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Abstract: The background of “dual carbon” is accelerating low-carbon transformation in the energy
field, and oil field enterprises are facing challenges in energy conservation and emissions reduction
for sustainable development. However, oil field gathering and transfer station systems, which are
crucial components of the onshore transportation system, face challenges in energy conservation and
emissions reduction. Therefore, it is necessary to predict the carbon emissions of oil field gathering and
transfer station systems. To improve the accuracy of carbon emission prediction for the system, this
study proposes an improved GA-decision tree (IGA-decision tree) algorithm. First, chaotic mapping
was introduced to initialize the population, ensuring a uniform distribution of initial particles in
the search space and enhancing population diversity. Second, the firefly perturbation strategy was
employed to avoid the problem of genetic algorithms becoming trapped in local optima during the
later stages of the search. The results show that the enhanced GA-decision tree algorithm effectively
avoided being stuck in local optima while performing global searches. When predicting the carbon
emissions of oil field gathering and transfer stations, the improved GA-decision tree (IGA-decision
tree) algorithm outperformed traditional decision tree and GA-decision tree algorithms in terms
of error and convergence efficiency. It achieved a root mean square error (RMSE) value of 74.5181
and a correlation coefficient (R2) of 0.99, indicating a high level of fitness and good convergence,
as well as high prediction accuracy. This algorithm contributes to carbon accounting and energy
conservation efforts in oilfield gathering and the transfer station system, filling the research gap in
carbon emissions prediction for the system within the framework of energy internet projects.

Keywords: “dual carbon”; energy saving and emissions reduction; transfer station system;
IGA-decision tree algorithm; carbon emission forecasting

1. Introduction

The oil industry is the basic industry of the Chinese national economy and energy
security, and it is also an industry with high energy consumption, high pollution, and
high carbon emissions. Since reform and opening up, the Chinese petroleum refining
industry has developed rapidly, and the cumulative processing volume of China’s crude
oil reached 703.554 million tons in December 2021, a cumulative increase of 4.3%, while
the corresponding energy consumption and carbon emissions also showed a rapid growth
trend. China has officially announced that it strives to achieve a carbon peak before 2030
and carbon neutrality before 2060. Under such circumstances, it is particularly important
to accurately and efficiently grasp the carbon emissions level of enterprises in advance to
provide strong support for the development of practical emission reduction pathways.

At present, research on carbon emissions prediction is mainly divided into three as-
pects. The first aspect is to combine historical data to establish a regression prediction model
and estimate carbon emissions through several sets of statistical data. Wei et al. [1] ana-
lyzed the relationship between carbon dioxide emissions and influencing factors through
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correlation analysis and then used the optimized least squares support vector machine to
predict carbon emissions, which effectively improved the prediction accuracy of carbon
emissions. Faruque et al. [2] established a prediction model for the impact of carbon dioxide
emissions on electric consumption and gross domestic product (GDP) and compared and
analyzed the prediction accuracy of four deep learning methods: convolutional neural
network (CNN), convolutional neural network-long short-term memory (CNN-LSTM),
LSTM and dense neural network (DNN). Chen et al. [3], based on private car trajectory data,
using inverse geocoding and an artificial neural network to predict the carbon emissions of
private cars in various regions, also evaluated the emissions reduction potential of various
regions from the perspectives of efficiency, effect, and fairness, which provided a reference
for formulating emission reduction strategies in China’s road transportation field. The
second aspect is to conduct scenario analysis or establish a carbon peaking prediction
model to predict the carbon peaking situation of various industries. Xu et al. [4] built a top-
down energy system model of China’s civil aviation industry based on LEAP (Long-Range
Energy Alternatives Planning System) and discussed the technical path of low-carbon
development in the civil aviation industry in the medium and long term, including how the
number of flights is expected to quadruple in China by 2060, and under the current policy
scenario, carbon emissions from the civil aviation industry are expected to peak at around
2046, with a peak level of about 350 million tons. Li et al. [5] firstly used Kaya identity
and the logarithmic mean Di exponential decomposition method (LMDI) to decompose
the influencing factors of carbon emissions from civil aviation transportation in China;
secondly, a Tapio decoupling model was established to analyze the correlation between
carbon emissions of civil aviation transport and various influencing factors; and finally,
the improved and scalable STURBANAT model is used to realize the carbon emissions
prediction of China’s civil aviation transportation, and it is expected that there will be
no peak carbon emissions before 2050 under the baseline scenario. The third aspect is to
establish a time series forecasting model with the help of computer deep learning and
other methods to conduct the short-term or medium-term prediction of carbon emissions.
Hu et al. [6] predicted the trend of carbon emissions intensity in China based on an LSTM
neural network model. At the same time, the ARIMA-BP neural network model was
established as a validation model to directly predict carbon emissions intensity, and the
prediction results of these two models differed by 2.03 percentage points.

For the analysis of carbon emission reduction pathways, the existing research mainly
uses scenario analysis methods on the basis of carbon emissions prediction to explore the
carbon peak time and carbon emissions reduction potential under different paths by setting
different scenarios. Stan [7] used the LEAP model, coupled with the logarithmic mean
Diehlschild decomposition model, and used the scenario analysis method to predict the
carbon peak time of Jiangsu Province under different scenarios. Bian [8] constructed a
dynamic model of the carbon emissions system and set up six scenarios to simulate and
predict the carbon peak time and emissions reduction potential of the Beijing–Tianjin–Hebei
region. Liu [9], based on the PLS-VIP algorithm, studied 10 influencing factors related to
carbon emissions for PLS (partial least squares) modeling as independent variables; the
results showed that the proposed method could effectively identify the variables with
a strong correlation to the dependent variable and fundamentally reduce the number
of variables entering the model. Wang et al. [10] studied the influencing factors of the
carbon emissions allowance price, constructed the graph structure of the index based on
the complex network theory, and then established the graph structure adaptive Lasso
method (G-AdLasso) to identify the influencing factors, and found that G-AdLasso could
identify the more important indicators in the graph’s structure, and it is clear that this
method can optimize and refine the model. Ke et al. [11] solved the problem of nonlinearity
and instability of carbon emission data in order to use time series data information to
predict carbon emissions more comprehensively, and the BAS-LSTM model of quadratic
decomposition was used to predict the carbon emissions of Shaanxi Province. Gao et al. [12]
established a support vector machine (GA-SVR) prediction model optimized by a genetic



Processes 2023, 11, 2738 3 of 17

algorithm to predict the future carbon emissions of Beijing’s transportation industry; the
results showed that there was a good fitting regression effect between the data obtained by
the model and the actual value. Some scholars use neural network correlation methods to
predict future carbon emission trends and, from the model prediction results, the neural
network correlation method can predict future carbon emissions more accurately, which
provides a quantitative basis for the city’s low-carbon planning and control of carbon
emissions [13–16] at a regional level. Zhou [17] proposed a grey rolling prediction model,
which considered the influence of new information on development trends and improved
the accuracy and stability of predictions. YU [18] proposed a multi-objective optimization
model for economic carbon emissions costs to predict China’s energy structure, and the
results show that carbon emission peaks can be reached between 2025 and 2028. Yan [19]
used the STIRPAT model to predict carbon emissions in the blue economic zone of the
Shandong Peninsula, and the relationship between population, energy intensity, and
carbon emissions was analyzed by the ridge regression method. At the industry level,
many scholars have studied the timing of carbon emissions peaking in industries such
as electricity [20], transportation [21], construction [22], and industry [23] and control
measures to promote carbon peaking. Some authors [24–29] argue that population levels
are strongly correlated with CO2 emission levels. Al-Majidi [30] proposed a bacterial
foraging algorithm (BF), which was employed to enhance the learning of the NN model
for AGCs based on adequately identifying the initial weights of the model. Al-Majidi [31]
proposed an artificial neural network (ANN) technique, which was utilized to design the
optimal LFC.

In order to establish an accurate carbon emissions prediction model for the oil field
transfer station, we selected variables such as daily power consumption, daily air con-
sumption, and heat energy provided for analysis [32]. We optimized this model using the
IGA-decision tree method and improved the accuracy of prediction by globally optimizing
decision tree model parameters through the genetic algorithm.

There are many existing carbon emission prediction methods, and carbon emission
prediction models have become a research hotspot, while traditional classical forecasting
methods include single model methods, such as decision trees and support vector machines.
However, there are some problems such as unstable regression and uncertain influencing
factors, which make it difficult to predict carbon emissions scientifically and accurately.
Therefore, in view of the shortcomings of traditional carbon emission prediction methods,
this paper used the IGA-decision tree method to establish a carbon emissions prediction
model for oilfield transfer stations to improve the accuracy of prediction.

The oil industry is a basic industry, and it holds significant importance in the context
of carbon peaking and carbon neutrality. It is crucial to establish and implement emission
reduction pathways for the oil industry in order to align with these objectives. Energy
conservation and emission reduction can effectively reduce energy consumption in the
actual production process of oilfield enterprises, thereby producing and processing more oil
and gas resources. This enhances the economic benefits of oil field enterprises and achieves
sustainable development. By combining the actual conditions of the oil field, implementing
emission reduction measures, and establishing an evaluation and assessment system for
energy conservation, water conservation, and clean production, we could establish a
benchmark for building energy-efficient enterprises. This system evaluates and assesses the
indicators related to energy conservation, water conservation, and clean production, thereby
promoting sustainable development in the oil field industry. Vigorously adopting and
actively implementing application-oriented and energy-efficient equipment is beneficial
for improving energy utilization efficiency and achieving the goal of skill-based emissions
reduction [33].
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2. Methods Section
2.1. Measurement of Carbon Emissions

The oil field transfer station system is a crucial component in the oil production
process, responsible for transporting crude oil from wells to gathering pipelines or storage
tanks. However, this process inevitably generates a significant amount of carbon emissions.
The oil field transfer station system requires the use of energy supply equipment, such as
compressors and pumps, as well as control and transmission devices, during its operation.
These devices typically rely on the combustion of fossil fuels, such as natural gas or diesel,
which can lead to the emissions of greenhouse gases like carbon dioxide. In addition,
the construction and maintenance of the oil field transfer station system also consumes a
certain amount of energy and may generate some indirect carbon emissions.

The most important forms of carbon accounting can be divided into two methods:
measurement-based and calculation-based, which can be summarized into three main
methods: the measured method, emissions factor method, and mass balance method.
Among these, the emissions factor method is the most widely applied and widely used
carbon accounting method [11]. The carbon emission factors of each energy source are
extrapolated based on data from research reports such as the 2005 China Greenhouse Gas
Inventory Study and the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
The carbon emissions accounting formula is as follows [3]:

CO2 emissions from fossil fuel combustion are based on the amount of fuel burned by
each combustion facility within the boundary, multiplied by the corresponding fuel carbon
content and carbon oxidation rate. The carbon emissions of the furnace formula can be
obtained as follows:

Ejrl = ADjrl × CCjrl × OFjrl × 44/12 (1)

where Ejrl is the CO2 emissions of the heating furnace, tCO2; ADjrl is the fuel consumption
of the furnace, t or ten thousand Nm3; CCjrl is the average carbon content of the furnace
fuel, tCO2/t or tCO2/ten thousand Nm3; OFjrl is the carbon oxidation rate of the furnace
fuel, and the value range is 0~1.

Fuel carbon oxidation rate: the carbon oxidation rate of liquid fuel can take a default
value of 0.98; the carbon oxidation rate of gas fuel can take a default value of 0.99 [28]; the
carbon oxidation rate of solid fuel can be found according to different fuels.

The carbon footprint of the pump unit is calculated as:

Ebjz = ADbjz × EF (2)

where Ebjz is the CO2 emissions for pump units, tCO2; ADbjz is the electricity consumed for
the pump, MW·h; EF is CO2 emission factors for the electricity supply, tCO2/(MW·h).

2.2. Carbon Emission Prediction Model Methods
2.2.1. Decision Tree Algorithm Fundamentals

The gradient-boosting decision tree, abbreviated as GBDT, belongs to one of the
branches of the decision tree model. Its core idea is to take residual learning as the basis,
optimize the gradient direction to form a large number of regression trees, and all the
regression tree results are added to the final model. To reduce residuals iterating one
after another while, at the same time, obtaining high-precision results, they are suitable
for working with a variety of nonlinear data. The gradient-boosting algorithm based on
boosting, proposed by Friedman [34], has been widely used in various fields. The gradient-
boosting decision tree algorithm consists of multiple decision trees, and the value of the
negative gradient of the loss function in the current model is used as an approximation of
the residual value in the boosted tree to fit the regression decision tree [35]. The general
steps of the GBDT algorithm are as follows:
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(1) Enter N training samples X, and set the relevant parameters, the number of iterations
(N), F as a function space composed of all trees, fk as a single decision tree model, and
the initial value = 0, The GBDT algorithm expression is as follows:

y1
i =

K

∑
k=1

fk(xi) (3)

where xi is the eith feature vector of the sample; k is the number of weak regression trees;
fk(xi) is the output value of the kth weak regression tree; y1

i is the final predicted value of
the i sample.

(2) Define the objective function of the GBDT algorithm as:

Obj =
n

∑
i=1

l
(

yi, y1
i

)
+

K

∑
k=1

Ω( fk) (4)

where Ω is the complexity of the decision tree; n is the total number of samples; l is the loss
function; yi is the i sample’s truth value.

This complexity is defined by the regular term:

Ω( ft) = kT +
1
2

λ
T

∑
j=1

w2
j (5)

where T is the number of nodes on the leaf; wj is the vector value corresponding to the leaf
node; k is the minimum amount of loss reduction required for the leaf node splitting of the
tree; λ is the penalty term coefficient.

(3) According to the additive structure of the GBDT algorithm:

yt
i = yt−1

i + ft(xi) (6)

where yt
i is the sum of the outputs of the top t trees of the ith sample; yt−1

i is the sum of the
outputs of the first for t − 1 trees in the ith sample; and ft(xi) is the output value of the top
t tree of the ith sample.

Substituting Equation (4) into the objective function and expanding it using Tay-
lor yields:

Objt =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi) + kT +

1
2

λ
T

∑
j=1

w2
j

]
=

T

∑
j=1

[
Giwj +

1
2
(Hi + λ)w2

j

]
+ kT (7)

where Gi = ∑ gi, Hi = ∑ hi, gi and hi is the first and second derivatives of the loss function,
respectively.

Let the first derivative of Objt be 0; the optimal value of the leaf node can be obtained
by w∗j :

w∗j = −
Gj

Hj + λ
(8)

where Gi is the sum of the first derivatives of loss function; Hi is the sum of the second
derivatives of the loss function; λ is the penalty term coefficient.

The objective function value at this time was:

Obj = −1
2

T

∑
j=1

G2
j

Hj + λ
+ kT (9)

where Obj is the objective function; Gi is the sum of the first derivatives of the loss function;
Hi is the sum of the second derivatives of the loss function; λ is the penalty term coefficient;
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T is the number of nodes on the leaf; k is the minimum amount of loss reduction required
for the leaf node splitting of the tree.

(4) Generate a new decision tree through a greedy strategy to minimize the objective
function value, and the optimal predicted value corresponding to the leaf node is
obtained, w∗j , add the newly generated decision tree ft(x) to the model, obtaining:

yt
i = yt−1

i + ft(xi) (10)

where yt
i is the sum of the outputs of the top t trees of the ith sample; yt−1

i is the sum of the
outputs of the first t − 1 trees in the ith sample; ft(xi) is the output value of the top t tree in
the ith sample.

(5) Keep iterating until the end of N iterations, and the output of the GBDT algorithm is
composed of N decision trees.

2.2.2. GA-Decision Tree Predictive Model Construction

A decision tree is a very representative algorithm in the field of machine learning,
which can solve the classification problem and regression problem at the same time and has
the characteristics of easy understanding and high computational efficiency. It is different
from the integrated algorithms such as random forest and Adaboost, and a single decision
tree often leads to the over-fitting of the model because of excessive division, especially
when it trains small sample data sets. Aiming at the problem that the generalization
ability of a single decision tree is not ideal, this paper proposes a decision tree regression
model combining cross-validation and genetic algorithms (GA). Specifically, in the process
of constructing decision tree branches, the maximum number of splits (MaxNumSplits),
the minimum number of leaf size (MinLeafSize), and the minimum number of parent
(MinParent) were the key superparameters that determined the degree of model splitting.
The under-fitted model was set to young leads so that deep information in the training
set could not be fully mined. When the setting was too large, the calculation often took a
long time because of the deep layers of the tree, and the excessive split depth was also an
important reason for the over-fitting of the model.

K-fold cross-validation is a practical method to cut data samples into smaller subsets
statistically, which is mainly used in machine learning model training. In the given data
sample, the training set was divided into K parts in equal quantities, and K − 1 copies were
taken out in turn for modeling, while the remaining part of the sample was used to verify
the established model and calculate the prediction error of this small part of the sample.
Each time a different training set and test set were taken, the modeling was repeated K
times, and the average prediction error of K models was used as the final model error.
Since a certain sample was left for verification after each time modeling, the decision tree
model based on K-fold cross-validation had strong overfitting resistance compared with
the modeling method in which the whole training set participated in the training.

The genetic algorithm can be used to optimize the grid search to achieve global
optimization. The GA algorithm and the decision tree model are connected by the fitness
function, and the fitness function in this paper should be the average cross-validation error
rate. It can be calculated from Equations (11) and (12):

Fit∗ =
1
K ∑K

i=1 f iti (11)

f iti =
1
N ∑N

n=1 (yn − y′n)
2

(12)

where f iti represents the cross-validation error of the ith fold and represents the predicted
MSE value of the validation fold; N is the number of samples per fold; yn and y′n represent
the true and predicted values of the nth test sample in the validation compromise; Fit∗

represents the mean cross-validation error, which is the final fitness function value.
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The average cross-validation error rate is used as the fitness function to obtain the
initialized population P(t), and then the selected population iteration can be carried out
through the fitness function, and the selected genetic operator adopts the roulette method.
The specific expression for this is as follows:

Pi =
Fitnessi

∑ P
j=1Fitnessj

(13)

where Pi is the number of populations; Fitnessi is the fitness value; ∑ P
j=1Fitnessj is the

total fitness value for the population, Selection through the fitness function can generate a
new population P(t + 1), and the genetic operator operation continues on the basis of this
population, operating in the order of selection, crossing, and mutation, and the selection
is operated by roulette, leaving the individuals with high fitness behind while, on the
contrary, low fitness is eliminated. Crossover is the following operation of individuals in
a population: {

x1 = rx + (1− r)y
y1 = ry + (1− r)x

(14)

where x, y both represent the mother; x1, y1 represent two new individuals resulting from
a maternal crossover; r is a random number between (0 and 1); nutation is the mutation
operation of a gene in an individual:

x1
i = xi + (bi − xi) f (g), i = j&r1 < 0.5

x1
i = xi + (ai − xi) f (g), i = j&r1 ≥ 0.5

x1
i = xi, otherwise

(15)

where f (g) =
(
r2
(
1− g

K
))k, r1, r2 is a uniform random variable between (0 and 1); j is a

randomly selected variable; g indicates the current generation; K represents the maximum
number of iterations; i denotes the individual; bi, ai indicates the next and previous sessions
in the process of individual evolution; k represents a factor that decreases with the number
of iterations.

After the operation of the above three genetic operators, the new population P(t + 2)
was obtained; it is worth pointing out that this population was based on the hyperparame-
ters of the decision tree prediction model. The specific process is shown in Figure 1:
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2.2.3. Establish an IGA-Decision Tree Algorithm Model

This model proposes two improvement strategies for the GA-decision tree algorithm.
First, the population was initialized using Chebyshev chaotic maps to better cover the
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entire solution space with the initial chromosome; second, in response to the problem of
genetic algorithm searching for the optimal individual in the later stage, which is prone to
falling into local optima, a firefly disturbance strategy was introduced to modify it.

The standard genetic algorithm uses a random method to initialize the population,
making it difficult to obtain stable target accuracy and convergence speeds during the
search process. The more evenly distributed the initial population in the solution space,
the greater the probability the algorithm has of finding the optimal value. Compared
with random search strategies, chaotic search is widely used in the generation of initial
populations due to its randomness and ergodicity.

The Firefly algorithm is a meta-heuristic algorithm proposed by Yang based on the
flickering behavior of fireflies, characterized by its simple structure and global utilization
ability [36]. In the genetic algorithm, specifically, chromosomes are equivalent to fireflies,
and the distance between them and the optimal solution is denoted as ri =

∣∣xi − xpot
∣∣·xpot

represents the optimal individual and xi represents a random individual. Chromosomes
guide population renewal through “luminescence”. The attractiveness of the optimal
chromosome to an individual can be expressed as follows:

ζ = ζ0 · exp(−γr2
i,j) (16)

where ζ is attractiveness; ζ0 is the maximum attraction, and can be related to the value
of the objective function; γ is the absorption coefficient of light intensity; ri,j is the spatial
distance between firefly i and j.

The formula for updating the position of the population is as follows:

xnewpot = xi + ζ · (xi − xpot) + α · [rand(D)− 0.5] (17)

where α ∈ [0, 1] is a step size factor; xpot represents the optimal individual, xi represents a
random individual; rand(D) ∈ [0, 1] is a random factor and is used to increase the search
range and avoid entering local optima in later stages.

The steps for improving the GA-decision tree model are listed below:
This study used three parameters of decision tree optimization: the maximum number

of splits, the minimum number of leaf nodes, and the minimum number of root nodes. The
fitness function in this article should be the average cross-validation error rate, which can
be calculated from Equations (18) and (19):

Fit∗ =
1
K ∑K

i=1 f iti (18)

f iti =
1
N ∑N

q=1 (yq − y′q)
2

(19)

where fiti represents the cross-validation error of the i-th fold, and represents the predicted
mse value of the validation fold; N is the number of samples per fold, yq, and y′q represent
the true and predicted values of the qth test sample in the validation compromise; Fit*
represents the average cross-validation error, which is the final fitness function value. The
specific steps are as follows:

Step 1: Firstly, the Chebyshev chaotic map is used to initialize the population. The
mathematical model of Chebyshev chaotic mapping is:

x(t + 1) = cos(t cos−1(x(t))) (20)

where x(t) is the population individual at the tth iteration and x ∈ [−1, 1] while t is the
current number of iterations. Tent chaotic mapping is the most commonly used population
initialization method in the improvement process of intelligent optimization algorithms [37],
and its results with Chebyshev chaotic mapping under a certain number of iterations are
shown in Figure 2a,b. From Figure 2, it can be seen that compared to the Tent map, the
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initial population distribution generated by the Chebyshev map was more uniform, and
the Chebyshev map had more efficient searchability when dealing with extreme problems.
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Step 2: Generate the initial maximum number of splits, minimum number of leaf
nodes, and minimum number of root nodes;

Step 3: Input data and preprocess to encode initial values;
Step 4: Establish a fitness function;
Step 5: Select the genetic, crossover, and mutation operations;
Step 6: Introduce a firefly disturbance strategy to update the population, determining

whether the preset error conditions are met. If the conditions are met, the maximum
number of splits, minimum number of leaf nodes, and minimum number of root nodes are
output. If the conditions are not met, step 5 is revisited.

The main training process for improving the GA decision tree algorithm is shown in
Figure 3:

Processes 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 
Figure 3. Main training flowchart for improving GA decision tree algorithm. 

3. Empirical Analysis 
3.1. Correlation Analysis of Influencing Factors of Carbon Emissions 

The measured data of an oilfield transfer station in Northeast China in 2022 was se-
lected as the data set, and the data of the oil field transfer station system was cleaned. 
Identify abnormal data through box plots based on Jupyter in the Anaconda platform and 
use Python language programming to reconstruct missing data. According to the national 
and industry-standard monitoring methods for the production data of the oilfield transfer 
station system, 16 major carbon emission influencing factors are selected and used as in-
put parameters of the prediction model. The source of carbon emission influencing factors 
is the measured data of the oil field transfer station in Northeast China in 2022, as shown 
in Table 1. 

Table 1. A description of the variables of the model. 

Variable Name Definition Unit 
Y Carbon emissions The total CO2 emissions tones 

X1 Pressure difference The difference in pressure between the two points MPa 
X2 Temperature difference The difference between the temperature of the object °C 
X3 Daily infusion volume The amount of crude oil transported per day t 
X4 Daily power consumption Electricity is consumed daily kW·h 
X5 Daily air consumption The amount of natural gas consumed per day m3 
X6 Density A measure of mass within a specific volume kg/m3 

X7 Specific heat capacity 
Indicates the ability of a substance to absorb heat or 

dissipate heat kJ/(kg °C) 

Figure 3. Main training flowchart for improving GA decision tree algorithm.



Processes 2023, 11, 2738 10 of 17

3. Empirical Analysis
3.1. Correlation Analysis of Influencing Factors of Carbon Emissions

The measured data of an oilfield transfer station in Northeast China in 2022 was
selected as the data set, and the data of the oil field transfer station system was cleaned.
Identify abnormal data through box plots based on Jupyter in the Anaconda platform and
use Python language programming to reconstruct missing data. According to the national
and industry-standard monitoring methods for the production data of the oilfield transfer
station system, 16 major carbon emission influencing factors are selected and used as input
parameters of the prediction model. The source of carbon emission influencing factors is
the measured data of the oil field transfer station in Northeast China in 2022, as shown in
Table 1.

Table 1. A description of the variables of the model.

Variable Name Definition Unit

Y Carbon emissions The total CO2 emissions tones

X1 Pressure difference The difference in pressure between the two points MPa

X2 Temperature difference The difference between the temperature of the object ◦C

X3 Daily infusion volume The amount of crude oil transported per day t

X4 Daily power consumption Electricity is consumed daily kW·h
X5 Daily air consumption The amount of natural gas consumed per day m3

X6 Density A measure of mass within a specific volume kg/m3

X7 Specific heat capacity Indicates the ability of a substance to absorb heat or
dissipate heat kJ/(kg ◦C)

X8 Fuel calorific value Indicates the amount of heat release capacity when
the fuel is completely burned GJ/ten thousands Nm3

X9 Thermal energy provided Heat provided kJ

X10 Pressure energy provided Pressure energy provided by the outside world kJ

X11 Oil absorbs heat energy The thermal energy carried by the logistics entering
the transfer station kJ

X12 The pressure energy absorbed
by the oil

Enter the transfer station logistics to carry
pressure energy kJ

X13 Thermal energy utilization The efficiency with which heat energy is utilized %

X14 Electrical energy utilization The efficiency with which electrical energy is utilized %

X15
Power consumption per unit
of liquid volume collection

and transmission

The power consumption of the transfer station
system per 1t of produced liquid processed kW·h/t

X16
Gas consumption per unit of
liquid volume collection and

transportation

The gas consumption of the transfer station system
per 1t of produced liquid processed m3/t

X17
Comprehensive energy
consumption per unit of

liquid volume

The comprehensive energy consumption of the
transfer station system per 1t of produced

liquid processed
kgce/t

X18 Transfer station
energy utilization

The extent to which the energy of the transfer station
system is used efficiently %

Due to the different units of carbon emission influencing factors, the order of magnitude
difference is large, so it is necessary to normalize the value into a number between [0, 1];
the purpose of normalization processing is to eliminate the order of magnitude difference
between the data, to avoid large errors due to the large difference in the magnitude of the
input data. This article adopts the following normalization method:

x∗i =
xi − xmin

xmax − xmin
(21)
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where xmin is the minimum value in the influencing factor data series, xmax is the maximum
value in the influencing factor data series, x∗i is the initial input data with the normal-
ized data.

In the oil field transfer station system, there is a linear relationship between carbon
emission and energy utilization rate. However, there is a linear relationship between carbon
emissions and comprehensive energy consumption per unit of liquid volume. Pearson
correlation coefficient can measure the wireless correlation between two features and the
degree of correlation. Therefore, the Pearson correlation coefficient is used to measure the
correlation between carbon emissions and other characteristics. The specific results are
shown in Figure 4:
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In the oil field transfer station system, there is a linear relationship between carbon
emissions and energy utilization, and there is a linear relationship between carbon emis-
sions and comprehensive energy consumption per unit of liquid quantity. The Pearson
correlation coefficient can measure the wireless correlation between the two characteristics,
so the Pearson correlation coefficient is used to measure the correlation between carbon
emissions and other characteristics. The Pearson correlation coefficient was used to analyze
the data of oilfield transfer stations, and the factors that had a greater impact on carbon
emissions were found, and the energy utilization rate, comprehensive energy consumption
per unit liquid volume, gas consumption per unit liquid volume, and power consumption
per unit liquid volume were greatly affected. In order to avoid multicollinearity, X18 and
X1–X12, which have great influence, are selected to model.

3.2. Example Application of Improved GA-Decision Tree (IGA-Decision Tree) Algorithm

In the given data sample, dividing the training, setting into K equal parts, taking
out K − 1 parts for modeling, and using the remaining part of the sample to validate the
established model, calculating the prediction error of this small part of the sample. Taking
different training and testing sets each time and repeating the modeling K times, taking
the average prediction error of K models as the final model error. Due to leaving a certain
number of samples for validation during each modeling, the decision tree model based on
K-fold cross-validation has stronger resistance to overfitting compared to the modeling
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method, where the entire training set participates in training. This article uses an Improved
GA algorithm to optimize the three parameters of the decision tree: maximum number of
splits, minimum number of leaf nodes, and minimum number of root nodes. It sets the upper
and lower bounds of the optimization interval to [100, 1, 2] and [500, 5, 20], respectively, and
sets the population number and maximum iteration times of the improved GA to 30 and
50. The improved GA algorithm and decision tree model are connected through fitness
functions. The fitness function in this article should be the average cross-validation error
rate, which can be calculated from Equations (22) and (23):

Fit∗ =
1
K ∑K

i=1 f iti (22)

f iti =
1
N ∑N

q=1 (yq − y′q)
2

(23)

where fiti represents the cross-validation error of the ith fold and represents the predicted
mse value of the validation fold; N is the number of samples per fold, yq and y′q represent
the true and predicted values of the qth test sample in the validation compromise; Fit*
represents the average cross-validation error, which is the final fitness function value.

After a finite number of iterations, the traversal scatter plot of the GA decision tree
and the improved GA decision tree algorithm for searching for key hyperparameters is
shown in Figure 5.
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After a finite number of iterations, the traversal scatter plot of GA and improved
GA for searching for key hyperparameters of the decision tree is shown in Figure 1. This
is similar to the RF default parameter setting (default MinLeafSize = 1, MinParent = 10).
When MinLeafSize and MinParent are small, the tree model has sufficient nodes to mine
the data information in the training set. The model that improves the GA search for key
hyperparameters performs better than the GA model. Further, the search–iteration curve
under the optimal hyperparameter value is shown in Figure 6.

With the continuous advancement of the search process, the average cross-validation
error continues to decrease, and the value of k is 4, and finally convergence is reached in
the 35th generation.
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4. Empirical Results and Discussion

The IGA-decision tree algorithm can combine the global optimization ability of the
IGA-decision tree algorithm and the local search ability of the decision tree algorithm to
solve the risk problem of the decision tree becoming stuck in the local optimal solution and
improve its generalization and learning ability. Therefore, the IGA-decision tree algorithm
can obtain output values faster than the decision tree, which is a clear advantage for
involving large amounts of data.

In order to quantitatively analyze the effect of the optimized model, the performance
of the IGA-decision tree and decision tree on the training set and testing set are plotted in
Figures 7 and 8, respectively.
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As shown in Figure 7, the fitting effect of the IGA-decision tree with cross-validation
and IGA-decision tree optimization on the training set is weaker than that of the decision
tree because the fitness function during parameter tuning is the average cross-validation
error rate. Each fold submodel is part of the training subset that does not participate in
training, which reduces the goodness-of-fit in the training stage to a certain extent.



Processes 2023, 11, 2738 14 of 17Processes 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 
Figure 8. The testing set predicts the outcome. 

In this paper, the IGA-decision tree algorithm is mainly used for its high accuracy 
and the effectiveness of predicted values. In order to further verify the feasibility and ac-
curacy of IGA-decision tree model prediction, square correlation coefficient (R2) and mean 
absolute proportional error (MAPE) were used for evaluation. Evaluation indicators are 
defined as follows: 

( ) ( )
( ) ( )( ) ( )

2

1 1 12
2 22 2

1 1 1 1

n n n
i i i i i i i

n n n n
i i i i i i i i

n f x y f x y
R

n f x f x n y y

= = =

= = = =

 − =
   − −      

  
   

 

(24)

1

| |1 100%
| |

n
i i

i i

Y YMAPE
n Y

∧

=

−= ×  (25)

where n is the number of samples; iY  is the actual value; and iY ∧  is the predicted value. 
R2 is the degree to which the variance of the dependent variable can be explained by the 
independent variable, and the closer to one, the better the model effect; MAPE is the ratio 
of the absolute value of all sample errors compared to the actual value, and the closer the 
value is to 0, the more accurate the model; the data are cross-validated, and the optimal 
model prediction result error pair is shown in Table 2. R2 was higher than that of the other 
two prediction models, indicating that the IGA-decision tree predictive model had a good 
and stable prediction effect. 

Table 2. Results error comparison. 

Predictive Models RMSE R2 MAPE/% 
Decision tree 195.7539 0.86 8.02 

GA-Decision tree 228.4773 0.97 3.35 
IGA-Decision tree 74.5181 0.99 2.06 

When predicting carbon emissions for a specific oilfield transfer station, the IGA-de-
cision tree model showed improvements compared to the GA-decision tree and decision 
tree models. The R2 value increased by 0.02 and 0.13, respectively, while the RMSE value 
decreased by 153.9594 and 121.2358, respectively. In summary, although the IGA-decision 
tree sacrifices part of its fitting accuracy in the training phase, based on K-fold cross-vali-
dation, the trained model has a stronger adaptability to the test set. It has been shown that 

Figure 8. The testing set predicts the outcome.

As shown in Figure 8, in the test set, the prediction error RMSE of the IGA-decision
tree and GA-decision tree was 74.5181 and 228.4773, respectively, indicating that the IGA-
decision tree has a better generalization performance in unknown sample sets.

In this paper, the IGA-decision tree algorithm is mainly used for its high accuracy
and the effectiveness of predicted values. In order to further verify the feasibility and
accuracy of IGA-decision tree model prediction, square correlation coefficient (R2) and
mean absolute proportional error (MAPE) were used for evaluation. Evaluation indicators
are defined as follows:
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where n is the number of samples; Yi is the actual value; and Y∧i is the predicted value.
R2 is the degree to which the variance of the dependent variable can be explained by the
independent variable, and the closer to one, the better the model effect; MAPE is the ratio
of the absolute value of all sample errors compared to the actual value, and the closer the
value is to 0, the more accurate the model; the data are cross-validated, and the optimal
model prediction result error pair is shown in Table 2. R2 was higher than that of the other
two prediction models, indicating that the IGA-decision tree predictive model had a good
and stable prediction effect.

Table 2. Results error comparison.

Predictive Models RMSE R2 MAPE/%

Decision tree 195.7539 0.86 8.02
GA-Decision tree 228.4773 0.97 3.35
IGA-Decision tree 74.5181 0.99 2.06

When predicting carbon emissions for a specific oilfield transfer station, the IGA-
decision tree model showed improvements compared to the GA-decision tree and decision
tree models. The R2 value increased by 0.02 and 0.13, respectively, while the RMSE value
decreased by 153.9594 and 121.2358, respectively. In summary, although the IGA-decision
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tree sacrifices part of its fitting accuracy in the training phase, based on K-fold cross-
validation, the trained model has a stronger adaptability to the test set. It has been shown
that the proposed improvement strategy can effectively enhance the overfitting resistance
of decision trees.

In the field of carbon emissions prediction, many traditional and classical forecasting
methods have been widely used, including decision trees, support vector machines, and
other single-model methods. The decision tree model has the advantage of being insensi-
tive to missing values, can handle irrelevant feature data, and is easy to understand and
implement. However, this algorithm is also easy to converge to a non-global local optimal
solution; however, the generalization performance of such a model on the data is very poor,
and the phenomenon of overfitting occurs. In contrast, the IGA-decision tree model is opti-
mized on the basis of the decision tree model and searches for the optimal solution globally.
The model has short prediction times, improved accuracy, and prevents overfitting.

5. Conclusions and Recommendations

(1) This paper proposes an improved GA-decision tree algorithm. It introduces chaotic
mapping to initialize the population, aiming to achieve a uniform distribution of
initial particles in the search space and increase population diversity. Additionally, a
Firefly disturbance strategy was adopted to avoid the problem of genetic algorithms
becoming trapped in local optima during the later stages of the search. The results
show that this model can accurately predict the carbon emissions of the oilfield
transfer station system, which verifies the accuracy and reliability of the model. When
predicting carbon emissions for a specific oilfield transfer station, the IGA-decision
tree model showed improvements compared to the GA-decision tree and decision tree
model. The R2 value increased by 0.02 and 0.13, respectively, while the RMSE value
decreased by 153.9594 and 121.2358, respectively. It has high accuracy in predicting
the carbon emissions of the oilfield transfer station system, which can provide an
important basis for related work.

(2) Under the “dual carbon” development strategy, the petroleum and petrochemical
industry is facing carbon reduction challenges, especially the energy consumption
and carbon emission problems faced by China’s oil and gas extraction industry. In
this paper, taking an oilfield transfer station in Northeast China as an example, the
carbon emissions of the transfer station were calculated using the IPCC method, and
the IGA-decision tree model was used to search for optimization globally. The model
validation results showed that this model had high accuracy and could be used to
predict the carbon emissions of the oilfield transfer station system. This is of practical
significance for carbon accounting, energy conservation, and carbon reduction and
fills the research gap in carbon emission prediction in energy Internet projects.

(3) The model also has some limitations: the study chose MAPE and R2 as evaluation
indicators but did not explain why these indicators were selected. At the same time,
these evaluation indicators could only reflect part of the model performance, and
other evaluation indicators might need to be considered to fully evaluate the accuracy
and stability of the model. As the prediction interval expands, the predictive power
of the model also decreases. Therefore, the above issues need to be improved in
subsequent studies.

(4) To further improve the accuracy and precision of carbon emissions prediction models
in the future, it is recommended that more accurate and comprehensive data are
collected while enhancing data availability. Additionally, exploring new machine
learning algorithms, deep learning techniques, or employing ensemble modeling
approaches could be beneficial in enhancing predictive performance. Performing
sensitivity analysis on key factors in carbon emissions prediction models could help
study the impact of different variables on prediction results. This could aid in identi-
fying the main driving factors and provide a scientific basis for prioritizing emission
reduction measures.
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