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Abstract: Straw, which is characterized by its low cost, large quantity, and rich supply of biomass
energy, is often converted into energy that can be utilized in industrial production through pyrolysis
technology. This paper examines the pyrolysis experiments of four kinds of straw (rice, wheat,
peanut, and corn) from the Henan Province of China, conducted in an air environment with varying
temperature-rise rates. Based on the experimental results, an analysis was conducted on the effect
of the rate of temperature rise on the degree of straw pyrolysis and the pyrolysis characteristics
of each type of straw. The activation energies of the pyrolysis reactions were calculated utilizing
the Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink methods. It was
concluded that the pyrolysis process of all four types of straw could roughly be classified into three
stages: dehydration and drying stage, volatile release stage, and carbonization stage. Among the
four types of straw evaluated, rice straw exhibited the most favorable combustion performance,
while wheat straw demonstrated the best pyrolysis effect. Increasing the heating rate resulted in
a pronounced thermal hysteresis effect during the straw’s pyrolysis, as evidenced by the TG and
DTG curves shifting toward higher temperatures. The reaction speed increased as the heating rate
increased, and the amount of residual carbon displayed an upward trend.

Keywords: straw; pyrolysis; temperature rise rate

1. Introduction

Against the backdrop of the growing global demand for energy and the depletion of
nonrenewable sources such as coal, oil, and natural gas, the rational development and
utilization of biomass energy in response to the energy crisis have become a significant
research trend. On account of its high biomass energy content [1], straw, a natural resource
with significant annual production, has various potential uses, including fertilizer for the
soil [2], biomass electricity generation [3], and biogas production [4]. Despite this, many
countries around the world continue to resort to incineration as a means of disposing of
straw, causing pollution and a significant waste of resources [5]. Compared to alternative
methods, pyrolysis technology presents a more efficient and environmentally friendly
approach to treating straw [6]. It involves a series of physical and chemical processes that
generate significant heat when organic materials, such as biomass and coal, are subjected
to specific conditions. This process breaks down complex molecules into simpler units [7],
which creates an opportunity to transform biomass into valuable hydrocarbons and
alternative fuels [8]. Currently, energy sources such as biochar, bio-oil, and renewable gas
are generated through pyrolysis, using natural resources such as coal, cotton stalks, and
poplar waste [9–11]. To harness the vast potential of biomass energy from straw, some
scholars have explored straw pyrolysis through pyrolysis techniques.

It has been demonstrated that several factors impact the pyrolysis of straw, including
straw pretreatment methods and the pyrolysis environment. Gajera B et al. examined the
pyrolysis characteristics of pretreated straw in an inert gas environment [12], while Wang
et al. explored the synergistic effects of co-pyrolyzing different straws and waste tires in
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a nitrogen gas environment [13]. External factors that have been studied include, but are
not limited to, the catalytic pathway [14], the size of biomass particles [15], the gaseous
environment in which pyrolysis occurs [16], and the co-pyrolysis of multiple materials [17].

Furthermore, it is easy to find that the majority of scholars will consider the factor of
pyrolysis heating rate in the study of pyrolysis. Rajamohan et al. conducted an analysis
of Albizia lebbeck seed pyrolysis at heating rates of 5, 10, 15, and 20 ◦C/min [18]. Lu Q
et al. studied the effect of a Fe-Ni-Ca catalyst on wheat straw pyrolysis at heating rates of
5, 10, and 20 ◦C/min [19]. Wang Y et al. investigated the pyrolysis characteristics of corn
straw gasification at heating rates of 10, 15, 20, and 30 K/min [20]. The study demonstrates
that altering the heating rate has a direct impact on the pyrolysis features of the material.
The differing heating rates lead to variations in the product generation rate and quality,
resulting in dissimilar pyrolysis products.

Currently, although many scholars recognize the impact of the temperature rise rate on
straw pyrolysis research, the chosen temperature rise rate spans a small range. Additionally,
pyrolysis is commonly conducted in an inert gas environment, while, the impact of pyrolysis
under an air environment has yet to be sufficiently studied. It is important to note that the
composition of straw varies regionally. Although Henan is a major agricultural province
in China, there is limited research on the straw output in this area. Therefore, this paper
examines the effects of different heating rates (10, 20, 30, 40, and 50 ◦C/min) on the pyrolysis
of four types of agricultural straw (wheat, peanut, corn, and rice) under the condition of air
environment. By calculating the activation energy of pyrolysis of each straw, and analyzing
the pyrolysis characteristics of each straw, it was possible to provide a reasonable basis for
the subsequent industrial application.

2. Materials and Methods
2.1. Raw Materials

Four crop straw samples from Henan Province were selected for experimentation:
wheat straw, corn straw, rice straw, and peanut straw. The experimental samples chosen
exhibited intact and clean appearances. To eliminate the influence of moisture content
in the material on the experimental outcomes, we conducted a pretreatment operation of
vacuum drying by using a vacuum-drying oven. The dried straws were ground with a
grinder to minimize the effect of shape on heat transfer [20]. We selected 4–6 mg of each
straw as experimental material.

2.2. Experimentation

In this research paper, the experimental study on the pyrolysis characteristics of straw
under air atmosphere was made by using a Shimadzu DTG-60(AH) thermogravimetric
differential thermal synchronous analyzer from Japan, and the thermogravimetric curves of
the straw samples were retrieved by this device. Experimental steps are given in Figure 1.
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Figure 1. Experimental flowchart.

3. Results and Discussion
3.1. Pyrolysis Process of Different Types of Straw

The TG and DTG curves of four straws at 10, 20, 30, 40, and 50 ◦C/min heating rates
are shown in Figures 2 and 3, respectively.

The TG curves in Figure 2 all show three inflection points, which correspond to the
three peaks of the DTG curves in Figure 3, respectively, from which we can divide the
thermal decomposition of the four straws into three stages.

The initial step is the dehydration and drying phase, occurring at a temperature range
of 40 ◦C~180 ◦C. During this process, the sample undergoes physical water desorption,
and there is no significant alteration to the chemical characteristics or the shape and size
of the sample. The TG curve displays a minor down, which corresponds to the smaller
trough visible in the DTG curve. The wheat straw, peanut straw, corn straw, and rice straw
experienced a weight loss of 1–3%, 2.5–6.5%, 4–11%, and 2–4%, respectively. Notably, corn
straw experienced the greatest weight loss, while wheat straw experienced the least. Based
on this, it can be inferred that the moisture content of corn straw is greater than that of
peanut straw, rice straw, and wheat straw.

The second stage of the process involves the release and combustion of volatile ele-
ments, occurring within the temperature range from 180 ◦C to 420 ◦C. As the temperature
rises, the sample decomposes the volatile fraction gas and ignites upon contact with oxygen,
leading to a rapid decrease in the TG curve and the formation of the maximum trough
on the DTG curve. The maximum weight loss rate was observed in the following order:
peanut straw, wheat straw, corn straw, and rice straw.

The third stage corresponds to the combustion of fixed carbon within the temperature
range from 420 ◦C to 800 ◦C. In the prior stage, the precipitation of volatile matter formed a
loose and porous structure inside the sample, thus effectively increasing the contact area
with oxygen. Additionally, the combustion of volatile matter released a significant amount
of heat to create favorable conditions for the ignition of the fixed carbon. The sample
continued to lose weight during this stage, but the rate of weight loss gradually decreased
until only solid coke and non-decomposable ash remained. The rate of heating influenced
this process, resulting in a series of steps of varying heights on the TG curve.
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As illustrated in Figure 3, the greatest weight loss peak occurred during the second stage,
followed by the second highest peak in the third stage and the lowest peak during the first
stage. This suggests that the combustion of crop straw is primarily the result of the precipitation
and combustion of volatile components in the straw, with fixed carbon combustion occurring
secondarily, and water evaporation contributing minimally to straw combustion. It can be
inferred that the highest content of volatile matter is present in these four straws, followed by
fixed carbon; meanwhile, the content of ash and moisture is the lowest.

3.2. Influence of Heating Rate on Straw Pyrolysis

As shown in Figures 2 and 3, the pyrolysis patterns of the four straws are similar. To
further compare the influence of heating rate on straw pyrolysis, we analyze rice straw as
an example.

We enlarged the local image of Figure 2a, and it is illustrated in Figure 4. The image
indicated an increase in the pyrolysis residue of straw toward the end of the reaction with
rising heating rates, implying that higher heating rates may stimulate the generation of
biochar and lead to an increased biochar yield.
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Figure 4. Localized enlargement of pyrolysis TG curves of wheat straws. Figure 4. Localized enlargement of pyrolysis TG curves of wheat straws.

By enlarging the DTG curves of Figure 3a locally for each stage, we get as in Figures 5–7.
It becomes apparent that increasing the heating rate shifts the DTG curves to higher tem-
peratures. This suggests that raising the heating rate helps to increase the reaction speed of
straw pyrolysis. However, it may also cause hysteresis in straw pyrolysis, i.e., the faster the
heating rate, the higher the temperature at which the peak pyrolysis rate occurs. This is
because a higher heating rate creates a larger temperature gradient in the limited sample
space, resulting in the temperature taking longer to reach the sample center and causing
a delay in heat transfer. This delay is reflected in the pyrolysis curve, which shifts to the
high-temperature side as the heating rate increases.

Throughout the DTG images of the three pyrolysis stages, the hysteresis effect caused
by the temperature-rate increase is evident in the initial two stages. Table 1 illustrates that
with the increase in the heating rate, the peak value of the DTG curves in each phase also
rises, indicating an increase in the pyrolysis reaction rate. Comparing the timing of each
peak appearance at different heating rates, it is evident that increasing the heating rate
significantly reduces the time of peak appearance, thereby shortening the time required for
the whole pyrolysis reaction.
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10 0.0156 0.02 0.1258 23.55 0.059 38.80 
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Table 1. Pyrolysis peak heating rates and stage occurrence times.

Heating
Rate/(◦C/min)

First-Stage DTG
Peak (%/min)

Timing of the Peak
of the First Stage

(min)

Second-Stage DTG
Peak (%/min)

Timing of the Peak
of the Second Stage

(min)

Third-Stage DTG
Peak (%/min)

Timing of the Peak
of the Third Stage

(min)

10 0.0156 0.02 0.1258 23.55 0.059 38.80
20 0.0162 2.23 0.2178 12.85 0.1226 20.13
30 0.0232 2.3 0.3110 9.18 0.0984 13.07
40 0.0366 2.03 0.4551 7.1 0.1717 10.98
50 0.0359 1.9 0.5895 5.95 0.1734 8.95

The ignition temperature, is the transverse coordinate where the tangent line intersects
with the prolonged baseline of the front step at the maximum slope of the DTG curve.
The peak temperature corresponds to the maximum rate of weight loss on the DTG curve.
And the burnout temperature is the temperature at which there is no further change in the
rate of weight loss on the TG curve. Figures 8–10 displays the the variation trend of these
three pyrolysis parameters for wheat straw, peanut straw, corn straw, and rice straw, using
various heating rates.
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The comparison of Figures 8–10 reveals that as the heating rate increases, the ignition
temperature, peak temperature, and burnout temperature of the four varieties of straw
increase to varying degrees. Compared with the other four kinds of straw, it can be seen
from Figure 8, the ignition temperature of peanut straw is maximum under the same heating
rate and the ignition temperature of rice straw is the lowest. The ignition temperature is
the primary factor for assessing fuel ignition performance, and lower ignition temperature
shows better flammability. Therefore, among these four straws, rice straw showed the best
flammability.

3.3. Pyrolysis Kinetics Study

The least energy needed to break chemical bonds and start a decomposition process is
called activation energy (E). Pyrolysis reactions can be quite complicated, and the energy
needed for the reaction is linked to the reaction rate. For a specific reaction, when the
activation energy is larger, there are fewer molecules with high activation energy. Therefore,
the reaction cannot be carried out by the lack of high activation energy molecules, causing
the reaction rate to slow down. Conversely, when the activation energy is lower, the
reaction rate increases. Different materials used for biomass have varied components,
resulting in different pyrolysis [21,22]. The activation energy is a crucial factor that helps
to explain the chemical reaction process, reaction mechanism, and pyrolysis difficulty of
biomass. It is also useful in assessing the pyrolysis properties of materials. The usual way
of finding the activation energy for pyrolysis is through the model-free isoconversion rate
method. This method provides more accurate pyrolysis kinetic parameters without the
need for kinetic modeling. For that reason, this paper uses three different methods—namely
Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink—to calculate E,
the activation energy. The mathematical formulas for these three kinetic models are shown
in Table 2.

Table 2. Mathematical expressions for the three kinetic models.

Method Mathematical Model Image

KAS ln( β

Tp
2 ) = ln( AR

E )− E
RTp

ln( β

Tp
2 ) & 1

Tp

FWO lnβ = ln( AE
RG(α)

)− 5.3331 − 1.052 E
RT ln β & 1

T

Starink ln( β
T1.92 ) = Cs − 1.0008 E

RT ln( β
T1.92 ) & 1

T
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3.3.1. Analysis of Kissinger–Akahira–Sunose (KAS) Method

The Kissinger–Akahira–Sunose (KAS) [23] method is suitable for all kinetic analyses
because it allows for the determination of activation energy without determining the
reaction model.

ln

(
β

Tp
2

)
= ln

(
AR
E

)
− E

RTp
(1)

where β is the heating rate; Tp is the temperature at which the reaction rate reaches the max-
imum; A is the pre-exponential factor; and R is the general gas constant, 8.314 J/(mol·K).

According to the KAS equation, take ln
(

β

Tp
2

)
on the left side of Equation (1) as the

y-coordinate axis and the reciprocal of the temperature corresponding to the peak of each
stage of the thermal decomposition process as the x-coordinate axis to draw a graph, as
shown in Figure 11, whose activation energy can be determined according to the slope, and
the finger-forward factor can be determined according to the intercept.
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Figure 11. KAS.

As shown in Table 3, the four straws were fitted using the KAS method, and the best
results were obtained for wheat and peanut, with high correlation coefficients, R2, and the
overall trend of the activation energy required for pyrolysis of the four straws was upward.
Since the activation energy required for the pyrolysis of wheat was the lowest in the first
stage of pyrolysis, wheat started to pyrolyze first, followed by rice, corn, and peanut; in the
second stage of pyrolysis, the activation energy required for the pyrolysis of rice became
the highest, and the activation energy required for the pyrolysis of rice in the first stage of
pyrolysis spanned up to 51.1 kJ·mol−1 in the second stage of pyrolysis. When the pyrolysis
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proceeded to the third stage, the activation energy size of the four stover pyrolysis species
was changed back to the same law as that of the first stage, wheat < rice < corn < peanut.
Throughout the whole pyrolysis process, wheat pyrolysis requires the smallest span of
activation energy, 42.6 kJ·mol−1, and the average value required for the entire pyrolysis is
69.1 kJ·mol−1. The activation energy required for the pyrolysis for wheat in each stage was
at the lowest level compared with the other three straws, so it was the easiest to pyrolyze
among the four kinds of straws. Rice straw pyrolysis activation energy span was the largest,
82.2 kJ·mol−1, and the average value of activation energy required for the whole pyrolysis
was the highest, 105.1 kJ·mol−1, which made the pyrolysis the most difficult.

Table 3. Calculation of four straws’ pyrolysis parameters by KAS method.

Stage
Wheat Peanuts Corn Rice

E/kJ·mol−1 R2 E/kJ·mol−1 R2 E/kJ·mol−1 R2 E/kJ·mol−1 R2

First stage 46.9 0.96 55.7 0.97 52.4 0.89 47.0 0.90
Second stage 70.9 0.98 89.8 0.96 84.8 0.97 98.1 0.97
Third stage 89.5 0.98 132.1 0.85 131.9 0.93 129.2 0.94

Average 69.1 - 92.5 - 89.7 - 105.1 -

3.3.2. Analysis of Flynn–Wall–Ozawa (FWO) and Starink Methods

The Flynn–Wall–Ozawa (FWO) [23] method is an isoconversion rate method because
its equations do not need to be converted into the explicit form of a function. The FWO
equations are as follows:

lnβ = ln
AE

RG(α)
− 5.331 − 1.052

E
RT

(2)

where α is the conversion rate, α = m0−m
m0−m∞

× 100% [24], m0 is the initial mass, m∞ is the
mass of the sample at the end of pyrolysis, and G(α) is the integral mechanism function.

At different heating rates, β, if the same conversion rate, α, is chosen for all TG
curves at different heating rates, then the integral mechanism function, G(α), is a constant
value, and then there is a linear relationship between lnβ and 1/T, and thus the apparent
activation energy value can be obtained from the slope.As shown in Figure 12.

Starink analyzed and compared several methods for calculating activation energy and
transformed them into the following equation:

ln
(

β

T1.92

)
= Cs − 1.0008

E
RT

(3)

where Cs is the constant term of Starink’s equation.
Using ln

(
β/T1.92) on the left side of the equation in Equation (3) as the y-axis and the

reciprocal of the pyrolysis temperature as the x-axis for plotting, as shown in Figure 13, the
activation energy can be determined from the slope for a given value of α.

Comparing the fitting results of the FWO and Starink methods, it was found that the
overall pyrolysis activation energy calculated by the FWO method was higher than that
calculated by the Starink method, but the overall trend was the same. The conversion
rate, α, is between 0.1 and 0.5; the activation energy shows an increasing trend when the
pyrolysis process is mainly in the first and second stages, and then it shows a decreasing
and then increasing trend.
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In order to further compare the relationship between the activation energy and con-
version rate among the four kinds of straws, this paper takes the Starink calculation results
as an example, integrates the data from Tables 4–7, and draws Figure 14. From Figure 14,
it can be seen that the pyrolysis activation energy of wheat is lower than that of the other
three kinds of straw, and it is the easiest to pyrolyze; the pyrolysis activation energy of
rice is higher than that of the other three kinds of straw, and it is the most difficult to
pyrolyze; the activation energies of peanut and corn stover do not differ significantly when
the pyrolysis reaction is carried out to the first and second stages, and with the reaction,
the conversion rate, α, increases. The activation energies of peanut and corn stover did
not differ significantly when the pyrolysis reaction was carried out in the first and second
stages. With the reaction, the conversion rate (α) increased, the activation energy of the
corn showed an obvious upward trend, and the activation energy of the peanut showed a
downward trend; this stage belonged to the third stage, which was the combustion stage of
fixed carbon, and it could be deduced that the solid coke and non-decomposable ash of
corn stover were larger than those of peanut stover, and the pyrolysis efficiency of peanut
stover was larger than that of corn stover.
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Table 4. Wheat straw pyrolysis parameters for the FWO and Starink methods.

Conversion (α)
FWO Starink

E/kJ·mol−1 R2 E/kJ·mol−1 R2

0.1 69.0 0.96 58.2 0.92
0.2 78.2 0.90 66.5 0.91
0.3 93.1 0.94 75.7 0.91
0.4 92.3 0.98 74.8 0.97
0.5 98.9 0.98 81.5 0.97
0.6 67.3 0.99 55.7 0.99
0.7 60.7 0.93 47.4 0.91
0.8 104.8 0.99 85.6 0.99
0.9 82.3 0.99 63.2 0.99

Average 82.7 - 67.6 -

Table 5. Peanut straw pyrolysis parameters for the FWO and Starink methods.

Conversion (α)
FWO Starink

E/kJ·mol−1 R2 E/kJ·mol−1 R2

0.1 77.3 0.82 74.8 0.89
0.2 81.8 0.88 78.1 0.90
0.3 94.8 0.94 90.5 0.93
0.4 96.5 0.99 91.6 0.99
0.5 99.1 0.97 94.3 0.97
0.6 84.6 0.92 81.1 0.94
0.7 80.9 0.89 78.4 0.91
0.8 77.1 0.87 72.9 0.89
0.9 89.1 0.93 84.8 0.93

Average 86.8 - 82.9 -
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Table 6. Corn straw pyrolysis parameters for the FWO and Starink methods.

Conversion (α)
FWO Starink

E/kJ·mol−1 R2 E/kJ·mol−1 R2

0.1 70.3 0.94 59.3 0.99
0.2 80.8 0.96 72.3 0.95
0.3 93.6 0.97 90.5 0.96
0.4 108.5 0.94 100.4 0.93
0.5 92.3 0.92 89.7 0.91
0.6 76.0 0.91 67.4 0.90
0.7 118.5 0.91 110.1 0.89
0.8 105.9 0.90 97.6 0.92
0.9 99.6 0.89 91.1 0.90

Average 93.9 - 86.5 -

Table 7. Rice straw pyrolysis parameters for the FWO and Starink methods.

Conversion (α)
FWO Starink

E/kJ·mol−1 R2 E/kJ·mol−1 R2

0.1 70.7 0.93 60.7 0.90
0.2 106.2 0.97 97.3 0.97
0.3 109.7 0.99 100.6 0.98
0.4 117.2 0.99 108.1 0.99
0.5 131.3 0.99 122.2 0.99
0.6 142.2 0.94 132.2 0.93
0.7 118.1 0.93 106.4 0.92
0.8 120.0 0.98 108.1 0.98
0.9 97.3 0.94 79.8 0.93

Average 112.5 - 101.7 -
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4. Conclusions

Pyrolysis experiments were conducted on four crop straws (wheat, peanut, corn, and
rice) in Henan Province, China, within an air environment. The objective was to compare
the effects of different heating rates on the pyrolysis characteristics of the straws and
calculate the pyrolysis activation energies of the four types, using KAS, FWO, and Starink
methods. The study results are presented as follows:

(1) The pyrolysis process of all four types of straw can be divided into three stages: dehy-
dration and drying, release of volatile compounds and combustion, and combustion
of fixed carbon. Among the four types of straw, corn straw has the highest reaction
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rate, followed by rice straw, peanut straw, and wheat straw. The ignition temperature
under the same heating rate occurs earliest in rice straw, followed by wheat straw,
corn straw, and peanut straw.

(2) The pyrolysis rate of the same type of straw demonstrated a positive correlation with
the heating rate. Increasing the heating rate facilitated the pyrolysis reaction. As
the heating rate increased, the ignition temperature, peak temperature, and com-
bustion temperature of the four varieties of straw increased to varying degrees, and
thermal hysteresis occurred. Additionally, the TG and DTG curves shifted to the
high-temperature side. A high heating rate may enhance the generation of biochar’s
pyrolysis, thereby increasing the biochar yield.

(3) Three pyrolysis kinetic methods—KAS, FWO, and Starink—were utilized to examine
the pyrolysis kinetics of four standard straws and compute their pyrolysis activation
energies. The outcomes of the three techniques varied slightly because of diverse
computation methodologies, but the overall pattern was consistent. Objectively speak-
ing about activation energy, wheat straw was the most facile to pyrolyze, rice straw
was the most arduous to pyrolyze, and there was minimal distinction in pyrolysis
difficulty between corn straw and peanut straw. For industrial pyrolysis in an air
environment, the preference can be given to using wheat straw.
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