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Abstract: In natural gas exploitation, foam drainage, corrosion inhibition and hydrate inhibition
of wellbore fluid are conventional operations. However, there is often a problem where multiple
chemical agents cannot be effectively used together and can only be used separately, resulting in
complex production processes. In this study, the final integrated formulation was determined: 0.1%
sodium alpha-olefin sulfonate (AOST) + 0.3% dodecyl dimethyl betaine (BS-12) + 0.3% sodium
lignosulfonate + 0.5% hydrazine hydrate. The minimum tension of the integrated agent could be
reduced to 23.5 mN/m. The initial foaming height of the integrated agent was 21.5 cm at 65 ◦C, the
liquid-carrying capacity was 143 mL, and the liquid-carrying rate reached 71.5%. The maximum
corrosion depth also decreased from 11.52 µm without the addition of hydrazine hydrate, gradually
decreasing to 5.24 µm as the concentration of hydrazine hydrate increased. After adding an integrated
agent, the growth rate of hydrates was slow and aggregation did not easily occur, and the formation
temperature was also more demanding. Therefore, the integrated agent has a inhibitory effect on
the formation of hydrates and has a good anti-aggregation effect. From the observation of the
microstructure, the emulsion is an oil-in-water type, and the integrated agent adsorbs at the oil–water
interface, preventing the dispersed water droplets in the oil phase from coalescing in one place. The
oil-in-water type emulsion is more likely to improve the performance of the natural gas hydrate
anti-aggregation agent.

Keywords: foaming agent; foaming stability; surface tension; microstructure; salt resistance

1. Introduction

As an effective method to solve bottom-hole fluid accumulation, foam-drainage agents
have become an economically efficient and commonly used auxiliary recovery method,
and most studies have verified their economic and effective characteristics. In order to
develop a high-performance foam-dispersant system, different types of surfactants were
compounded [1–9]. In the process of natural gas development, there is not only the
problem of liquid accumulation, but also the problem of hydrate and pipeline corrosion in
an environment of low temperature and high pressure. For research into an integrated agent
that has the simultaneous functions of foam drainage, corrosion inhibition and hydrate
anti-polymerization, the combination of any two commonly used agents may produce
antagonism [10–17]. For example, methanol is often added for the purpose of hydrate
anti-polymerization to alleviate the accumulation of hydrate, and methanol has an obvious
effect as an anti-polymerization agent, However, methanol plays a defoaming role in foam
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dispersants, while commonly used corrosion inhibitors lack the performance of hydrate
anti-aggregation.

Cage hydrates are ice-like compounds composed of small gas molecules encapsulated
in water molecules. The formation of natural gas hydrates in oil and gas pipelines may
lead to the failure of natural gas flow and serious safety and environmental issues. The
use of anti-condensates is a promising method to reduce the risks of natural gas hydrates
in actual production [18]. Therefore, effectively suppressing the generation and blockage
of hydrates is a very important and urgent problem for all oil and gas production. One of
the most effective methods to improve natural gas extraction is to suppress the generation
of natural gas hydrates. Due to the fact that the use of anti-polymerization agents is not
limited by temperature (supercooling) conditions and the concentration of use is below 3%,
the price of anti-polymerization agents is relatively high [19]. Considering the economic
benefits, in practical production applications, different types of inhibitors are often mixed
and reused to reduce costs. This can significantly improve both economic composition and
the inhibition effect. At present, this method is the most widely used in the development
and application of natural gas in domestic and foreign gas fields to suppress hydrate
generation and accumulation [20,21].

To address the issues of high water content in gas wells, hydrate formation under low
temperature and high pressure, and wellbore-corrosion susceptibility, a foam-drainage
hydrate anti-aggregation corrosion-inhibitor system has been developed. By utilizing ex-
perimental and theoretical research, we evaluated the foaming and stabilizing properties of
the foam-drainage hydrate anti-aggregation corrosion-inhibitor system, and revealed the re-
lationship between the structure of the foaming agent and the foaming performance [22–26].
We tested the phase-change point of hydrate formation caused by the system, and explored
the corrosion-inhibition performance of the system for injection and production systems
such as wellbore [27–30]. Therefore, based on these three points, a foam-agent system with
the multiple performances of foaming, polymerization prevention and corrosion inhibition
has been developed.

2. Experimental
2.1. Materials

AOST was purchased from Lusen Chemical Co., Ltd. (Linyi, China). BS-12 was pur-
chased from Huajun New Materials Co., Ltd. (Huainan, China). Methanol and petroleum
ether were purchased from Fuyu Fine Chemical Co., Ltd. (Tianjin, China). All products
were used as received without further purification.

2.2. Surface-Tension Measurement

The surface tension of each solution was measured by the hanging-ring method at
room temperature. Before the measurements, the tensiometer (Kruss K 100, Hamburg,
Germany) was used to test the surface tension of a distilled water sample to confirm the
accuracy of the instrument; the surface tension of distilled water measured in this manner
was 72.65 mN/m. Each measurement was repeated at least three times and results reported
as the average.

2.3. Foaming-Capacity Evaluation

A high-speed agitation method was used to generate foams using a high-speed mixer
(GJ-3S, Qingdao Haitongda Special Instrument Co., Ltd., Qingdao, China). In each test,
100 mL surfactant solution was agitated at 7000 r/min for 3 min at ambient conditions.
After the foam preparation, the foam was transferred into a graduated cylinder immediately.
The volume and half-life time (the time that 50 mL of free-water phase accumulated at the
bottom of the cylinder) of the foam were recorded. Each test was repeated in triplicate. All
measurements were performed at 25 ◦C and atmospheric pressure.
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2.4. Salt-Resistance Evaluation

Generally, the salinity of formation water has a strong adverse effect on the generation
of foam. To study the effect of concentration and species of inorganic ions on the foaming
ability and related foaming stability of the surfactants, surfactant solutions with different
salt concentrations (NaCl, KCl, MgCl2, CaCl2) were prepared.

2.5. Temperature Resistance

The temperature in a well has a significant effect on the performance of foaming agents.
Therefore, the Ross–Miles method was used to measure the foaming capacity and stability
of the formula at temperatures ranging from 30 to 70 ◦C. Each test was repeated three times.

2.6. Methanol Effect Evaluation

During gas production, methanol was usually used to prevent the formation of gas
hydrate. However, the presence of methanol may also retard the performance of foaming
agents. Therefore, it was necessary to check the methanol’s influence on the foaming ability
of the optimized foaming agents. In this section, the foaming performance of optimized
surfactant solutions with 0, 5, 10 and 15% methanol was tested in a temperature range of
40 to 70 ◦C using the Ross–Miles method.

2.7. Liquid-Carrying-Capacity Test

According to the performance requirements for the foam-discharge agent in the Changqing
Gas Field, the liquid-carrying performance of the integrated agent required evaluation. After
aging 200 mL of the integrated agent at 65 ◦C for 30 min, 3.0 L/min of N2 was introduced into
the dedicated foam tube. After 15 min, the volume vs. of the remaining liquid in the foam
tube was recorded. The formula for calculating the liquid-carrying rate is:

W =
200 − Vs

200
× 100%

where W is liquid-carrying rate (%), Vs is the remaining liquid in the foam tube.

2.8. Adsorption Experiment

By scanning the wavelength of a UV spectrophotometer, the adsorption capacity of
different concentrations of 4DF-4 as a whole agent on iron powder was tested, and the
adsorption relationship between 4DF-4 as a foaming agent and metals was evaluated using
a standard curve.

2.9. Surface Micromorphology of Steel Sheet

A DSX-500 (OLYMPUS, Tokyo, Japen) fully automatic three-dimensional imaging micro-
scope was used to scan steel sheets in bright field (BF) mode, the scanning area of the Q235
sample was 277 µm × 277 µm, in order to obtain 2D and 3D images as well as height maps.

2.10. Micro-Morphology of Hydrates

The assembled hydrate-growth observation instrument, consisting of temperature
control system, low-temperature reaction system, and image processing system, was used
to observe the micro-morphology of hydrate growth of 20% tetrahydrofuran aqueous
solution and 20% tetrahydrofuran integrated agent solution at different times.

2.11. Contact-Angle Experiment

The contact angle of water and oil droplets on the surface of glass treated with reagents
was measured using a contact-angle measuring instrument.

2.12. Thermodynamic Analysis of Hydrates

The phase-transition point of hydrate with 20% tetrahydrofuran aqueous solution and
20% tetrahydrofuran surfactant solution was measured by DSC.
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2.13. Emulsification Experiment and Microstructure Analysis after Emulsification

Samples of 10 mL of different concentration multiples (times 0.5, 1, 1.5, 2) were taken
of the integrated agent and condensate oil in a 1:1 ratio and placed in a centrifuge tube.
They were placed in a 45 ◦C water bath at a constant temperature for 10 min and then
taken out. They were shaken in the left and right hands 50 times each to form an emulsion,
then placed in a water bath and the time and amount of water released was recorded. The
precipitation rate was calculated:

Vw =
VT

V0
100%

where Vw is precipitation rate (%), VT is the volume of water that separates water (mL),
V0 is the total volume of water (mL).

Samples of 100 mL of different concentration multiples (times 0.5, 1, 1.5, 2) were taken
of the integrated agent and crude oil in a 1:1 ratio and placed in a high stirring cup. After
stirring according to the high-stirring evaluation method, the emulsion was placed under a
polarizing microscope to observe the micro-morphology of the emulsion of the integrated
agent and oil at different concentrations.

3. Results and Discussion
3.1. Measurement of Surface Tension

From Tables 1 and 2, it can be seen that the interfacial tension value gradually decreased
with the increase in the concentration of the integrated agent, and the tension changed more
rapidly in the low-concentration range. This is mainly because the surface molecules of
the solution are oriented and continuously form a single molecular layer of the integrated
agent. The hydrophobic end arrangement increased, and the surface tension decreased
until the critical micelle concentration was reached. At this point, the surface tension
appeared to have a turning point, and the surface tension value was 23.5 mN/m, Due
to the lack of interfacial activity in the micelles inside the solution, the interfacial tension
tends to stabilize. As the concentration increased, there was a slight increase in surface
tension, which may be due to the diversification of the integrated agent and the formation
of complex micelles, thereby affecting the molecular concentration on the surface and
causing changes in surface and interfacial tension [31,32]. The same applies to the variation
of interfacial tension, with a minimum value of 2.3 × 10−2 mN/m.

Table 1. Surface tension values of the integrated agent at different concentrations.

Concentration/% 0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 0.5 0.8 1.2

Tension value/mN/m 32.6 31.3 30.1 26.1 25.4 23.5 23.9 24.7 24.3 24.8

Table 2. The interfacial tension value of the one-piece agent at different concentrations (60 ◦C).

Concentration/% 0.024 0.06 0.12 0.24 0.6 1.2

Tension value/mN/m 2.12 1.244 7.1 × 10−1 2.3 × 10−2 1.2 × 10−1 1.5 × 10−1

3.2. Mineral-Content Impact Test

From Table 3, it was found that after the addition of salt, the four types of salts had
an adverse effect on the foaming ability of the integrated agent. The negative effect of
salt on the foaming ability of the integrated agent may be attributed to the obstruction of
electrostatic repulsion between charged bubble surfaces, thereby reducing the foaming
ability. However, relatively speaking, the salt resistance of the all-in-one agent was ranked
as follows: KCl > NaCl > MgCl2 > CaCl2.
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Table 3. Foaming performance of the integrated agent under different salt concentrations.

Concentration
of NaCl/%

Initial
Height of

the Foam/cm

Concentration
of KCl/%

Initial
Height of

the Foam/cm

Concentration
of CaCl2/%

Initial
Height of

the Foam/cm

Concentration
of MgCl2/%

Initial
Height of

the Foam/cm

0 21.3 0 21.3 0 21.3 0 21.3
2.5 16.7 2.5 17.8 2.5 8.3 2.5 14.8
5 15.6 5 18.0 5 5.9 5 10.1
10 12.3 10 17.5 10 4.2 10 6.6
20 3.9 20 8.7 20 2.5 20 3.2

3.3. Temperature-Resistance Evaluation

It can be seen from Table 4 that the initial foam height increased with the increasing
temperature, but the higher the temperature, the faster the defoaming speed of the foam,
and the stability decreased. When the temperature was raised, the activity of the integrated
agent molecules was enhanced, and foam was more likely to be generated. When the test
temperature was low (30, 40 ◦C), the height of the foam almost did not change with the
extension of time. This is because when the temperature is low, the water loss rate of the
liquid film is slow, and the gas movement is slow, resulting in the low diffusion ability of
the gas in the small bubbles to the large bubbles, so that the foam has better stability. The
higher temperature (50~70 ◦C) will make the water molecules more likely to evaporate,
the loss rate of liquid on the liquid film will be accelerated, and the thickness of the liquid
film will continue to decrease due to the loss of liquid, so the foam is more likely to break,
leading to the decrease in the height of the foam. In addition, high temperature will also
accelerate the diffusion of gas in the foam and accelerate the diffusion of gas in small
bubbles to large bubbles, thus shortening the life of the foam.

Table 4. Foaming properties of the one-piece agent at different temperatures.

Temperature/◦C 0 min/cm 5 min/cm 10 min/cm 15 min/cm 20 min/cm

30 21.3 21.7 21.7 21.3 21.0
40 21.5 22.0 21.9 20.5 20.3
50 21.9 22.3 20.0 13.8 7.9
60 22.3 22.9 12.5 7.8 5.4
70 22.6 23.6 7.3 3.9 3.0

3.4. Methanol-Resistance Test

Different concentrations of methanol were added to verify the impact of methanol on
the integrated agent, ensuring that the existing methanol in the formation interfered with
the foam removal performance of the integrated agent when used as an anti-aggregation
agent. It can be seen from Table 5 that the initial height of the foam decreased from 18.5 to
14.0 cm when the concentration of methanol continued to increase. With the extension of
time, the height of the foam changed little, and the height of the foam decreased slightly.
This is because methanol molecules are easily spread on the surface of liquid film, and they
do not have amphiphilic properties. They grab the arrangement position of the integral
agent molecules on the surface of the liquid film, leading to the inability of the ordered and
directional arrangement of the monolayers in the interface. It has a defoaming effect. The
experiment shows that methanol does have an impact on the foaming performance of the
integrated agent, but the impact is not significant.
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Table 5. Foaming performance of the one-piece agent under different methanol concentrations.

Concentration/% 0 min/cm 5 min/cm 10 min/cm 15 min/cm 20 min/cm

5 18.5 18.5 18.0 18.0 17.9
10 17.0 17.0 16.9 16.9 16.7
20 14.0 13.9 13.8 13.5 13.3
30 14.0 13.5 13.3 13.2 12.9

3.5. Analysis of Foam Microstructure

It can be seen from Figure 1 that the microstructure of foam with different concentra-
tions of integrated agent is similar under the polarizing microscope, but over the same
time, with the increase in concentration, the numbers of small foam increased significantly,
the liquid film thickness was thicker, and the liquid loss rate slowed down. At a certain
concentration, with the increase in time, the liquid on the foam liquid film was gradually
lost and the gas wrapped by the foam continuously diffused, the volume of foam gradually
increased, the thickness of the liquid film decreased, and small bubbles continued to bubble
into the atmosphere until the foam burst. It can be seen from the figure that at 20 min, no
matter whether the concentration of the integrated agent was 0.5, 1, 1.5 times or twice the
standard concentration, the foam morphology had no obvious polygon structure, which
means that the integrated agent molecules were arranged in an orderly fashion on the
liquid film to maintain the water content of the liquid film, reduce its flow loss and gas
diffusion, and finally maintain the stability of the foam. In addition, the foam took a long
time to be broken, which can also prevent it from falling back in the process of carrying
liquid accumulation upward, so the microscopic view of foam can well demonstrate the
performance of the foam discharge capacity of the integrated agent.
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3.6. Liquid-Carrying Capacity

In practical applications, the foam removal agent needs to carry the accumulated
liquid from the bottom of the well out of the formation, so it was necessary to simulate the
actual operation with the assistance of a certain airflow to achieve the corresponding liquid-
carrying capacity. The magnitude of the liquid-carrying rate also represents the strength of
the foam-removal capacity. Moreover, in actual production, the foam-removal agent also
needs to overcome the influence of temperature. Therefore, the experimental temperature
was set at 65 ◦C, and a certain flow rate of N2 was introduced to record the liquid-carrying
capacity, which was compared with the representative company’s liquid-carrying-capacity
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standard, The experimental results are shown in the following table. It can be seen from
Table 6 that the initial foaming height of the integrated agent measured at 65 ◦C was 215 mL,
and the foaming height after 5 min was 245 mL, because high temperature will enhance
the activity of surfactant molecules, so the foam height will increase in a short time. The
liquid-carrying capacity of the integrated agent was 143 mL, with a liquid-carrying rate
of 71.5%, which is much higher than the requirements of the Changqing Gas Field for the
liquid-carrying capacity of the foam-discharge agent. Therefore, this integrated agent has
certain on-site application value.

Table 6. Foaming ability and liquid-carrying ability of one-piece agent (65 ◦C).

Content Changqing Gas
Field (Yulin)/mL

Changqing Gas
Field (Shenmu)/mL

One-Piece
Agent/mL

Foam height (0 min) 120 110 215
Foam height (5 min) 70 60 245

Liquid-carrying capacity
(0~15 min) 120 110 143

3.7. Viscoelasticity of Foam

As shown in Figure 2, within a certain concentration range of 1 × 10−7~1 × 10−5 g/mL,
the intermolecular force increased and the interfacial activity increased, resulting in an increase
in the interfacial expansion modulus and viscoelasticity. As the concentration of the integrated
agent (1 × 10−4~1 × 10−2 g/mL) continued to increase, the interfacial expansion modulus
and viscoelasticity decreased. The high concentration of the integrated agent will lead to an
accelerated diffusion exchange between the interface and the bulk phase, resulting in the
reduction in the interfacial expansion modulus [33], and the foam tends to be stable. Not only
the concentration increased; there were maximum values for the expansion modulus, elastic
and viscous modulus, and phase angle, which were 32.32 mN/m, 29.86 mN/m, 483.33 mN/m,
and 31.96◦, respectively.
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Figure 2. Interfacial viscoelasticity measurements at different concentrations. 

3.8. Adsorption Experiment 

Figure 2. Interfacial viscoelasticity measurements at different concentrations.

3.8. Adsorption Experiment

Figure 3 of the adsorption experiment shows the UV spectra of the integrated agent
with different concentration multiples. The absorption peak generated at 362 nm showed a
significant red shift with the increase in concentration and Fe powder, and the absorption
peaks were all enhanced. This may be due to the integrated agent adsorbing on the surface
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of Fe atoms and coordinating with metal ions. This indicates that the integrated agent
molecules adsorb on the surface of carbon steel, forming a tight and stable adsorption film
that can effectively prevent the occurrence of steel plate corrosion.
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3.9. Surface Micromorphology of Metal

A model of the steel sheet surface and pitting pits shown on the right of Figure 4 was
established, and the morphology of the steel sheet was indirectly observed. From the 2D
images in Figure 4, it can be observed that the surface of the steel sheet was smooth, and the
4DF system had a significant promoting effect on the corrosion inhibition of the steel sheet.
As the concentration of hydrazine hydrate increased, the surface roughness decreased and
the corrosion degree of the steel sheet significantly decreased. Compared with the blank
group (without any additives), the 4DF system showed a significant reduction in pitting
pits. The more purple in the 3D and height maps, the deeper the pitting pits. Figure 4
showed that the purple area significantly decreased and the pitting range significantly
decreased, following the increase in hydrazine hydrate concentration. The maximum
corrosion depth decreased to 5.24 µm, proving that the 4DF system can effectively suppress
the corrosion of steel sheets and play a good corrosion-inhibition role.

3.10. Microscopic Morphology of Hydrate Growth

Due to the difficulty in forming hydrates in normal environments, the formation of
tetrahydrofuran hydrates using self-built instruments was studied and discussed. Figure 5
shows the growth morphology of the hydrates as time increased at 2 ◦C. It can be seen
that from 0 s onwards, hydrates continued to form at the edge of the liquid surface and
attracted each other towards the middle of the droplets. This is because there is a cohesive
force between the formed hydrate and the forming hydrate, which forces them to attract
and aggregate with each other. Moreover, there is a certain repulsive effect at the interface
between the formed hydrate and the formed hydrate, causing the formed hydrate to
continuously aggregate towards the middle.

As shown in Figure 6, At −1 ◦C, the structure of the THF hydrate was more loose and the
hydrate formation rate slowed down compared to the THF hydrate added as a whole agent.
At 30 s, the 20% THF hydrate was basically completely formed and mostly generated giant
crystals, while the hydrate containing an organic agent was only generated on a large scale
at 60 s. At 0 ◦C for 60 s, the hydrate crystal structure formed by 20% THF was significantly
more compact. At 1 ◦C, the risk of hydrate formation was significantly reduced after the
addition of an integrated agent, which grew slowly and was looser compared to the hydrates
formed without an integrated agent. It did not aggregate into large-scale crystals due to the
arrangement and adsorption of integrated agent molecules on the surface of the hydrates. The
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charge of hydrophilic groups in the integrated agent can repel each other, thereby preventing
the aggregation of hydrates [28]. In summary, the integrated agent has an inhibitory effect on
the formation of THF hydrates and has a good anti-aggregation effect.
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3.11. Contact-Angle Experiment

As shown in Figure 7, compared to the cleaned-glass surface after treatment, the
glass surface soaked with the integrated agent was significantly more hydrophilic and
oil friendly. Through measurement, it was found that the integrated agent had better
hydrophilicity, which is consistent with the anti-aggregation mechanism. On the one hand,
the hydrophilic groups of the integrated agent were adsorbed on the surface of the hydrate,
while the surfaces of adjacent hydrates were prevented from approaching each other due
to the hydrophobic and hydrophilic groups’ charge properties; On the other hand, the
addition of an all-in-one agent disrupted the activity of the water molecules by hydrophilic
groups, resulting in a decrease in the amount of hydrate formation. The anti-aggregation
mechanism of the hydrates is shown in Figure 8.
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3.12. Thermodynamic Analysis of Hydrates

As shown in Figure 9, with the operation of the cooling program, the solution gradually
transformed from liquid to solid, and the formation of hydrates released heat, resulting
in a change in calorific value. As a result, an upward heat release peak appeared in the
image. At this time, the initial point of heat change was the phase transition point of the
hydrates. As shown on the left of Figure 9, the phase transition point of 20% THF hydrate
was 4.32 ◦C, indicating that THF hydrate begins to grow at this temperature. The right side of
Figure 9 shows the phase transition point of the hydrate after the addition of an integrated
agent. Compared with the 20% THF hydrate, the phase transition point decreased by 1.92 ◦C,
significantly reducing the risk of hydrate formation. This is because the molecules of the
integrated agent not only hinder the hydrogen bonding of water molecules to form a cage-like
structure of hydrates, but also interfere with the activity of the water molecules, effectively
reducing the aggregation of water and matter.
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Figure 9. DSC curve of 20% THF solution with and without the integrated agent ((left) is without
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3.13. Emulsification Experiment and Microstructure Analysis after Emulsification

As shown in Figure 10, with the increase in the concentration of the integrated agent,
the stability of the emulsion after uniform emulsification increased, and the amount of
water released at the same time decreased. When standing at 45 ◦C for 1 min, the water
evolution rates of different concentrations were 18, 12, 0, and 0%, respectively, indicating
that the emulsion has good stability in a short period of time and can ensure good emul-
sification performance. After standing at 45 ◦C for 10 min, the water separation rate of
the solution was 100, 74, 0 and 0%, respectively, which indicates that there is no difficult
demulsification of lotion at 10 min, which is conducive to subsequent recovery. As shown
in Figure 11, the amount and rate of water evolution at different concentrations increased
with time and eventually stabilized. The emulsification performance of the integrated
agent represents both the ability to foam and the ability to prevent hydrate aggregation.
The better emulsification stability of the integrated agent is of great significance for the
production of natural gas.

It can be seen from Figure 12 that at 0 min, the sizes of the lotions formed by mixing
different concentrations of integrated agent and crude oil in a ratio of 1:1 were different. As
the concentration of the integrated agent increased, the diameter of the emulsion became
smaller, and the more small emulsions there were, the better the emulsifying ability and
stability. In the figure, it can be seen that, as time went on, after emulsification with
1 and 1.5 times the emulsion, the emulsion continued to coalesce and its stability gradually
deteriorated, providing the conditions for the demulsification of the emulsion. As the
emulsion is an oil-in-water type, the integrated agent adsorbs at the oil–water interface,
preventing the dispersed water droplets in the oil phase from coalescing in one place.
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The oil-in-water type emulsion is more likely to improve the performance of the anti-
aggregation agent.
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4. Conclusions

In this study, the final integrated formulation was determined: 0.1% sodium alpha-
olefin sulfonate (AOST) + 0.3% dodecyl dimethyl betaine (BS-12) + 0.3% sodium ligno-
sulfonate + 0.5% hydrazine hydrate. With this formulation, the performances of foaming,
polymerization prevention and corrosion inhibition were improved. After adding this
integrated agent, the growth rate of hydrates was slow and the maximum corrosion depth
decreased to 5.24 µm. The good performance of this anti-aggregation agent is largely
because of its oil-in-water type emulsion, preventing the dispersed water droplets in the oil
phase from coalescing in one place. These excellent abilities to produce foam and inhibit
corrosion indicate that they can be used in the oil and petrochemical industry for foam
drainage and to inhibit corrosion, which have a certain practical uses.
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