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Abstract: According to QYResearch, a global market research firm, the global market size of secondary
batteries is growing at an average annual rate of 8.1%, but fires and casualties continue to occur
due to the lack of quality and reliability of secondary batteries. Therefore, improving the quality of
secondary batteries is a major factor in determining a company’s competitive advantage. In particular,
lead taps, which electrically connect the negative and positive electrodes of secondary batteries, are a
key factor in determining the stability of the battery. Currently, the quality inspection of secondary
battery lead tab manufacturers mostly consists of visual inspection after vision inspection with a
rule-based algorithm, which has limitations on the types of defects that can be detected, and the
inspection time is increasing due to overlapping inspections, which is directly related to productivity.
Therefore, this study aims to automate the quality inspection of lead tabs of secondary batteries by
applying deep-learning-based algorithms to improve inspection accuracy, improve reliability, and
improve productivity. We selected the YOLOv5 model, which, among deep-learning algorithms, has
a benefit for object detection, and used the YOLOv5_CBAM model, which replaces the bottleneck
part in the C3 layer of YOLOv5 with the Convolutional Block Attention Module (CBAM) based on
the attention mechanism, to improve the accuracy and speed of the model. As a result of applying
the YOLOv5_CBAM model, we found that the parameter was reduced by more than 50% and the
performance was improved by 2%. In addition, image processing was applied to help segment the
defective area to apply the SPEC value for each defective object after detection.

Keywords: automatic defect detection; YOLOv5; deep learning; object detection; lead tap;
computer vision; CBAM

1. Introduction

The global market research firm QYResearch forecasts that the global market for
lithium-ion battery lead taps will grow at an average annual rate of 8.1% from USD
75.6 billion in 2022 to 1.33 billion by 2029 [1]. In addition, the growth of the EV market
is expected to accelerate from 2023 due to increasing EV purchase subsidies under the
Inflation Reduction Act (IRA) [2]. Most industrialized countries are targeting a 100%
reduction in carbon dioxide emissions from the automotive sector by 2035 [3], and the
global demand for EVs is surging. According to industry researchers, e.g., the global
automotive industry market research firm LMC Automotive [4–6], the global average BEV
+ PHEV sales penetration rate is expected to exceed 10% in 2022, with China and Europe
leading regionally with 27% and 15%, respectively. In contrast, the USA is a bit slower at
5%; however, the Biden administration’s green policies are in full swing, therefore opening
vast opportunities for domestic battery companies with favorable relationships with them.
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Currently, most quality inspections of secondary battery lead tab manufacturers in-
volve visual inspections using a rule-based algorithm followed by microscopic inspections.
The subsequent microscopic inspection is time-consuming and represents a bottleneck in
the inspection process. Recently, electric vehicles catching fire has emerged as an ongoing
problem. The ignition of lithium-ion batteries is such that the entire battery must be im-
mersed in water to be incinerated, and battery fires can result in fatal accidents. Please
note that approximately 70% of the world’s total supply of secondary battery lead taps are
used in electric vehicles, and this demand is expected to increase, therefore raising the bar
for lead tap quality. There are approximately 58 types of defects in lead taps with small
(approximately 1 × 1 mm) defects in each type. Thus, if the product is repeatedly inspected
visually by workers, worker fatigue accumulates, which can negatively impact quality
control. If only nonvisual inspections are performed, the effectiveness of the inspection is
limited; thus, visual and microscopic inspections by skilled workers are necessary.

Thus, the goal of this study was to realize reliable automatic quality inspection of
secondary battery lead taps. There are three primary types of defects in lead tabs, i.e., those
in the material production process, those in the material transportation process, and those
in the production process. To organize the lead tap quality inspection framework, we must
consider inspection speed and accuracy. The lead tap production facility is composed of a
single line from material input to completion of inspection; thus, a problem occurring in
any process will result in a bottleneck that prevents the entire process from proceeding. If
defective products are produced and delivered due to a lack of reliability in the lead tap
quality inspection processes, battery fires may occur, which can cause human casualties.
The inspection speed affects productivity, and poor inspection accuracy can cause major
accidents. Thus, it is necessary to select an algorithm in consideration of inspection speed
and inspection accuracy. In this study, we suggest a quality-checking technique based on
the YOLOv5 model, which is actively used in the object detection field. In our investigation,
4K resolution images were used; however, typically, the defects to be detected are as small
as 10 × 10 pixels, which is very fine. Comparing the YOLO method to other algorithms,
its detection speed is great; however, it is limited in terms of detecting small objects. Thus,
we employed the YOLOv5x model, which is the deepest layer of the YOLOv5 model, to
check the object detection speed and accuracy. This model demonstrated an improvement
in detection accuracy compared to the existing rule-based method, and we confirmed that
it improved the detection speed. In addition, to improve detection speed and accuracy we
apply the CBAM, which is based on the attention mechanism.

The paper’s contributions can be outlined as follows:

• Secondary Battery Lead Tab Quality Inspection Automation: Secondary battery lead
tab quality inspection automation using AI can give companies an edge in competitive-
ness and increase productivity by reducing worker fatigue and improving inspection
speed.

• YOLOv5_CBAM: The CBAM based on the Attention mechanism is applied to the
Bottleneck part of YOLOv5 to reduce the amount of computation and improve the
accuracy.

• Accuracy: Instead of simply adding layers to improve accuracy, we improved accuracy
using an algorithm based on an attention mechanism that remembers important
information and suppresses unnecessary information.

In this paper, an improved YOLOv5_CBAM model is proposed to detect small defects
in secondary battery lead taps. We demonstrate that the detection speed and accuracy are
improved compared to existing methods. The proposed object detection algorithm utilizes
an attention mechanism; thus, the layer is not deeply organized, and therefore information
loss is avoided. As a result, detection speed and accuracy are improved compared to existing
methods. Thus, the defect rate of secondary battery lead taps is reduced, productivity is
improved, and companies can gain a competitive advantage.
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The paper in question has the following format. An overview of related literature
is given in Section 2. The suggested flawed object identification method is presented in
Section 3, covering the process of gathering data, preprocessing those data, and using
the upgraded YOLOv5_CBAM model to achieve quick inference speed. In Section 4, we
summarize and discuss the results of the experiment. In Section 5, which also examines the
study’s limitations and potential future research areas, the work is completed.

2. Related Work
2.1. Yolov5

Traditional methods for image segmentation have attained a considerable level of ma-
turity; nevertheless, they necessitate the extraction of features for each defect, which is labor-
intensive and reduces efficiency. Many target detection algorithms currently exist [7,8],
and beginning in 2012, deep-learning methods have been developed and proposed in
many studies. YOLO is a type of deep-learning network [9] proposed in 2016 [10]. The
YOLO network exhibits high efficiency and good generalizability when detecting small
targets. YOLOv5, recognized as one of the most extensively employed detection networks,
finds application across a range of industries and use cases. These include production
processes [11], autonomous driving [12], monitoring and safety [13], surface defect detec-
tion [14,15], as well as target detection [16] in various industries and applications. The
YOLOv5 network can realize high object detection accuracy and good inference speed. The
YOLOv5 object detection algorithm outperforms various other algorithms, e.g., the Fast
R-CNN algorithm. The YOLOv5 model is divided into YOLOv5n (nano), YOLOv5s (small),
YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (xlarge), according to the depth of
the network, where a deeper network yields higher accuracy at the expense of increasing
computational time.

2.2. Attention Mechanism

Much research [17–19] has revealed that human attention plays an important role in
how we perceive. The fact that human vision does not attempt to process the entire scene
at once is one of the most important characteristics of human vision. Instead, humans use
a series of partial glimpses and selective focus on salient parts to better capture visual
information [20]. For example, the center of the human eye has a higher resolution than the
periphery [21]. To process visual information efficiently and adaptively, the human visual
system processes space and focuses on salient regions in an iterative manner [20].

2.2.1. Cross-Modal Attention

In multimodal settings, attention mechanisms are a common technique when process-
ing needs to be conditional on other modalities. One well-known task that is useful in such
cases is visual question answering (VQA), which involves predicting answers to questions
about counting, object location, properties, inferences, and more when solving problems
between natural language and images. VQA can be considered a dynamically changing
set of tasks that require processing a given image based on a given question. Attention
mechanisms smoothly select aspects from the image features that are relevant to the task
(i.e., the question). As proposed by Yang et al. [22], a given question serves as a query to
generate attention maps for image features and retrieve features that are relevant to the
question. The final determination is then categorized using the accumulated image features.
Another approach is to use bidirectional inference to generate attention maps for both text
and images, as proposed by Hyeonseob Nam et al. in [23]. Attention maps are a useful
tool for conditionally solving tasks in this body of literature. but are acquired in stages for
specialized tasks.
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2.2.2. Self-Attention

To train attention generation and feature extraction together end-to-end using DNNs,
a variety of ways to incorporate attention have been developed. There have been several
attempts to use attention to effectively apply it to common classification tasks [24,25]. For
example, Wang et al. proposed a residual attention network using an hourglass module
to generate three-dimensional (3D) attention maps for intermediate features [25]. Due to
the created attention maps, it should be noted that this architecture is resilient to noisy
labels; however, it involves high computational/parameter overhead due to the large
number of steps involved in the 3D map generation process. Hu et al. proposed a compact
squeeze-and-excitation module [24] to effectively utilize the relationship between channels.
Although it is not stated specifically in their paper, this method can be thought attention
mechanism used on the channel axis. However, we are missing the spatial axis, which is an
important factor in inferring the correct attention map.

2.2.3. Adaptive Modules

In several earlier experiments, adaptable modules that dynamically alter the output
based on the input were employed. For example, the dynamic filter network [26] generates
convolutional features according to the input features for flexibility. In addition, the spatial
transformer network [27] utilizes input features to generate the hyperparameters of an
affine transformation adaptively to ensure that the target region feature map is well-aligned,
which can be seen as paying careful attention to the feature map. In the Deformable
Convolutional Network [28], only pertinent features are pooled for convolution since the
pooling offset is dynamically produced from the input features. In the same vein as these
methods, the Block Attention Module (BAM) is also a self-contained adaptive module that
dynamically suppresses or emphasizes the feature map through an attention mechanism.

2.3. CBAM (Convolutional Block Attention Module)

By adding more layers, which raises the network’s complexity, the performance of a
network can be enhanced. This allows neural networks to approximate higher-dimensional
functions, and VGGNet [29], ResNet [30], and AlexNet [31] reflect this concept, with
VGGNet having twice as many layers as AlexNet. ResNet also has 22 times more layers
than VGGNet. WideResNet [32] and PyramidNet [33] show that, with more channels and
convolution, you can obtain higher performance than simply increasing the number of
layers.

Bottleneck Attention Module (BAM) is a module designed for simple and easy inte-
gration into common DNN and CNN architectures in the direction of investigating the
influence of attention in the structure of DNN and improving the representational power of
the network very effectively, as opposed to the conventional approach of adding numerous
layers and complicated stacking to enhance network performance [34]. BAM infers a 3D
attention map F ∈ RC×H×W for a given input feature map M(F) ∈ RC×H×W , and the
refined feature map F′ is calculated as follows.

F′ = F + F⊗M(F) (1)

To encourage gradient flow, we use a residual learning technique with an attention
mechanism. Here, ⊗ denotes elementwise multiplication. Design an efficient and robust
module by computing channel attention Mc(F) ∈ RC and spatial attention Ms(F) ∈ RH×W

in two separate branches and computing attention map M(F) as follows.

M(F) = σ(Mc(F) + Ms(F)) (2)

The sigmoid function, σ, is used here. Before being added, both branch outputs are
scaled by RC×H×W .
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The BAM was designed to replace all bottlenecks by focusing on the attention structure
of DNNs rather than simply stacking layers to improve network performance. Also, BAM
was designed to facilitate simple integration into CNNs. Here, given a feature map F, the
BAM branches into the channel and spatial attention to compute and apply the attention
map. The CBAM adopts a sequential application method, as depicted in Figure 1, to
apply operations progressively and reduce the number of operations while improving
performance [35]. As a result, CBAM produces a feature map that emphasizes important
information and suppresses unnecessary noise.

Figure 1. Overview of CBAM.

Earlier, we introduced BAM, a module designed to replace all the bottlenecks, focusing
on the attention structure of DNNs rather than simply stacking layers to improve the
performance of the network, and designed for simple integration into CNNs. The idea
is that given a feature map F, it branches into two separate attention (channel, spatial)
to compute and apply the attention map. Although BAM had a structure where channel
attention and spatial attention were branched from the feature map and combined, CBAM
is a module that adopts a sequential application method as shown in Figure 1 to reduce
operations and improve performance by applying them sequentially as shown in the
following figure [35]. As a result, it produces a feature map that emphasizes important
information and suppresses unnecessary noise.

A two-dimensional (2D) spatial attention map Ms ∈ R1×H×W and a one-dimensional
(1D) channel attention map Mc ∈ RC×1×1 are sequentially inferred by CBAM from an
intermediate feature map F ∈ RC×H×W as input (Figure 1). The complete attention process
is summarized as follows.

F′ = Mc(F)⊗ F, (3)

F′′ = Ms(F′)⊗ F′ (4)

When multiplying, the attention values are broadcast (i.e., copied) appropriately.
Channel attention values are broadcast along with spatial attention and vice versa, and the
final refined output is F′′.

2.3.1. Channel Attention Module

The channel attention module, created by leveraging the relationships between chan-
nels in a feature in CBAM, focuses on ’what’ is meaningful in the image, and each channel
in the feature map is considered a feature detector. To compute the channel attention effi-
ciently, average pooling is a common method to aggregate the spatial attention of the input
feature map. We argue that max-pooling in CBAM can obtain other important information
about features to detect a more accurate channel attention map. Thus, as shown in Figure 2,
CBAM demonstrates the effectiveness of using average and max-pooling.
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Figure 2. Channel attention module.

2.3.2. Spatial Attention Module

Making use of the spatial correlations between the features, the spatial attention
map is produced. Unlike channel attention maps, spatial attention maps supplement
channel attention maps by concentrating on “where” information is in the image. As seen
in Figure 3, to calculate the spatial attention map, along the channel axis, maximum and
average pooling are initially applied, and these operations are then concatenated to produce
effective feature descriptors. It has been demonstrated that using pooling activities along
the channel axis can effectively highlight information regions. We also apply convolution
to the concatenated feature descriptors.

Figure 3. Spatial attention module.

3. Yolov5 _CBAM-Based Inspection
3.1. System Architecture

Figure 4 provides a schematic representation of the system’s architecture. The accuracy
of neural networks increases with their depth in the area of object detection; however,
computational costs increase with increasing depth. Thus, as we construct deeper neural
networks to improve accuracy, high-performance hardware is required. Most object detec-
tion problems require increasingly lightweight and high-performance solutions. Thus, the
problem should be solved such that performance is improved without constructing deep
neural networks. For this purpose, various studies are underway, and we have confirmed
that the proposed CBAM algorithm contributes to performance and accuracy improve-
ments. YOLOv5’s network structure can be categorized as having a neck, a backbone, and
output components, and then it goes through Non-Max-Suppression (NMS) to infer the
closest bounding box. Unlike previous versions, YOLOv5 adopts a CSPNet-based backbone
to improve performance and accuracy. Here, we want to replace bottlenecks with CBAM in
all C3 layers (Figure 4) of the existing CSPNet-based backbone to reduce computational
costs and improve accuracy.
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Figure 4. Architecture of the proposed system.

3.2. C3 _CBAM

Figure 5 depicts the C3_CBAM module, which enhances concentration by utilizing
the attention mechanism. The pre-existing C3 module mitigates computational expenses by
forcibly reducing computation volume through a bottleneck after convolution, followed by
its reassembly. This reduces the amount of computation sufficiently; however, information
may be lost in this process. Thus, we apply CBAM based on the attention mechanism rather
than the bottleneck to reduce computational costs and improve concentration by utilizing
the relationship between channel and spatial.

Figure 5. C3 and C3_CBAM.



Processes 2023, 11, 2751 8 of 16

3.3. Data Postprocessing

Lead tabs have specifications for each type of defect. The specification measures the
area, width, and diameter of an identified defective area, and if it does not meet the standard,
it is classified as a defective product. Here, it is necessary to segment the defective area
within the bounding box of the inference result. Image processing techniques are applied to
cut the area of the bounding box and further emphasize and segment the boundaries of the
defective area, which helps segment the precise area. As shown in Figure 6, the bounding
box area is inferred, the area is cut out, and then image processing is applied to segment
the area by applying a threshold.

Figure 6. Postprocessing.

In this study, we applied a postprocessing technique to clearly show the defective area.
Typically, the defective area exhibits an increase or decrease in the pixel value that differs
from the surrounding background. Thus, we applied and experimented with various filters
by applying a convolution filter to the image, and we investigated segmenting the defective
area. Investigating the use of image processing techniques confirmed that the target is most
clearly identified when applied in the order of midianBlur→ sharpening filter 3 × 3→
average blurring 2 × 2.

First, the graininess caused by the material of the surrounding metal appears as noise
in the image; thus, we smooth it out. Various filters help remove noise, e.g., Midian blur,
Gaussian blur, and bilateral filters. To identify a feature, the target should be distinct
compared to the surrounding background. Thus, we also apply a sharpening filter to
sharpen the boundaries between pixels. The sharpening filter applies a 2D filter to the target
image and convolves it. The sharpening filter comprises a 3 × 3 kernel and maximizes the
difference with the surrounding pixels to increase the contrast at the boundaries. Figure 7
shows the expression for a sharpening filter with a 3 × 3 kernel of strength 9 and the result
of applying this filter to enlarge the defect object in the image.
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Figure 7. Sharpening filter with a 3 × 3 kernel of strength 9.

Figure 8 shows a set of results obtained after applying various noise removal filters,
sharpening the boundaries, and applying average blurring to acquire a more natural
appearance. The original image in this example is the one with the black border (bottom
right), while the one with the green border is the one that has the most recognizable qualities.
The filters identified at the bottom of each result are written in order of application. From
the top: bilateral, gaussianBlur, midianBlur, and no filters to remove noise. From the left:
3 × 3 average blur, 2 × 2 average blur, and average blur are applied after applying a noise
filter. The results show that the surrounding noise is emphasized in the case of processing
without removing noise, and the results of processing with noise and applying a filter show
the sharpest features, as indicated by the image highlighted by the green border.

Figure 8. Comparison of filtering results.
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4. Performance Analysis
4.1. Experimental Environments

In this study, a manufacturer of lead taps for secondary batteries in Seongnam City,
Korea used a camera to acquire images by illuminating the top and bottom of the taps
from 12 different directions. The lead taps were illuminated from 12 directions because
defective objects appear differently depending on the illumination conditions. One set
of 12 cut images was acquired for each lead tab, as shown in Figure 9. These 12 images
were compressed into a single image format (.vid4). The compressed images needed to be
decompressed separately. After decompression, 4096× 3072 lead tab images were collected.

Figure 9. Lead tab image acquired under 12 illumination direction conditions.

Experiments were conducted using the acquired images and the PyTorch framework.
Here, the hardware comprised an Intel i3-13900KF CPU, 64 GB memory, and an NVIDIA
GeForce RTX 4090 graphics processing unit.

4.2. Experimental Datasets

The experimental dataset consists of two materials and seven types of defects, as
shown in Table 1. Please note that there are several defects other than those considered in
this study; however, we did not consider these defects because their impact on the system
is small compared to the seven defects covered in our experiments. We collected a total of
2500 images (1250 images for each material). In this case, 2000 of the total photos (80%) were
chosen for training and 20% (500 images) were used for the performance evaluation. The
original images of lead tab defects (4096 × 3072 pixels) were resized to 1280 × 1280 pixels
for the experiment.

For each type of defect, there will be defects of inconsistent sizes and features. In addition,
there are cases where different types of defects have similar appearance, as shown in Figure 10.
Thus, it is necessary to classify the defects to help the learning model assess them accurately.
In particular, there are cases where there is little distinction between defect types; thus, it was
necessary to collect balanced data to avoid class imbalance problems. As a result, classification
becomes even more important. For the classification of defects, it is necessary to diversify the
background of the objects in the images to facilitate effective learning.

Figure 10. Defects: (left) pollution and (right) surface bubble.
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The test dataset is set up as depicted in Table 2. The same number of images were
used for each material, with 700 images for Faultless and 100 images for each type of defect,
making a total of 2800 images for the test dataset.

Table 1. Training datasets.

Image Size Material Type Training Images Defect Type Training
Objects

1280 × 1280 Al 1050 Metal pollution 513

Surface bubble 270

Ripped off 538

Film alien
substance 377

Metal alien
substance 192

Teflon 150

Jinjeop 479

Ni 1050 Metal pollution 629

Surface bubble 661

Ripped off 873

Film alien
substance 495

Metal alien
substance 762

Teflon 150

Jinjeop 445

Table 2. Test datasets.

Defect Type Material Type

Al Ni

Faultless 700 700

Metal pollution 100 100

Surface bubble 100 100

Ripped off 100 100

Film alien substance 100 100

Metal alien substance 100 100

Teflon 100 100

Jinjeop 100 100

Total 2800

4.3. Evaluation Index

We evaluated the classification performance using a Confusion Matrix, which rep-
resents the difference between the inference result of the learning model and the actual
inspection result. TP data were predicted to be good and were actually good; FN data
were predicted to be bad but were actually good; FP data were predicted to be good but
were actually bad; and TN data were predicted to be bad and were actually bad. Precision
represents the percentage of cases that the model classified as correct that were actually
correct. Recall is the percentage of answers that the model correctly identified as correct.
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In this experiment, we use the F1 score as a performance metric, which evaluates the
model’s performance as the harmonic average of recall and accuracy. GPU FLoating-point
Operations Per second (GFLOPs) is the usage of the GPU used for training, which means
the amount of floating-point operations per second.

Presicion =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 score =
2 ∗ precision ∗ Recall

Precision + Recall
(7)

4.4. Results

This experiment was conducted by resizing the 4096 × 3072 image to 1280 × 960, and
the experiment was executed using a configuration of 1000 epochs and batch sizes of 12.
The result of the experiment using Figure 11 displays the Confusion Matrix, and the actual
value is a pure image with no defective objects, and the predicted value is judged as a
case where one defective object is found. The test result focuses on determining whether
the lead tab is a normal product or a non-normal product, and does not judge how many
defective objects exist. The model-specific experimental results are presented in Table 3,
and all models are defective, but no case is classified as normal.

Figure 11. Confusion Matrix.

Table 3. An evaluation of Precision, Recall, and F1 Score Comparison.

Model Precision Recall F1-Score

YOLOv5 1.0 0.93 0.96

YOLOv5_CBAM_Backbone 1.0 0.78 0.87

YOLOv5_CBAM_Neck 1.0 0.94 0.97

YOLOv5_CBAM_All 1.0 0.97 0.98

The inspection result focuses on determining whether the lead tab is a normal prod-
uct or a defective product; it does not determine how many defective objects exist. We
conducted an experiment to apply the CBAM to the C3 layers in the backbone and neck,
respectively, and to apply CBAM to all C3 layers. The outcomes of the experiments are
presented in Table 4. The performance of the YOLOv5_CBAM model has demonstrated
improvement., except for the case of applying CBAM to only the backbone. The results
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demonstrate that the best performance was obtained when the CBAM was applied to all
C3 layers throughout the network.

Table 4. Experimental results for each model.

Model Parameters GFLOPs F1-Score

YOLOv5 86.6 M 205.8 0.96

YOLOv5_CBAM_Backbone 55.9 M 114.4 0.87

YOLOv5_CBAM_Neck 61.3 M 153.8 0.97

YOLOv5_CBAM_All 30.6 M 62.3 0.98

As shown in Figure 12, the YOLOv5_CBAM model did not exhibit over-detection
because it focuses on important parts of the target image and does not detect unnecessary
parts, which is the intended purpose of the proposed system. In addition, the YOLOv5
model detected objects outside the lead tap inspection region of interest. Figure 13 shows
the inference results obtained using the YOLOv5_CBAM model.

Figure 12. Left YOLOv5, right YOLOv5_CBAM.

4.5. Discussion

Although the YOLOv5_CBAM algorithm has been used to focus on important parts
and not detect unnecessary parts, there is still a problem that some images are detected
outside the detection area. The U-Net algorithm, which is widely used in the medical
imaging field, also had a problem of segmenting non-organ parts, and to solve this problem,
the Classification-Guided Module (CGM) was introduced in U-Net3+ to prevent over-
segmentation by designing it to predict first. In the field of inspecting lead tabs like this, it
seems that there is a way to solve the problem by adding a classification module like CGM
to set the area of the lead tab, or to set the region of interest (ROI) through postprocessing.



Processes 2023, 11, 2751 14 of 16

Figure 13. Detection results using the YOLOv5_CBAM model.

5. Conclusions

In this study, we proposed the YOLOv5_CBAM algorithm to detect defects in images of
secondary battery lead taps. Our investigation has established that the suggested algorithm
can enhance the performance of defect detection, which is expected to contribute to the
production of high-quality lead taps and improve competitiveness in the global lead
tap market. The proposed YOLOv5_CBAM algorithm, which is an improvement over the
existing YOLOv5 algorithm, replaces the existing bottleneck layer with the CBAM, therefore
reducing the number of parameters and GFLOPs by more than 50%, and performance was
improved by 2%. We found that performance varied depending on whether the CBAM
was applied to all C3 layers in the network or only the C3 layers in the backbone or neck
components of the network.

In forthcoming work, our intentions include expanding our defect detection capabili-
ties to encompass additional defect types, including those that are difficult to detect in 2D
images, e.g., folds (metal slightly folded in half), stamps (metal or film stamped with some-
thing), and various other defects. Lead tabs are a key component of secondary batteries,
which are the first step toward building a globally ecofriendly system. In this study, CBAM
was employed as an attention mechanism to focus on only necessary areas; however, some
parts are not detailed sufficiently to detect abnormalities using only 2D images. We note
that the CBAM is a bottleneck layer that reduces computational costs; however, information
loss may occur when using the CBAM. Henceforth, our future endeavors involve devising
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a methodology for identifying smaller and more varied features with the aim of further
enhancing the efficacy of the proposed algorithm.

In future research, we plan to detect more defects from the 7 defects we detected, as
well as defects that are difficult to detect in 2D images, such as folds (metal slightly folded
in half), stamps (metal or film stamped with something), and other defects. Lead tabs are
one of the key components of secondary batteries, which are the first step toward building
a globally ecofriendly system. In this study, we used CBAM as an attention mechanism to
help us focus on only the necessary areas, but some parts are not detailed enough to detect
abnormalities using only 2D images. It is true that CBAM is also a bottleneck layer that
reduces computation, but there is still a concern about information loss. In the future, we
will work on capturing smaller and more diverse features.
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