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Abstract: Pyrolysis is a promising technology used to recycle both the energy and chemicals in
plastics. Three types of plastics, polyethylene plastic (PE), polypropylene plastic (PP) and polystyrene
plastic (PS) were investigated using thermogravimetry–mass spectrometry (TG–MS) and reactive
force field molecular dynamics (ReaxFF-MD) simulation. The thermogravimetric analysis showed
that all three plastics lost weight during the pyrolysis in one step. The thermal decomposition stability
is PS < PP < PE. The activation energies and reaction mechanism function of the three plastics were
determined by the Kissinger and CR methods. Meanwhile, the ReaxFF-MD combined with density
functional theory (DFT) was used to calculate the kinetics, as well as explore the pyrolysis mechanism.
The calculated kinetic results agree well with the experimental methods. The common pyrolysis
reaction process follows the dissociation sequence of the polymer to polymeric monomer and, then,
to the gas molecules. Based on the bond length between the monomers and the bond dissociation
energy for different plastics, the required energy for polymer dissociation is PS < PP < PE, which
microscopically explains the macro-activation energy sequence and thermal stability. Moreover, due
to the retention of aromatic rings in its monomers, PS almost completely converts into oil.

Keywords: waste plastics; pyrolysis kinetics; TG–MS; ReaxFF-MD; DFT

1. Introduction

Plastics are a kind of synthetic polymer compound mainly made from raw petrochemi-
cal products, which have been widely used in production and living. In 2018, global plastic
production reached 359 million tons, with China alone accounting for nearly 30% [1,2].
Actually, plastics, especially PE, PP and PS with high calorific value, are widely used in
packaging and the building materials industry [3]. With the increasing use of plastics,
waste disposal has become a thorny issue. At present, the simplest treatment methods
include direct incineration and land filling, but these methods cause serious air pollution
and soil pollution [4]. Thermochemical transformation technologies, such as pyrolysis,
are promising treatment methods to recycle high energy carriers. Waste plastic is heated
to a medium temperature in an inert atmosphere and thermally cracked, producing high
value-added chemical products, such as oil [5–7]. Generally speaking, pyrolysis is affected
by temperature, pressure, the heating rate, reaction time, the catalyst and other factors, so
it is necessary to clarify the detailed mechanism and reaction kinetics.

Thermogravimetric (TG) analysis is a common method used to study the pyrolysis
kinetics of solid materials. The combination of TG data and mathematical model fitting can
be used to calculate the kinetic parameters of the pyrolysis reaction, and help to deduce
and verify the reaction mechanism [8–11]. Pan et al. used the TG–FTIR–MS experimental
method to study the pyrolysis characteristics of PVC plastic at a temperature of 200–900 ◦C
and analyzed the kinetics of PVC using the KAS, FWO and FR methods [12]. He et al.
found that when PP or PE is pyrolyzed alone, its monomer structure is first generated,
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followed by corresponding alkanes and small molecule gases [13]. Hu et al. studied the
co-pyrolysis characteristics of HDPE, LDPE, PP and PS, and waste tires using TG–FTIR,
and explored the thermal decomposition behavior, dynamic transformation and gas release
characteristics of the pyrolysis process. The co-pyrolysis process can be divided into three
stages, according to the reaction activation energy, by using the first-order reaction kinetics
model [14]. Singh S et al. conducted thermogravimetric analysis (TGA) experiments on a
single and mixed pyrolysis of corn cob (CC) and polyethylene plastic (PE) to investigate
the thermal response, kinetics, reaction mechanism and thermodynamics of the pyrolysis
process. The activation energy in the process was calculated using different models, such as
Kissinger, Friedman, Starink, Vyazovkin and others, and it was found that the variation in
the reported values on the activation energy was not significantly different [15]. However,
the experiment can hardly capture the detailed conversion of radicals at the atomic level
and reveal the difference in the pyrolysis mechanism of various plastics.

With the progress in computer technology and the development of a reactive force
field, which can describe chemical reactions [16], molecular dynamics simulation plays
an important role in the study of the reaction mechanism because of its good microscopic
visualization effect and the applicability of large-scale atoms [17]. This method uses the
distance between atoms to obtain the bond level and bond energy, and describes chemical
reactions from the perspective of bond generation and fracture without the definition of
the reaction path in advance. It has been widely used in the mechanism studies on coal,
biomass, polymers and other complex macromolecules [18–23]. Batuer et al. proposed
a new ReaxFF molecular dynamics simulation model to predict the volatility and coke
evolution during cotton pyrolysis using isothermal simulation and the volatile variable
removal rate (VRR) [24]. Liu et al. constructed a pyrolysis system containing eight PE
chains, and verified the accuracy of the ReaxFF-MD simulation by comparing the simulated
product distribution with the experimental Py–GC/MS results. The detailed reaction
mechanism and gas molecule generation pathway of PE pyrolysis were obtained through
simulation track analysis at the micro-atomic level [25]. Xu et al. used MD to investigate
the pyrolysis pathways of PE under non-isothermal and isothermal conditions [26]. Also,
Wang et al. studied the co-pyrolysis mechanism of biomass and PE using MD and density
functional theory (DFT) and the synergistic effect of the co-pyrolysis of coal and PE/PS was
studied using MD [27,28]. Xuan et al. discovered the steam gasification mechanism of PE
using MD and revealed the bond energy at different positions [29]. Therefore, the ReaxFF-
MD method coupled with DFT can effectively reveal the chemical reaction mechanism of
thermal conversion at the micro level.

Different plastics have different thermal behaviors; the products also vary depending
on the chemical structures of the plastic types [30,31]. However, pyrolysis mechanisms have
rarely been compared and explained at the molecular level. Understanding the structural
evolution of different plastic types during thermal treatment is helpful to improve the
reaction process and achieve more high-value oil and gas during co-pyrolysis/gasification.
In this paper, thermogravimetry–mass spectrometry (TG–MS) was first used for the experi-
mental analysis of three representative plastics, namely PE, PP and PS. Then, the Kissinger
and Malek plus CR kinetic methods were used to determine the pyrolysis kinetic parame-
ters. Meanwhile, the ReaxFF-MD simulation combined with DFT was performed to explore
the reaction kinetics verified by the TG experiment. The radical evolutions and pyrolysis
mechanisms of the three plastics were revealed on the micro-atomic level. The energy
barriers of key reactions for producing pyrolysis oil and gaseous products were calculated
using transition state calculations based on DFT. Through comparing the energy barriers,
the macro-kinetics of the three plastics determined from the TG experiment are explained.
These studies can provide theoretical support and basic kinetic data for the optimization of
the plastic pyrolysis process and reactor design.
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2. Methods
2.1. Experiment
2.1.1. Experimental Materials and Methods

Three plastic powders, PE, PP and PS, with a particle size of 100 mesh were dried in a
vacuum drying oven at 105 ◦C for 2 h. The ultimate analysis and the proximate analysis
of the samples are shown in Table 1. Then, the dried waste plastics were analyzed by
a synchronous thermal analyzer (STA 449F3) coupled with an online quadrupole mass
spectrometer (QMS 403 D). For the TG–MS experiment, 10 mg of the plastic sample was
placed in an alumina crucible to heat up from room temperature to 150 ◦C, with a heating
rate of 10 ◦C/min, and held for 40 min. Then, the heating rate continued to rise to 800 ◦C at
5, 10 and 15 ◦C/min, respectively. Argon gas was used as the carrier gas with an 80 mL/min
flow rate to provide an inert atmosphere for pyrolysis. Each experiment was repeated three
times to eliminate the interference from the equipment and human factors.

Table 1. Proximate and ultimate analysis of waste plastics.

Plastic Proximate Analysis Proportion
(wt%) Ultimate Analysis Proportion

(wt%)

PE

C 85.12 Fixed carbon 0
H 14.12 Moisture 0.12
N 0 Volatile 99.88
S 0.14 Ash 0

PP

C 85.26 Fixed carbon 0.05
H 14.19 Moisture 0.12
N 0 Volatile 99.83
S 0.43 Ash 0

PS

C 91.41 Fixed carbon 0
H 7.82 Moisture 0.12
N 0 Volatile 99.88
S 0.20 Ash 0

2.1.2. Kinetic Calculation Theory

The non-isothermal solid pyrolysis process can be described with the Arrhenius
Equation [32]:

dα

dt
= β · dα

dT
= A · exp−

Ea
RT · f (α) (1)

where α is the solid reaction conversion rate; t is the reaction time, min; Ea is the activation
energy, kJ/mol; A the pre-exponential factor min−1; f (α) is the reaction mechanism func-
tion; β is the constant heating rate, K/min; T is the reaction temperature, K; and R is the
universal gas constant, 8.314 J/(mol·K).

Kissinger Method

The greatest advantage of the Kissinger method is the preliminarily estimation of the
activation energy and pre-exponential factors when the pyrolysis mechanism function is
unknown [32]. According to the data, at the maximum conversion rate for multiple TG
curves measured at different heating rates, linear fitting analysis was performed on the
characteristic values of the pyrolysis thermogravimetric experiment. After the integration
of Equation (1), the standard Kissinger equation can be derived as follows:

ln(
β

T2
max

) = − E
RTmax

+ ln(
AR
E

) (2)

where Tmax is the peak (maximum) temperature obtained in the DTG curves, K.



Processes 2023, 11, 2764 4 of 15

Combination of the Malek and Coats–Redfern Methods

The Malek and Coats–Redfern (CR) methods are commonly combined to study the
thermal decomposition process of polymers. The combination of two methods can reduce
the trouble of trying reaction mechanism functions one by one [33].

In this paper, the Malek method was used to compare the fitting curve of the pyrolysis
experimental data points with the standard curves of 20 common mechanism functions
(shown in Supplementary Table S1) [10,11,34]. Then, the standard curve that matched the
fitting curve the most was determined as the reasonable mechanism function for pyrolysis.
The thermogravimetric experiment data can be converted into the defined function y(α) by
Equation (3a) and the theoretic function can be determined by Equation (3b):

y(α) = (
T

T0.5
)

2
·

dα
dt

( dα
dt )0.5

(3a)

y(α) =
f (α)g(α)

f (α)0.5g(α)0.5
(3b)

where T0.5, ( dα
dt )0.5, f (α)0.5 and g(α)0.5 are, respectively, the temperature, weight loss rate,

differential and integral forms of the mechanism functions when the conversion rate is
α = 0.5.

According to the mechanism function model determined by the Malek method, the
Coats–Redfern (CR) method was used to perform linear fitting analysis on the data ob-
tained from the TG experiment [35]. After integration, the standard CR equation can be
deduced as:

ln(
g(α)
T2 ) = − E

RT
+ ln[

AR
βE

(1− 2TR
E

)] ≈ − E
RT

+ ln(
AR
βE

) (4)

where g(α) is the integral form of the reaction mechanism function. Through linear fitting,
the activation energy E and the pre-exponential factor A can be determined by the slope
and intercept.

2.2. Simulation Details for ReaxFF-MD and DFT
2.2.1. Model Construction

In reality, plastic is composed of thousands of atoms. But, due to limitations to comput-
ing power, we need to build a suitable model through practical simulations. Knyazev V.D.
and Smith K.D. et al. studied the effect of the molecular weight of the PE chain on the initial
C–C bond dissociation rate and found that the dissociation rate increased dramatically
when the number of ethylene monomers was less than 5, but gradually became saturated
when the degree of polymerization was further increased [36,37]. Our previous study on
the steam gasification of PE plastic proved that the model, C50H102, can be a good represen-
tative in comparison to ReaxFF-MD with experiments [29]; therefore, a long chain model
composed of at least fifty C atoms was constructed using Materials Studio software for PE,
PP and PS plastics. The content of S is low in Table 1 and, thus, it is ignored in the model.
The molecular formulas of the three plastics are C50H102, C51H104 and C56H58, respectively.

After geometric optimization using the Forcite module, the 20 optimized polymer
chains were put together in a cubic periodic cell, employing the construction function in
the Amorphous Cell program. In addition, the periodic boundary conditions were used to
eliminate possible boundary effects. The PE, PP and PS pyrolysis systems are constructed
in Figure 1, respectively.
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2.2.2. Simulation Details

In this paper, the ReaxFF-MD method was used to simulate the pyrolysis of plastics,
based on the LAMMPS software. Firstly, the system was equilibrated at a low temperature,
300 K for 100 ps, to obtain a reasonable initial reaction system. In the non-isothermal
pyrolysis simulation, the reaction system was gradually heated from 300 K to 3000 K at
a constant heating rate of 10 K/ps. For the isothermal pyrolysis simulation process, the
temperature of the simulation system was rapidly increased to high temperature ranges
of 2500–3500 K. When the system reached a high temperature, the NVT ensemble was
applied and the N-H method was used to control the system at a specified temperature [38].
The simulations were performed at different temperatures to obtain the reaction rates and
activation energy. In an MD simulation, the temperature is usually increased to accelerate
the reaction rate, which has been widely used in the study of oxidation and pyrolysis of
hydrocarbons and biomass [22,39,40]. The calculated weight curve is verified with the TG
results. During the ReaxFF-MD simulation process, the C/H/O reaction field [40] was used
to describe the chemical reaction. The visualization software OVITO was used to observe
and analyze the reaction process.

In order to further discuss the product conversion and reaction paths obtained by the
ReaxFF-MD, the DMol3 module and DFT theory in the Materials Studio software are used to
calculate the dissociation energy of some important bonds in the reaction process. The BLYP
(Becke–Lee–Yan–Parr) functional at the generalized gradient approximation (GGA) level
is used in the calculation [41]. The base group is set to DNP, and the convergence criteria
of the energy, maximum force and maximum displacement are set to 1 × 10−5 Hartree,
2 × 10−3 Hartree/Å and 5 × 10−3 Å, respectively [42]. We also use the DFT calculation
method to calculate the reaction energy barrier of each path in the process of product
formation. Here, the reaction energy barrier is defined as [43]:

Ebarrier = Ets − Er
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where Ebarrier is the energy barrier of the reaction, kJ/mol; Ets is the energy kJ/mol of the
transition state product; and Er is the energy of the reactant, kJ/mol.

3. Results and Discussion
3.1. Study on Pyrolysis by Experiment
3.1.1. TG–MS Analysis

Figure 2a shows the TG and DTG curves for the three plastics. It can be seen that the
pyrolysis process has only one weight loss peak, and the weight loss basically reaches 100%.
At higher heating rates, the TG and DTG curves for the three plastics move to the right,
and the solid weight loss is faster. The right shift in the pyrolysis curve can be explained by
thermal hysteresis when the heating rate is high. The decomposition temperature of PE, PP
and PS ranges from 456–496 ◦C, 412–478 ◦C and 389–431 ◦C, respectively. The gas release
from the plastics during pyrolysis at 10°C/min was monitored online by MS and the results
are shown Figure 2b. Since most products from PS are found in oil, only the gases from
PE and PP are monitored [44,45]. The temperature range is basically consistent with the
pyrolysis weight loss, and the peak temperatures for PE and PP are 481 ◦C and 463 ◦C,
respectively. The main types of monitored gas being released are C3H6 (m/z = 42), C2H4
(m/z = 28), H2 (m/z = 2) and CH4 (m/z = 16) gases, which were also detected by Qin et al. in
their experimental study of plastic pyrolysis [46].
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3.1.2. Kinetic Analysis
Kissinger Method

The Kissinger method is used to fit and predict the activation energy of the pyrolysis
reaction. According to Equation (2), linear fitting of ln( β

T2
max

) to 1000
Tmax

at different heating
rates was performed and the results are shown in Table 2. From the activation energy
results, PS is relatively easier to perform pyrolysis, while PE requires the highest energy
to react.
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Table 2. Characteristic parameters of plastic pyrolysis and the kinetic parameters predicted by the
Kissinger method.

Plastic B (K/min) Tmax (K) αmax E (kJ/mol) A (min−1) R2

PE
5 465.83 0.64

228.74 3.63 × 1012 0.94810 481.37 0.56
15 486.09 0.49

PP
5 446.80 0.54

193.43 2.30 × 1010 0.99410 463.46 0.55
15 471.2 0.55

PS
5 401.68 0.63

181.63 2.73 × 1010 0.99710 416.22 0.53
15 423.77 0.52

Combination of the Malek and CR Method to Determine the Kinetics

The Malek method is used to determine the reaction mechanism model. The differen-
tial f (α) and integral g(α) forms corresponding to 20 kinetic mechanism functions are used
in Equation (3). And then, the theoretical and experimental fitting curves are compared
(shown in Supplementary Figure S1. The best fitting correlations (No. 4–11) are found.

Since the determined reaction mechanism model corresponds to multiple equations, it
is necessary to further determine the exact reaction mechanism equation. Different integral
forms g(α) of the No. 4–11 mechanism equations were used in Equation (4) and the linear
fitting of the experimental ln( g(α)

T2 ) against 1000
T was carried out. The best fitting curve was

selected to determine the kinetics. Figure 3 shows the comparison of the most suitable
mechanism function with the experimental data. The calculated kinetics data and reaction
mechanism are summarized in Table 3.
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Table 3. Kinetic parameters of the plastic pyrolysis reaction.

Methods PE PP PS

E (kJ/mol)
Kissinger 228.74 193.43 181.63

CR 234.90 191.45 181.21
ReaxFF-MD 224.31 195.03 176.26

lnA (min−1)
Kissinger 3.63 × 1012 2.30 × 1010 2.73 × 1010

CR 7.60 × 1012 1.90 × 1010 2.06 × 1010

Mechanism function A3/2 A1 A3/2

3.2. Study on the Pyrolysis by ReaxFF-MD
3.2.1. Model Verification

Firstly, the pyrolysis weight loss curve for the three plastics was calculated using
ReaxFF-MD simulation and the results were compared with the TG experimental results.
In molecular dynamics simulation, the state of organic species is commonly defined as:
C40+ as solid, C5–C39 as liquid and C1–C4 as gas [47].
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As shown in Figure 4, the simulated weight loss process is basically consistent with the
TG experimental results. In the ReaxFF-MD simulation, the initial weight loss temperature
sequence of the different plastics is PS (2002 K) < PP (2069 K) < PE (2149 K), which agrees
with the TG results, as PS (389 ◦C) < PP (412 ◦C) < PE (456 ◦C). The reason for the higher
simulated temperature is mainly caused by the small-time scale of the ReaxFF-MD method.
The agreement of the weight loss curve with the TG results shows that the three constructed
reaction models are suitable for pyrolysis simulation.
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3.2.2. Kinetic Analysis

Then, the pyrolysis kinetics of the PE, PP and PS plastics are calculated using
ReaxFF-MD simulation. Taking the PE plastic as an example, the pyrolysis reaction process
of the polymer can be expressed as follows:

C50H102 → Ca Hb + CcHd (5)

where C50H102 represents the PE plastic. In the simulation, the reaction concentration
can be represented by the number of PE chains, and the reaction time can be calculated
from the occurrence of the first PE chain dissociation to the time when 90% of the PE
chain dissociation occurs [11,48]. The reaction rate for this process can be expressed by the
following formula:

ln(N0)− ln(N1) = k(T) · (t0 − t1) (6)

where N0 represents the number of PE chains at the beginning, N1 represents the number of
remaining PE chains when the PE dissociation conversion rate reaches 90%, T0 represents
the moment when the first PE chain begins to dissociate, and T1 represents the moment
when the PE dissociation conversion rate reaches 90%.

Furthermore, according to the Arrhenius equation and Equation (6), the pre-exponential
factor A and activation energy E can be determined by the slope and intercept of the fitting
line ln(k(T)) against 1000

T . Similarly, the kinetics of PP and PS are calculated. The fitting
lines are shown in Figure 5.

Table 3 lists the kinetic results from the ReaxFF-MD simulation, as well as the Kissinger
and CR methods. From Figure 6, we can see that the kinetic results from different methods
are similar and the errors are within 5%. For the three different plastics, the sequence
EPS < EPP < EPE indicates that PE has the highest thermal stability, while the PS plastic is the
most reactive. This is in accordance with the TG–MS experiment, where the decomposition
temperature range for PS is the lowest, while that of PE is the highest.
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3.2.3. Product Distribution

The statistics on the product distributions with the temperature of the three plastics
are shown in Figure 7a–c. For the PE and PP plastics, oil and gas almost occur at the same
time and the highest oil yield can reach nearly 50 wt%. But when the temperature exceeds
2500 K, the oil starts to crack continuously and, finally, almost completely converts into
gas. However, for PS, most of the solids transform into oil, while little gas is generated.
By tracing the transformation of styrene monomers, we found that only 2.14% of the
aromatic rings are converted into small hydrocarbons by the ring-opening reaction at the
end of weight loss, therefore most are completely converted into oil. This is consistent
with previous experimental results, where nearly 95% oil can be obtained in different
pyrolysis operational conditions for PS plastic [11,49]. The composition of the gases derived
from the pyrolysis of the three plastics is shown in Figure 7d, the results of which are
consistent with the MS results. PE and PP are very similar in terms of the gases formed,
mainly their respective monomers ethylene and propylene, which account for nearly 80% of
the total. The pyrolytic gases from the PS plastic are much less and lag more than other
plastics, are mainly composed of acetylene and hydrogen, and are mainly produced by the
dehydrogenation reaction of vinyl after breaking the C–C bond.
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3.2.4. Pyrolysis Mechanism of the Three Plastics

The pyrolysis process of the three plastics was observed at the micro-atomic level
using ReaxFF-MD simulation and the results show that the process follows a common
sequence where the polymer is dissociated to the polymer monomer and, then, to the
gas molecule. Figure 8 shows the pyrolysis paths of the three plastics. Xuan et al. have
carried out 50 independent simulations on the dissociation of a single molecular PE chain,
and showed that all reactions begin with C–C bond breaking, and the initial dissociation
position of a PE chain is random [28]. The C–C bond can break at different positions,
resulting in some shorter chains. Then, after the initial C–C bond fracture of the poly-
mer, the monomer appears in large numbers by terminal dissociation. The monomer
structure continues to undergo free radical reactions, such as bond fracture and binding,
intramolecular dehydrogenation and intermolecular dehydrogenation, to generate more
stable gas molecules.

The breaking of the monomer connecting bond is critical in the polymer degradation
process. The length of the monomer connecting bond is different due to the structural
difference. Figure 9 shows the calculated lengths of the monomer connecting bonds at
different positions in the chain for the three plastics. The L (m, n) represents the length of
the connecting bonds between the m and n monomers. The longer the bond length between
the monomers, the weaker the connecting bond, which means that the bond is easier to
break. Therefore, PS is easier to dissociate than PP and PE, which is consistent with the
thermal weight loss.
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3.3. Study on Steam Gasification Mechanism using DFT

The common degradation sequence of the three polymers is the long polymer chain
dissociates to the polymer monomer and, then, to the gas molecule. Therefore, we calculated
the average bond energy for the main reactions in the pyrolysis process. As shown in
Figure 9, Reaction-1 is the initial C–C bond breaking reaction, Reaction-2 is the terminal
dissociation to monomer reaction and Reaction-3 is the monomer dehydrogenation reaction.
It can be seen from Figure 10 that the energy barrier in monomer dehydrogenation is
the highest and the monomer dissociation from the end of the chain occurs relatively
easily. Comparing the different plastics, the sequence of the dissociation bond energy is in
accordance with the energy barrier in the kinetic analysis. For all the three reactions, the
bond energy for PE is the highest, while PS is the lowest, which indicates that PS is more
prone to dissociation reaction than PE and PP plastics. This is mainly due to the existence
of the benzene ring structure in its side chain, which intensifies the asymmetry of the main
chain in the polymer and, thus, is more prone to the bond breaking reaction.
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4. Conclusions

The reaction kinetics and pyrolysis mechanism of three waste plastics, PE, PP and PS,
were explored using a TG experiment and ReaxFF-MD simulation. The non-isothermal
methods, namely the Kissinger and Malek plus CR methods, were used to analyze the
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experimental data, while the pyrolysis reaction process was revealed by ReaxFF-MD and
DFT at the molecular level.

(1) The kinetics obtained by the different methods is consistent with the 5% error. The
thermal decomposition stability of the three plastics is ranked as PS < PP < PE. The
reaction mechanism function for plastic pyrolysis is random nucleation and growth
of the nuclei model.

(2) The pyrolysis process of PE and PP is similar in that the oil and gas products are
produced at the same time, and then the oil can crack later at a higher temperature.
However, for PS, after the dissociation of the polymer, only about 2% of the aromatic
rings can further dissociate into small gas molecules. The pyrolysis product from PS
is almost completely oil.

(3) The pyrolysis process of the three plastics all follows the dissociation sequence of
polymer to polymeric monomer and, then, to the gas molecules. Due to the difference
in the monomer structure, the bond strength between the monomers is different.
The length of the monomer connecting bond ranks as PS > PP > PE. Based on the
DFT calculation, the required dissociation energy for the critical reaction during
pyrolysis is found to be PS < PP < PE. The results on the bond length and bond energy
microscopically explain the sequence of the activation energy and thermal stability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11092764/s1, Figure S1: Fitting theoretical and experimental
curves under Mark method of PE, PP and PS plastics; Table S1: 20 kinetic mechanism function models
of solid pyrolysis [11].
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authors have read and agreed to the published version of the manuscript.
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