Soil Dyn. Earthq. Eng. 2016, 90, 395–410. [CrossRef]

8. Li, X.; Yao, Z.; Yang, M. A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint. Rev. Sci. Instrum.
2017, 88, 65003. [CrossRef]

9. Ettefagh, M.H.; Naraghi, M.; Towhidkhah, F. Position Control of a Flexible Joint via Explicit Model Predictive Control: An
Experimental Implementation. Emerg. Sci. J. 2019, 3, 146–156. [CrossRef]

10. Hongbin, S.; Cai, W.; Zhuanli, Q.; Guocai, L. Numerical Research on Interfacial Damage and Sealing Reliability of Flexible Joint
under Wide Temperature Range. J. Propuls. Technol. 2019, 40, 2313–2324.

11. Song, C.; Du, Q.; Yang, S.; Feng, H.; Pang, H.; Li, C. Flexible joint parameters identification method based on improved tracking
differentiator and adaptive differential evolution. Rev. Sci. Instrum. 2022, 93, 84706. [CrossRef]

12. Xu, X.D.; Li, G.J.; Yuan, S. Application of Flexible Combine-Clamp in Digital Rapid Production for Aircraft Tube. Appl. Mech.
Mater. 2013, 404, 777–781. [CrossRef]

13. Melissianos, V.E.; Lignos, X.A.; Bachas, K.K.; Gantes, C.J. Experimental investigation of pipes with flexible joints under fault
rupture. J. Constr. Steel Res. 2017, 128, 633–648. [CrossRef]

14. Konstantinov, S.V.; Lalabekov, V.I.; Obolenskii, Y.G. Mathematical Model of the Gas-Hydraulic Control Actuator for the Swiveling
Nozzle of the Solid Propellant Fuel Propulsion System with Flexible Joint. Russ. Aeronaut. 2019, 62, 222–228. [CrossRef]

15. Ramezani, M.A.; Yousefi, S.; Fouladi, N. An experimental and numerical investigation of the effect of geometric parameters on
the flexible joint nonlinear behavior for thrust vector control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 2772–2782.
[CrossRef]

16. Li, L.; Xu, W.; Tan, Y.; Yang, Y.; Yang, J.; Tan, D. Fluid-induced vibration evolution mechanism of multiphase free sink vortex and
the multi-source vibration sensing method. Mech. Syst. Signal Process. 2023, 189, 110058. [CrossRef]

17. Li, L.; Lu, B.; Xu, W.X.; Gu, Z.H.; Yang, Y.S.; Tan, D.P. Mechanism of multiphase coupling transport evolution of free sink vortex.
Acta Phys. Sin. 2023, 72, 34702. [CrossRef]

18. Zhang, X.M. Parametric studies of coupled vibration of cylindrical pipes conveying fluid with the wave propagation approach.
Comput. Struct. 2002, 80, 287–295. [CrossRef]

19. Xu, Y.; Johnston, D.N.; Jiao, Z.; Plummer, A.R. Frequency modelling and solution of fluid-structure interaction in complex
pipelines. J. Sound Vib. 2014, 333, 2800–2822. [CrossRef]

20. Selvarajan, S.; Tappe, A.A.; Heiduk, C.; Scholl, S.; Schenkendorf, R. Process Model Inversion in the Data-Driven Engineering
Context for Improved Parameter Sensitivities. Processes 2022, 10, 1764. [CrossRef]

21. Jin, H.; Liu, Z.; Zhang, H.; Liu, Y.; Zhao, J. A Dynamic Parameter Identification Method for Flexible Joints Based on Adaptive
Control. IEEE/ASME Trans. Mechatron. 2018, 23, 2896–2908. [CrossRef]

22. Asarin, E.; Donzé, A.; Maler, O.; Nickovic, D. Parametric Identification of Temporal Properties. In Proceedings of the Runtime Ver-
ification: Second International Conference, RV 2011, San Francisco, CA, USA, 27–30 September 2011; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7186, pp. 147–160.

23. Al-Hadid, M.A.; Wright, J.R. Estimation of mass and modal mass in the identification of non-linear single and multi degree of
freedom systems using the force-state mapping approach. Mech. Syst. Signal Process. 1992, 6, 383–401. [CrossRef]

24. Kimm, W.; Park, Y. Non-linear joint parameter identification by applying the force-state mapping technique in the frequency
domain. Mech. Syst. Signal Process. 1994, 8, 519–529. [CrossRef]

25. Wang, J.; Huang, H. Model and parameters identification of non-linear joint by force-state mapping in frequency domain. J. Mech.
2007, 23, 367–380. [CrossRef]

26. Shu, Y.; Liu, Y.; Xu, Z.; Zhao, X.; Chen, M. Optimization of Hydraulic Fine Blanking Press Control System Based on System
Identification. Processes 2023, 11, 59. [CrossRef]

27. Gao, H.; Guo, C.; Quan, L.; Wang, S. Frequency Domain Analysis of Fluid–Structure Interaction in Aircraft Hydraulic Pipe with
Complex Constraints. Processes 2022, 10, 1161. [CrossRef]

28. Quan, L.; Luo, H.; Zhang, J. Harmonic Response Analysis of Axial Plunger Pump Shell Structure. Chin. Hydraul. Pneum. 2014, 5,
33–39.

https://doi.org/10.3390/app13158636
https://doi.org/10.1007/s00158-003-0281-z
https://doi.org/10.1016/j.soildyn.2016.09.012
https://doi.org/10.1063/1.4985703
https://doi.org/10.28991/esj-2019-01177
https://doi.org/10.1063/5.0099485
https://doi.org/10.4028/www.scientific.net/AMM.404.777
https://doi.org/10.1016/j.jcsr.2016.09.026
https://doi.org/10.3103/S1068799819020077
https://doi.org/10.1177/0954410018785988
https://doi.org/10.1016/j.ymssp.2022.110058
https://doi.org/10.7498/aps.72.20221991
https://doi.org/10.1016/S0045-7949(02)00005-6
https://doi.org/10.1016/j.jsv.2013.12.023
https://doi.org/10.3390/pr10091764
https://doi.org/10.1109/TMECH.2018.2873232
https://doi.org/10.1016/0888-3270(92)90038-K
https://doi.org/10.1006/mssp.1994.1037
https://doi.org/10.1017/S1727719100001428
https://doi.org/10.3390/pr11010059
https://doi.org/10.3390/pr10061161


Processes 2023, 11, 2767 23 of 23

29. Chen, Y.; An, C.; Zhang, R.; Fu, Q.; Zhu, R. Research on Two-Way Contra-Rotating Axial-Flow Pump–Turbine with Various Blade
Angles in Pump Mode. Processes 2023, 11, 1552. [CrossRef]

30. Jalali, H.; Ahmadian, H.; Mottershead, J.E. Identification of nonlinear bolted lap-joint parameters by force-state mapping. Int. J.
Solids Struct. 2007, 44, 8087–8105. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/pr11051552
https://doi.org/10.1016/j.ijsolstr.2007.06.003

	Introduction 
	Working Principle 
	Theoretical Modeling 
	Force Analysis and Dynamic Modeling of Single-Layer Flexible Joints 
	Dynamical Model of Double Casing Joint 

	Parameter Identification 
	Principle of FSM Method 
	Parameter Identification Results of Joint 
	Parameter Identification Results of Support Block 

	Free Modal Experiment 
	Experimental Method 
	Experimental Result 

	Numerical Examples 
	Conclusions 
	References

