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Abstract: With increasingly stringent carbon policies, the development of traditional heavy industries
with high carbon emissions has been greatly restricted. Manufacturing companies surveyed use
multifunctional machining machines and variable speed cranes, as the lack of rational planning
results in high energy wastage and low productivity. Reasonable scheduling optimization is an
effective way to reduce carbon emissions, which motivates us to work on this research. To reduce
the comprehensive energy consumption of the machining process and transportation process in an
actual manufacturing environment, this paper addresses a new low-carbon scheduling problem of
flexible manufacturing and crane transportation considering multi-state collaborative configuration
(LSP-FM&CT-MCC). First, an integrated energy consumption model based on multi-state machining
machines and cranes is established to optimize the overall energy efficiency of the production process.
Then, a new hybrid differential evolution algorithm and firefly algorithm with collaborative state
optimization strategy (DE-FA-CSOS) is proposed to solve the proposed MIP model. In DE-FA-CSOS,
the differential evolution algorithm (DE) is used for global search, and the firefly algorithm (FA)
is used for local search. The collaborative state optimization strategy (CSOS) is proposed to guide
the search direction of the DE-FA algorithm, which greatly improves the performance of the hybrid
algorithm. Finally, the practicality and superiority of the solution method are verified by examples.
The results show that machining and transportation energy consumption is reduced by 25.17% and
34.52%, respectively. In the context of traditional optimization methods and manual scheduling
modes facing failure, the method has a broad application background for manufacturing process
optimization in such workshops, which is of guiding significance for promoting the low-carbon
development of traditional heavy industry manufacturing.

Keywords: low-carbon scheduling; flexible manufacturing; crane transportation; multi-state collabo-
rative configuration; hybrid differential evolution

1. Introduction

The increasing carbon emissions have caused a series of environmental pollution
problems, and the global manufacturing industry urgently needs to transition to low carbon.
According to relevant surveys, the energy efficiency of the manufacturing industry is low
and pollution emissions are high in China, e.g., the proportion of industrial GDP, 33.2%, is
obtained by consuming 70% of the national energy in 2022. With coal and oil accounting for
56% and 18.5%, respectively, of China’s energy mix in 2022, these two high-carbon emissions
fuels remain the country’s main energy sources [1]. In this context, the government has

Processes 2023, 11, 2737. https://doi.org/10.3390/pr11092737 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11092737
https://doi.org/10.3390/pr11092737
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7615-1751
https://orcid.org/0000-0001-5027-8316
https://doi.org/10.3390/pr11092737
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11092737?type=check_update&version=2


Processes 2023, 11, 2737 2 of 31

introduced a series of strict countermeasures to accelerate the industrial transformation
to low-carbon, which has greatly restricted the development of high-emission traditional
heavy manufacturing industry [2]. It is well known that energy consumption is the primary
source of carbon emissions. According to the National Bureau of Statistics, China’s power
sector emitted about 9.64 billion tons of carbon dioxide in 2019, accounting for 45.8% of the
country’s total emissions. The power sector has been the industry that generates the most
carbon emissions in China, causing serious environmental problems [3]. So, improving
energy efficiency can effectively reduce carbon emissions in manufacturing industries.
In traditional heavy industry manufacturing enterprises, the machining process is the
main contributor to carbon emissions. In addition, the energy consumption during the
transportation of large workpieces cannot be ignored, and the proportion of transportation
energy consumption in the actual manufacturing process of the surveyed enterprises can
reach 38% [4]. Through the collaborative scheduling optimization of the machining process
and the transportation process, the machining energy consumption and transportation
energy consumption of the production process can be effectively reduced, thus reducing
carbon emissions. Therefore, it is of great significance to study the problem of low-carbon
coordination scheduling.

In the production environment of heavy manufacturing enterprises, the machining
process and the transportation process in the workshop are often interrelated and affect
each other. This makes the production process prone to problems such as idle machines
and chaotic planning, making scheduling much more difficult. In addition, due to the
increasing complexity of the production process, the use of variable-speed multi-functional
machining machines and cranes is the development trend of the heavy manufacturing
industry. This type of equipment has a variety of states, such as on/off and changing speed
during operation. Changes in the various operating states of machines and cranes directly
affect the entire production process, further increasing the flexibility and complexity of
the manufacturing environment. However, various existing manufacturing systems in
traditional heavy industries still rely heavily on manual scheduling. Limited by human
decision-making, this mode cannot cope with such a complex production environment. It
leads to the disorganized production process in heavy manufacturing enterprises, resulting
in serious energy waste. Therefore, it is urgent to design an effective optimization method
to optimize the multi-state collaborative configuration of the machining process and the
transportation process to improve the energy efficiency of the manufacturing system and
reduce the carbon emissions of the production process of heavy manufacturing enterprises.

On this basis, this paper introduces a new low-carbon scheduling problem of flexible
manufacturing and crane transportation considering multi-state collaborative configuration
(LSP-FM&CT-MCC) based on the background of a large cement equipment manufacturing
company. The contributions of this paper are summarized as follows: (1) A new mixed
integer programming (MIP) model is established to solve LSP-FM&CT-MCC. The model
describes in detail the energy consumption of machines and cranes in various states. The
goal of the model is to minimize the total energy consumption and makespan; (2) A novel
hybrid differential evolution (DE) with firefly algorithm (FA) and collaborative state op-
timization strategy (CSOS) is developed to solve the model. The CSOS consists of a load
transport state optimization strategy and a machining state optimization strategy (This
strategy is used to configure the state of machines and cranes to save energy, mainly by
shutting down equipment and reducing operating speeds).

The remainder of this paper is organized as follows. Section 2 reviews and summa-
rizes the relevant literature. Section 3 describes the problems. Next, the framework and
detailed components of the hybrid DE-FA-CSOS algorithm are presented in Section 4. To
demonstrate the effectiveness and superiority of the algorithm, Section 5 illustrates a case
study. The experimental results are discussed in Section 6. Finally, the conclusions and
further research prospects for this problem are presented in Section 7.
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2. Literature Review

This section reviews relevant studies on low-carbon manufacturing scheduling opti-
mization and manufacturing scheduling optimization considering transportation.

2.1. Low-Carbon Manufacturing Scheduling Optimization

Research on low-carbon manufacturing scheduling problems in various manufactur-
ing environments can be divided into two main categories: flow shop scheduling problems
and job shop scheduling problems.

For the optimization of low carbon flow shop scheduling, the construction of optimiza-
tion models and algorithm innovation are the research focus of scholars. Tirkolaee et al. [5]
proposed a novel dual-objective mixed-integer linear programming model with outsourc-
ing options and just-in-time delivery to simultaneously minimize the total cost and total
energy consumption of the production system. Yu and Han [6] examined machine schedul-
ing problems inspired by the semiconductor manufacturing production environment and
developed a flow shop scheduling model focusing on an important special case with pro-
portional processing times. Fu et al. [7] proposed a dual-objective stochastic hybrid flow
shop deteriorating scheduling problem to minimize makespan and total tardiness. For
scheduling problems of energy-efficient block flow shop with setup time, Han et al. [8]
constructed a multi-objective optimization model with makespan and energy consumption
criteria. Shao et al. [9] developed a MIP model that considers time-of-use electricity tariffs
for the distributed heterogeneous mixed-flow store scheduling problem under unequal
time tariffs.

Furthermore, some scholars contributed algorithmic improvements and innovations to
improve the optimization effect. For the distributed permutation flow shop with sequence-
dependent setup times scheduling problem, Huang et al. [10] proposed three constructive
heuristics and an effective discrete artificial bee colony algorithm. For the distributed
heterogeneous hybrid flow shop scheduling problem with unrelated parallel machines
and the sequence-dependent setup time, Li et al. [11] proposed an improved artificial bee
colony algorithm. Wu et al. [12] focused on the robotic cell scheduling problem with batch-
processing machines, and a green schedule algorithm and a multi-objective differential
evolution algorithm are proposed to optimize the makespan and energy consumption of the
batch-processing machines simultaneously. Pan et al. [13] executed five meta-heuristics are
executed to solve the distributed batch flow alignment process shop scheduling problem.
Qin et al. [14] considered the limited waiting time between batch and discrete processors to
develop a learning-based scheduling method through custom genetic programming.

Research on low-carbon scheduling optimization in job shop scheduling is divided
into two groups: machining process optimization and comprehensive method application.

For the machining process optimization group, Afsar et al. [15] established a multi-
objective optimization model based on the green job shop scheduling problem with un-
certain processing times, in which the dual goal is to minimize energy consumption and
total manufacturing span during machine idle time. Wei et al. [16] proposed an energy-
aware estimation model to compute different energy consumptions for different operating
conditions of a machine. Duan et al. [17] developed a dynamic scheduling mathematical
model considering machine idle time schedule and speed level selection during processing
and proposed a method of calculating machine energy consumption and completion time
under different states. Wu et al. [18] established a multi-objective mathematical model with
the joint minimum of maximum completion time and total setup time, which effectively
reduces the fixture loading and unloading time. Luo et al. [19] developed a hierarchical
multi-intelligence deep reinforcement learning-based real-time scheduling approach to
address the dynamic scheduling problem with new job insertions and machine breakdown.
Jiang et al. [20] introduced a resilient scheduling model for the steel mill by considering the
buffering times and machining speeds to enable the solution to absorb random disturbances
and recover quickly.
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For the comprehensive method application, Feng et al. [21] proposed an integrated
method for intelligent green scheduling of the sustainable flexible workshop with edge
computing considering uncertain machine state. He et al. [22] proposed a multi-objective
optimization framework based on the fitness evaluation mechanism and an adaptive
local search strategy. Wang et al. [23] presented a multi-period production planning-
based real-time scheduling approach to carry out real-time scheduling based on real-time
manufacturing data. Based on the processing energy characteristics in resource-constrained
processing environments, Li et al. [24] proposed a comprehensive solution to minimize the
energy consumption and completion time of resource-constrained. Kovalenko et al. [25]
proposed a multi-intelligent control strategy to improve the flexibility of manufacturing
systems. Kung and Liao [26] consider the optimization of joint predictive maintenance
and job scheduling problems to minimize total shortage losses and develop a heuristic
algorithm based on the Tabu search.

Extensive studies have been conducted on the scheduling problem of manufacturing
systems with different influencing factors (including factors such as processing speed,
setup, and time-sharing tariff). However, there is no further study on the multi-state
collaborative configuration optimization problem. It is worth noting that machine and
crane multi-states often interact with each other, further increasing the complexity of the
optimization problems.

2.2. Manufacturing Scheduling Optimization Considering Transportation

For the flow shop scheduling optimization problem considering transportation,
Wang et al. [27] considered constraints such as transportation capacity and transporta-
tion time and proposed a heuristic optimization algorithm. Lei et al. [28] studied the
flexible flow shop scheduling problem with dynamic transportation waiting times and
developed a memetic algorithm integrated with the waiting time calculation approach.
For the permutation flow shop scheduling problem with sequence-dependent setup time,
Xin et al. [29] designed an improved discrete whale swarm optimization algorithm that
combines differential evolution, augmented search, and job-swapped mutation to enhance
performance; Yuan et al. [30] considered both sequence-dependent setup time between
groups and the transportation time between machines and proposed a novel discrete differ-
ential evolution mechanism with a cooperative-oriented optimization strategy to evolve
both the sequence of jobs in each group and the sequence of groups synergistically.

For the job shop scheduling optimization problems considering transportation,
Goli et al. [31] investigated the role of AGVs and human factors in cell formation and
scheduling of parts under fuzzy processing time and developed a hybrid genetic algorithm
and a whale optimization algorithm. Zhou et al. [32] focused on the green scheduling
problem of the flexible manufacturing cell with material handling robots and proposed
a levy flight and weighted distance-updated multi-objective grey wolf algorithm. Ren
et al. [33] considered the constraints of transportation resources and transportation time,
and a novel particle swarm optimization algorithm integrated with genetic operators is
developed to respond to dynamic events and generate the rescheduled plan in time. Li
et al. [34] proposed an efficient hybrid of iterated greedy and simulated annealing algo-
rithms, taking into account the two objectives of makespan and total energy consumption.
Li and Lei [35] studied the energy-efficient flexible job shop integrated scheduling problem
considering transportation and process-dependent setup times and developed an imperial-
ist competitive algorithm with feedback to minimize the makespan, total tardiness, and
total energy consumption, simultaneously.

For other forms of job shop scheduling optimization considering transportation,
Zhao et al. [36] proposed a digital twin-driven energy-efficient multi-crane scheduling and
crane number selection method for multi-crane systems. Sun et al. [37] proposed two novel
robotic job-shop scheduling models with robot movement and deadlock considerations to
avoid transportation conflicts for the deadlock problem of robot-driven production lines.
Numerical examples illustrate that models can completely avoid transportation conflicts.
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Zou et al. [38] studied a novel automatic guided vehicle (AGV) energy-efficient scheduling
problem with release time and established a multi-objective mathematical model with
energy consumption, number of AGVs used, and customer satisfaction as optimization
objectives, and proposed an efficient multi-objective greedy algorithm. Li et al. [39] used
deep reinforcement learning to address the dynamic flexible job shop scheduling prob-
lem with insufficient transportation resources. Zhao et al. [40] developed a model for
the scheduling problem of considering multiple cranes and their dual-load capacity and
proposed a heuristic method based on the two-stage model.

From the above studies, it is shown that a great deal of effort has been made to solve
the scheduling problems of flow shops and job shops in different environments. However,
while considering the optimization of transport energy consumption, most studies have yet
to study the optimization problem of multi-state collaborative configuration of machines
and cranes accordingly. To address the above limitations, this paper investigates a flexible
manufacturing system with a crane transportation problem considering a multi-state
collaborative configuration.

3. Formulation

In this section, the LSP-FM&CT-MCC is introduced in detail to the actual manufactur-
ing environment of heavy equipment manufacturing enterprises. The corresponding MIP
model considered comprehensive energy consumption and makespan was established. All
symbol definitions in the text are set out in Nomenclature.

3.1. Problem Description

Figure 1 shows the actual workshop environment of the investigated company. The
machining environment is a flexible manufacturing environment with multi-functional and
multi-state machines. The transport equipment is a bridge crane located on the top of the
workshop. The position of each machine is fixed and represented in the plane coordinate
(X, Y). The crane consists of a gantry and a trolley. The gantry can only move in the X-axis
direction and the trolley can only move in the Y-axis direction. Due to the discontinuity of
workpiece processing, there are different states of the machining machine and crane, such
as variable speed, on and off, and idle. In addition, the machining machine needs to go
through the setting state before the speed changes. Therefore, the main scheduling tasks of
the manufacturing system include the following three points: (1) Arrange the appropriate
machining sequence of the workpiece; (2) Plan the path of the crane to transport the
workpieces; (3) Collaborative configuration of the operating status of the machines and the
crane. This paper considers two objectives: minimizing the total comprehensive energy
consumption and makespan.
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To illustrate the operation process of the workshop, a scheduling scheme shown
in Figure 2 is taken as an example to describe: (1) First, the crane is in the power-off
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state above machine 1, which processes workpiece 1 at speed level 1. When workpiece 1
finishes processing on machine 1, the crane opens and transports workpiece 1 to machine 5.
Machine 5 converts the processing speed of workpiece 1 by setting; (2) Second, the crane
runs to the buffer area of machine 2 without loading and waits until workpiece 2 finishes
processing. Meanwhile, to reduce the crane waiting time, machine 2 is processed at speed
level 2; (3) Third, the crane delivers workpiece 2 to machine 7, unloads workpiece 2,
loads workpiece 3, and waits in the loaded state until workpiece 4 finishing processing on
machine 8. Simultaneously, machine 7 has already finished machining workpiece 3 and is
in an idle state; (4) To shorten the crane load idle time, machine 8 is operated at speed level
3. After workpiece 4 is processed, the crane immediately transports workpiece 3 to machine
8; (5) Finally, the crane transports workpiece 4 to machine 4 and enters the power-off state
above machine 4. Machine 4 enters the power-on state after receiving workpiece 4. In
addition, machine 3 is turned off state to save energy consumption.
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3.2. Assumptions

1. Each workpiece can only be processed on one of the available machines with a certain
speed at a certain time.

2. Each machine can only process one workpiece at a certain time.
3. The crane can only transport one workpiece at a certain time.
4. The gantry and trolley cannot run at the same time for safety.
5. The workpiece does not occupy the current machine after completing a certain process.
6. When a certain process is completed, the transportation must be started after the next

machine is idle for safety; otherwise, the crane needs to wait in place.

3.3. The Comprehensive Energy Consumption Model

In this section, to better analyze the energy consumption of machining and transporta-
tion processes, a comprehensive energy consumption model based on multiple states of
machines and cranes is established. The comprehensive energy consumption is divided
into two categories: machine processing process and crane transportation process. The
comments of relevant notations are described in Nomenclature.

3.3.1. The Energy Consumption of the Machine Operation Process

In LSP-FM&CT-MCC, the input power of the machine changes with its state. There
are four states for machines in total: the turning-on/off state, the idle state, the machining
state, the power-off state, and the set state. Each machine has diverse kinds of speed levels,
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with different speed levels corresponding to different machining power and times. The
machine is in an idle state between two adjacent tasks. There is an option to turn off the
machine to save energy in idle time [41]. Turning on and off the machine need consumes a
certain amount of energy. In particular, the machine needs to be set up first when switching
between different speeds. To visualize the characteristics of the machine more, Figure 3
shows the variation of the machine’s power relative to the state in a real case.
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I. The energy consumption of the set state of the machine.

The amount of setting power is only related to the properties of the machine. The set
energy consumption may be calculated by (1) and (2).

Ems(Pi,n) =


M
∑

m=1

Q
∑

q=1
Ps

m · Ts
i,n,m,q · xi,n,m,q , Pi,n ∈ ϕ(P1,m)

M
∑

m=1

Q
∑

q=1

Pi1
∑

i1=1

N
∑
n1

u(m, Pi1,n1, Pi,n) · v(Qi1,n1,m, Qi,n,m) · Ps
m · Ts

i,n,m,q · xi,n,m,q , other
(1)

Ems =
N

∑
n=1

Pn

∑
i=1

Ems(Pi,n). (2)

II. The energy consumption of the machining state.

The processing energy consumption can be calculated with (3) and (4).

Emo(Pi,n) =
M

∑
m=1

Q

∑
q=1

Po
m,q · To

i,n,m,q · xi,n,m,q, (3)

Emo =
N

∑
n=1

Pn

∑
i=1

Emo(Pi,n). (4)

III. The energy consumption of idle state

The idle time of process Pi,n is calculated by (5). The idle energy consumption of the
machine can be expressed by (6) and (7). In particular, the idle power changes with the
machining speed level.

Ti
i,n,m =


0 , Pi,n ∈ ϕ(P1,m)

Tsi,n −
Q
∑

q=1

Pi1
∑

i1=1

N
∑
n1

Ts
i,n,m,q · u(m, Pi1,n1, Pi,n) · v(Qi1,n1,m, Qi,n,m) · xi,n,m,q −

Pi1
∑

i1=1

N
∑

n1=1
Tci1,n1 · u(m, Pi1,n1, Pi,n) , other (5)
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Emi(Pi,n) =


0 , Pi,n ∈ ϕ(P1,m) ∪ yi,n,m = 1

M
∑

m=1

Q
∑

q=1
Pi

m,q · Ti
i,n,m · xi,n,m,q , other (6)

Emi =
N

∑
n=1

Pn

∑
i=1

Emi(Pi,n). (7)

IV. The energy consumption of turn-on/off state.

In scheduling, the turning-on/off energy consumption of the machine is related to the
time of on and off. The total turning-on/off energy consumption of the production process
is calculated by (8) and (9).

Emo f (Pi,n) =
M

∑
m=1

Eo f
m · yi,n,m, (8)

Emo f =
N

∑
n=1

Pn

∑
i=1

Emo f (Pi,n). (9)

V. The total energy consumption of the machine operation process.

The total energy consumption of the machining process is the sum of the above four
components, expressed as (10).

Em = Ems + Emo + Emi + Emo f (10)

3.3.2. The Energy Consumption of Crane Operation Process

This section describes the crane operation process with a scheduling case in Figure 2.
The corresponding schematic diagram of the crane power variation with the state is shown
schematically in Figure 4, where the time for loading and unloading the workpiece is not
considered. The states of the crane can be summarized into the following three: variable
speed transport state, turning on/off state, and idle state. In particular, the crane does not
need to be set for variable speed.
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Figure 4. The power distribution of the crane in different states.

I. The energy consumption of the crane idle state.

The idle phase of the crane is divided into two situations: load idle and no-load idle.
The no-load idle time of the crane is calculated by (11), and the idle load time of the crane is
calculated by (12). The energy consumption of unloaded idle and loaded idle is expressed
by (13) and (14), respectively.
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In particular, all workpieces do not need to be transported in the first process, so the
corresponding idle time and energy consumption are zero.

Tni
i,n =


0 , Pi,n ∈ σ(P1,n) ∪ Pi,n ∈ ϕ(P1,m)
Pn1
∑

i1=1

N
∑

n1=1
max

(
Tci−1,n − Tsi1,n1 − Tno,g

i,n − Tno,t
i,n , 0

)
· u(Pi1,n1, Pi,n) , other

(11)

Tli
i,n =


0 , Pi,n ∈ σ(P1,n) ∪ Pi,n ∈ ϕ(P1,m)
Pn2
∑

i2=1

N
∑

n2=1

M
∑

m=1

Q
∑

q=1
max(Tci2,n2 − Tci−1,n, 0) · u(m, Pi2,n2, Pi,n) · xi,n,m,q , other (12)

Eci(Pi,n) =



0 , Pi,n ∈ σ(P1,n) ∪ Pi,n ∈ ϕ(P1,m) ∪
(

wni
i,n = 1∩ wli

i,n = 1
)

Tni
i,n · Ps

c , Pi,n /∈ σ(P1,n) ∩ Pi,n /∈ ϕ(P1,m) ∩
(

wni
i,n= 0∩ wli

i,n = 1
)

Tli
i,n · Ps

c , Pi,n /∈ σ(P1,n) ∩ Pi,n /∈ ϕ(P1,m) ∩
(

wni
i,n= 1∩ wli

i,n = 0
)(

Tni
i,n + Tli

i,n

)
· Ps

c , Pi,n /∈ σ(P1,n) ∩ Pi,n /∈ ϕ(P1,m) ∩
(

wni
i,n= 0∩ wli

i,n = 0
) , (13)

Eci =
Pn

∑
i=1

N

∑
n=1

Eci(Pi,n). (14)

II. The energy consumption of crane turning on/off state.

There is an option to turn it off to save energy if the crane is idle for a long time. The
crane turning on and off will generate energy consumption, and the size of the energy
consumption is related to the number of times the crane is turned on and off. The energy
consumption of the crane turning on/off is calculated by (15) and (16).

Eco f (Pi,n) =


0 , wni

i,n = wli
i,n = 0(

wni
i,n + wli

i,n

)
· Eo f

c , wni
i,n 6= wli

i,n

wni
i,n · wli

i,n · E
o f
c , wni

i,n = wli
i,n = 1

, (15)

Eco f =
N

∑
n=1

Pn

∑
i=1

Emo f (Pi,n). (16)

III. The energy consumption of crane operation state.

During the operation of the crane, it is divided into two situations: load operation and
no-load operation. The crane sometimes needs no-load transport to a designated machine
to pick up a workpiece. After the workpiece is picked up, the crane transports it to the
target machine. Therefore, the energy consumption corresponding to the above two cases
will be generated during the operation process of the crane.

In the transport task of a process Pi,n, the no-load operation time of the gantry and the
trolley are calculated by (17) and (18), respectively. Then, calculate the energy consumption
of the crane no-load operation for Pi,n by (19). The load operation time of the gantry and
trolley are calculated by (20) and (21), respectively. Equation (22) represents the energy
consumption generated by the crane to complete the transport task of a process Pi,n. The
energy consumption of the operation of the crane is the sum of the crane’s no-load operation
energy consumption and load operation energy consumption, as shown in (23).

In particular, the crane has multiple operating speed classes, with different operating
speeds corresponding to different operating powers and operating times, resulting in
different energy consumption.

Tno,g
i,n =

Pn1

∑
i1=1

N

∑
n1=1

M

∑
m=1

M

∑
m1=1

Q

∑
q=1

Q

∑
q1=1

R

∑
r=1

(
|Dxm − Dxm1| · zi,n,r

Vg,r

)
· u(Pi1,n1, Pi,n) · xi1,n1,m1,q1 · xi−1,n,m,q (17)
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Tno,t
i,n =

Pn1

∑
i1=1

N

∑
n1=1

M

∑
m=1

M

∑
m1=1

Q

∑
q=1

Q

∑
q1=1

R

∑
r=1

(
|Dym − Dym1| · zi,n,r

Vt,r

)
· u(Pi1,n1, Pi,n) · xi1,n1,m1,q1 · xi−1,n,m,q (18)

Eno(Pi,n) =

(
Wla
Wlc

)
·
(

Tno,g
i,n · P

r
g,r + Tno,t

i,n · P
r
t,r

)
(19)

Tlo,g
i,n =

M

∑
m=1

M

∑
m2=1

Q

∑
q=1

Q

∑
q2=1

R

∑
r=1

(
|Dxm2 − Dxm| · zi,n,r

Vg
r

)
· xi,n,m2,q2 · xi−1,n,m,q (20)

Tlo,t
i,n =

M

∑
m=1

M

∑
m2=1

Q

∑
q=1

Q

∑
q2=1

R

∑
r=1

(
|Dym2 − Dym| · zi,n,r

Vt
r

)
· xi,n,m2,q2 · xi−1,n,m,q (21)

Elo(Pi,n) =

(
Wla + Wn

Wlc

)
·
(

Tlo,g
i,n · P

r
g,r + Tlo,t

i,n · P
r
t,s

)
(22)

Eco =
Pn

∑
i=1

N

∑
n=1

(
Eno(Pi,n) + Elo(Pi,n)

)
(23)

IV. Total energy consumption of crane transportation process

The total energy consumption of transportation is the sum of the energy consumption
of three parts: idle energy consumption, turning on/off energy consumption, and operation
energy consumption. The calculation is shown in (24).

Ec = Eco + Eci + Eco f . (24)

3.4. The Formulation of the Mixed-Integer Programming Model

The LSP-FM&CT-MCC is formulated as the following MIP model, in which two
objectives are considered, as follows:

Objective 1 : minE = Em + Ec, (25)

Objective 2 : minT = max
i,n

(Tci,n), (26)

where objective 1 is to minimize the total comprehensive energy consumption during
processing and transportation, and objective 2 is to minimize the makespan. In this paper,
the makespan and comprehensive energy consumption are converted into costs, thus
transforming the scheduling optimization problem from a bi-objective to a single objective.
The cost function is as follows:

minF = PE · (Em + Ec) + PT ·max
i,n

(Tci,n), (27)

where PT denotes the average price of unit processing time and PE represents the average
price of unit energy consumption in the manufacturing enterprise. The constraints of
the model consist of machine constraints and crane constraints. The constraints of the
machining process are as follows:

The constraints of the machining process are as follows:

Tsi,n ≥ Tci−1,n = Tsi−1,n + To
i−1,n,m,q , Pi,n /∈ σ(P1,n), (28)

Tsi,n − Tci1,n1 ≥ 0 , Pi,n /∈ σ(P1,m) ∩ u(m, Pi1,n1, Pi,n) = 1, (29)

Mi,n ∈ θ(Pi,n), (30)
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M

∑
m=1

xi,n,m,q = 1, (31)

Q

∑
q=1

xi,n,m,q = 1. (32)

Constraint (28) is the precedence relation of workpiece n. Constraint (29) means that
the same machine can only handle one process at a time. Constraint (30) states that the
machine for processing operations must be one of the machines available for process Pi,n.
Constraint (31) denotes that an operation can only be processed by one machine. Constraint
(32) shows that the same machine can only operate at a fixed processing speed at the
same time.

The constraints of crane transport are shown in Formulas (33)–(36).
Constraint (33) indicates that the initial position of the crane is directly above ma-

chine 1. Constraint (34) states that the crane can only transport one workpiece at a time.
Constraint (35) represents that the first operation of each workpiece does not require trans-
port. (36) means that when two successive processes of the same workpiece are on the same
machine, no crane is required for transport.

The constraints of crane transport are as follows:

Di
c =

(
DxM1 , DyM1

)
, (33)

Tci−1,n + Tli
i,n − Tci2,n2 ≥ 0 , Pi,n /∈ σ(P1,n) ∩ u(m, Pi2,n2, Pi,n) = 1, (34)

Dn
c (P1,n) = Dl

c(P1,n) = Dl
c(Pi1,n1) , u(Pi1,n1, P1,n) = 1, (35)

Dn
c (Pi,n) = Dl

c(Pi,n) = Dl
c(Pi1,n1) , Mi,n = Mi−1,n ∩ u(Pi1,n1, Pi,n) = 1. (36)

The constraints of the decision variables are as follows:

xi,n,m,q =

{
1 Pi,n is processed on machine m with speed q
0 Otherwise

, (37)

yi,n,m =

{
1 The machine m shuts down before Pi,n
0 Otherwise

, (38)

zg
i,n,r =

{
1 The gantry operates at r-th speed level for Pi,n
0 Otherwise

, (39)

zt
i,n,s =

{
1 The trolley operates at s-th speed level for Pi,n
0 Otherwise

, (40)

wni
i,n =

{
1 The crane shuts down at no-load idle phase for Pi,n
0 Otherwise

, (41)

wli
i,n =

{
1 The crane shuts down at load idle phase for Pi,n
0 Otherwise

, (42)

u(Pi1,n1, Pi2,n2) =

{
1 Pi2,n2 is the subsequent process of Pi1,n1
0 Otherwise

, (43)

u(m, Pi1,n1, Pi2,n2) =

{
1 Pi2,n2 is the subsequent process of Pi1,n1 on machine m
0 Otherwise

, (44)
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v(Qi1,n1,m, Qi2,n2,m) =

{
1 Pi2,n2 and Pi1,n1 have the different operation speed on machine m
0 Otherwise

(45)

Constraints (37)–(45) are the decision variable constraints.

4. Methodology

This section presents a hybrid DE-FA-CSOS algorithm to solve the proposed MIP
model. Figure 5 shows the flowchart of the hybrid DE-FA-CSOS algorithm. Algorithm 1
lists partial pseudocodes of the hybrid algorithm. The differential evolution algorithm (DE)
and firefly algorithm (FA) are effective methods for solving NP-hard problems. DE is an
efficient global optimization algorithm with the advantages of simple structure, ease of
implementation, fast convergence speed, and good robustness, but the local search ability
of DE is weak [42]. The Firefly algorithm has better convergence speed and convergence
accuracy, as well as strong local search ability, high stability, and easy engineering imple-
mentation [43]. These two algorithms have been widely used in the field of scheduling
optimization and have achieved great optimization results. Through experimental com-
parisons by others, the DE algorithm provides more reliable and accurate results than
algorithms such as PSO and ABC, which proves the relative superiority of the DE algo-
rithm [44]. The algorithm is very suitable for the problem presented in this paper. Therefore,
in this paper, DE is organically combined with FA to obtain better performance. In addition,
based on the dual objectives of the MIP model, a CSOS strategy is proposed to guide the
search direction of the integration algorithm. In CSOS, Strategy 1 (Load Transportation State
Optimization Strategy) optimizes the energy consumption of the crane by coordinating the
state of crane operation; Strategy 2 (Machine State Optimization Strategy) coordinates the
state and speed of the processing machines.

Algorithm 1 Framework of DE-FA-CSOS

Input: task set, population size per task (R)
Output: optimal solution

1 Initialization
2 While Terminate iteration is not satisfied do
3 Output populations
4 Input DE population
5 Update the fluorescence of all individuals
6 for i← 1 to n do
7 Select two firefly individuals
8 Compare the fitness of two individuals
9 The firefly with poor fitness moves to another
10 Update the location of fireflies
11 Mutation
12 Crossover
13 Selection
14 CSOS # Optimization by strategy 1 and strategy 2
15 Update population
16 End
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4.1. Representation and Encoding

Due to the particularity of the LSP-FM&CT-MCC, its solution structure contains the
processing sequence, the processing position, the transport path, and the operating state
of the machine and crane. To this end, this paper proposes a process-machine-state-based
encoding method to encode the solution into a chromosome. The chromosome contains

four pieces of information: (1) the process fragment (
→
P) indicates the processing order

consisting of the index of the workpiece; (2) the machine fragment (
→
M) represents the

corresponding processing machine order consisting of the index of the machine; (3) the

machine speed fragment (
→
Q) denotes the machine speed level corresponding to the machine

fragment; (4) the crane speed fragment (
→
N) represents the crane speed level corresponding

to the process fragment.
Since the chromosome does not contain the transport path information directly, the

transport path mapping function (46) is proposed for mapping the transport location code
of the crane from the chromosome. In this paper, the transport position encoding is used to
represent the crane operating path. Where the no-load operation position represents the
destination machine of the crane no-load transportation for Pi,n, and the load operation
position represents the destination machine of the crane load transportation for Pi,n.

(
Mn

i,n, Ml
i,n

)
=


(M1, M1) , Pi,n = P1
(Mi1,n1, Mi1,n1) , Pi,n 6= P1 ∩ Pi,n ∈ σ(P1,n) ∩ u(Pi1,n1, Pi,n) = 1
(Mi−1,n, Mi,n) , other

(46)

To explain encoding and decoding more clearly, an example of encoding is shown
in Figure 6. The decoding solution of the chromosome in Figure 6 is represented as the
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Equation (47), where the symbol→ represents the crane’s no-load operation and symbol
⇒ represents the crane’s load operation.

Processing sequence: P1,2 − P1,1 − P2,1 − P1,3 − P2,2 − P3,1 − P3,2 − P1,3

Processing machine:


Workpiece 1 : 1− 3− 2
Workpiece 2 : 2− 1− 3
Workpiece 3 : 2− 1

Machine′s speed level :


Machine 1 : 2− 3− 2
Machine 2 : 1− 1− 3
Machine 3 : 1− 2

Transport path: 2→ 1⇒ 3→ 2⇒ 1→ 3⇒ 2→ 1⇒ 3→ 2⇒ 1
Crane′s speed level : 2− 3− 3− 1− 2

. (47)
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4.2. The Transformation of Chromosome 
Due to the nature of the DE algorithm, its chromosomes appear as a real parameter 

vector (�⃗� = �⃗� , �⃗� , �⃗� , �⃗� = [x1, x2,…, xk,…, x4d] (𝑥 ∈ −𝛿, 𝛿 )). However, due to the na-
ture of the problem being asked, the chromosomes appear as four integer parameter vec-
tors generated based on the encoding of the processing machine state. Therefore, to facil-
itate the fitness calculation and the execution of the heuristic strategy, a corresponding 
conversion method is introduced to realize the mutual conversion between the real pa-
rameter vector and the integer parameter vector. 

2 1 1 3 2 1 2 3
2 1 3 2 1 2 3 1

Process fragment

MaChine fragment

Chromosome 

3 1 2 1 1 2 1 3
1 2 2 1 3 3 1 2

Machine speed fragment

Crane speed fragment

2 2 1 3 2 3 1 2
2 2 3 3 1 2 3 1

No-load location

Load location

Transport location code
Map

Figure 6. The encoding example of a solution.

4.2. The Transformation of Chromosome

Due to the nature of the DE algorithm, its chromosomes appear as a real parameter

vector (
→
X =

[→
X1,

→
X2,

→
X3,

→
X4

]
= [x1, x2, . . ., xk, . . ., x4d] (xk ∈ [−δ, δ])). However, due to the

nature of the problem being asked, the chromosomes appear as four integer parameter
vectors generated based on the encoding of the processing machine state. Therefore, to
facilitate the fitness calculation and the execution of the heuristic strategy, a correspond-
ing conversion method is introduced to realize the mutual conversion between the real
parameter vector and the integer parameter vector.

4.2.1. Positive Transformation

The positive transformation is to transform the real-parameter vector to an integer–
parameter vector. For the process fragment, this paper proposes a bidirectional sorting rule

to transform
→
X1 = [x1, x2, . . ., xd] to

→
P = [p1, p2, . . ., pd].

First, arrange all process codes in non-decreasing order to generate
→
P
(1)

and map
→
X1

and
→
P
(1)

to each other. Second, arrange
→
X1 in non-incremental order to generate

→
X1

(1)
and

the related mapping
→
P
(1)

is
→
P . An example of process fragment conversion is illustrated in

Figure 7.
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4.2.2. Negative Transformation 
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For the machine fragment, Equation (48) is employed to transform
→
X2 = [x(d + 1), x(d + 2), . . . , xk, . . . , x2d] to M = [m1,m2, . . ., mk, . . ., md]. Where ik = mk,
[−δ, δ] is the bound of xk and lk indicates the quantity of the available machines for the k-th

process in
→
P . For the machine speed fragment and crane speed fragment, the transforma-

tion method is the same as the machine fragment. The parameter lk denotes the quantity
of the machine’s speed level or the quantity of the crane’s speed level in Equation (48)

when converting
→
X3 = [x2d + 1, x2d + 2, . . . , xk, . . . .x3d] to

→
Q = [q1, q2, . . . , qk, . . . , qd] = or

converting
→
X4 = [x3d + 1, x3d + 2, . . . , xk, . . . , x4d] to

→
N = [n1, n2, . . . , nk, . . . , nd].

ik = round
(
(lk − 1) · (xk + δ)

2δ
+ 1
)

. (48)

4.2.2. Negative Transformation

The negative transformation is to transform the integer–parameter vector to the real-

parameter vector. For the process fragment, the transformation from
→
P to

→
X1 can be

achieved by mapping
→
P
(1)
↔
→
X1. For the fragment of the machine, machine speed, and

crane speed, the negative transformation is an inverse linear transformation of the Equation
(49). However, it is necessary to regenerate xk randomly when lk = 1.

xk =

{
2δ(ik−1)

lk−1 − δ , lk 6= 1
rand(−δ, δ) , lk = 1

. (49)

4.3. The Collaborative State Optimization Strategy

The collaborative state optimization strategy is introduced here to guide the search
direction for collaboratively optimizing the state of the machine and crane. The CSOS
contains two following strategies: load transportation state optimization strategy and
machine state optimization strategy. For each process, the two strategies are executed in
sequential order to update the chromosome.

4.3.1. Strategy 1: Load Transportation State Optimization Strategy

There is a lot of room for optimization of load energy consumption. This strategy
optimizes the energy consumption of the crane load by coordinating the crane operation
state. The main principles are: (1) Placing the workpiece to the nearest idle machine can
effectively reduce the distance and time of load transport and load idle time; (2) Recon the
crane speed for the updated process to optimize the crane operation energy consumption;
(3) The crane idle energy consumption is optimized by turning off. The main steps are
as follows:
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Step 1: Suppose that machine m (m ∈ θ(Pi,n)) is for Pi,n and the corresponding crane
speed level is r in a chromosome, judge whether Pi,n has neighboring available machines
(The machine whose load transport distance is not greater than machine m in θ(Pi,n)). If
yes, build the neighboring machine set θ′(Pi,n) and go to step 2; otherwise, go to step 6.

Step 2: Judge whether there are idle machines in θ′(Pi,n) at the completion time of
Pi−1,n (Tci−1,n). If yes, go to step 3; otherwise, go to step 6.

Step 3: Construct the process-level comprehensive energy consumption evaluation for
the idle machine m′ in θ′(Pi,n), as shown in Equations (50) and (51). When the evaluation
value is positive, the larger the evaluation value, the lower the comprehensive energy
consumption of machine m′ for Pi,n. If there exists at least one idle machine with a positive
evaluation value in θ′(Pi,n), go to step 4; otherwise, go to step 5.

E(Pi,n, m) = Ems(Pi,n) + Emo(Pi,n) + Emi(Pi,n) + Eci(Pi,n) + Eno(Pi,n) + Elo(Pi,n) , Mi,n = m, (50)

E
(

Pi,n, m, m′
)
= E(Pi,n, m)− E

(
Pi,n, m′

)
. (51)

Step 4: Select the idle machine m′ with the highest evaluation value from θ′(Pi,n) and
replace machine m with machine m′ for Pi,n, go to step 5.

Step 5: Reassign the crane speed level to Pi,n with machine m′. Comprehensively
evaluate the load operation energy consumption and time of the crane speed level by
Equation (52), and select the speed level r′ with the highest evaluation value to replace the
original crane speed level r of Pi,n, go to step 6.

F
(

Pi,n, m′, r′
)
=

1

Elo(Pi,n) · PE +
(

Tlo,g
i,n + Tlo,t

i,n

)
· PT

. (52)

Step 6: Judge whether the crane is in an idle state before load transport (Eci(Pi,n) 6= 0).
If yes, go to step 7; otherwise, go to step 8.

Step 7: Evaluate Eci(Pi,n) by Equation (53). If the evaluation value is positive, maintain
the current idle state of the crane; otherwise, temporarily turn off the crane until load
transport begins. Go to step 8.

E
(

Eci(Pi,n)
)
= Eci(Pi,n)− Eo f

c . (53)

Step 8: Perform steps 1–7 for each process in the process order of the chromosome.
To present strategy 1 more intuitively, an instance is introduced in Figure 8.
For the Gantt chart, the upper half of the dotted line indicates the operating path of the

crane, and the lower half of the dotted line denotes the processing order of the workpiece.
The first two digits of the number denote the operation of the workpiece, and the last
digit indicates the speed level. The update effect of strategy 1 is shown in Figure 8b. First,
process P3,1 is rescheduled from machine 2 to machine 3; second, the crane speed level
of P3,1 is reassigned; third, the shutdown status of the crane is determined. Obviously,
the updated processing plan not only reduces transport energy consumption but also
economizes makespan.
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4.3.2. Strategy 2: Machining State Optimization Strategy

Since the machines are reassigned to the process in strategy 1, it is necessary to reallo-
cate the machining state to further the optimization of the machining energy consumption.
The detailed steps of the strategy are as follows:

Step 1: Suppose that machine m (m ∈ θ(Pi,n)) with speed level q is for Pi,n in a
chromosome, judge whether machine m needs to be set up for Pi,n. If yes, go to step 2;
otherwise, it needs to consider the impact of the resetting time on makespan, go to step 3.

Step 2: Perform process-level machine energy consumption evaluation (54) for ma-
chine m with different speed levels. Select the machine speed level q′ with the lowest energy
consumption to replace the original speed level q of machine m and go to step 4.

Step 3: Construct the comprehensive evaluation of energy consumption and makespan
(55) for machine m with different speed levels. Select the machine speed level q with the
lowest evaluation value to replace the original speed level q of machine m and go to step 4.

Step 4: Judge whether machine m is in idle state before Pi,n (Ti
i,n,m 6= 0). If yes, go to

step 5; otherwise, go to step 8.
Step 5: Judge whether machine m needs to be set up for Pi,n. If yes, go to step 6;

otherwise, go to step 7.
Step 6: Evaluate the energy consumption of machine state change (idle or power

on/off) by Equation (56). Where Ems,o f (Pi,n) denotes the restarting set-up energy consump-
tion of machine m. If the energy difference is positive, temporarily turn off machine m until
load transport begins; otherwise, maintain the current idle state of machine m. Go to step 8.

Step 7: Comprehensively evaluate the energy consumption and makespan of machine
state change by Equation (57). Where Ts,o f

i,n,m,q denotes the restarting set-up time of machine
m. If the evaluation value is positive, maintain the current idle state of machine m; otherwise,
temporarily turn off machine m until transport begins. Go to step 8.

Step 8: Perform steps 1–3 for each process in the process order of the chromosome.

E(Pi,n, m, q) = Ems(Pi,n) + Emo(Pi,n) + Emi(Pi,n) , Mi,n = m ∩Qi,n,m = q, (54)
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F(Pi,n, m, q) =
(

Ems(Pi,n) + Emo(Pi,n) + Emi(Pi,n)
)
· PE +

(
Ts

i,n,m,q + To
i,n,m,q + Ti

i,n,m

)
· PT , Mi,n = m ∩Qi,n,m = q, (55)

Emsc(Pi,n) = Emi(Pi,n) + Ems(Pi,n)− Eo f
m − Ems,o f (Pi,n), (56)

Fmsc(Pi,n) =
(

Eo f
m + Ems,o f (Pi,n)− Emi(Pi,n)− Ems(Pi,n)

)
· PE +

(
Ts,o f

i,n,m,q

)
· PT. (57)

4.4. The Differential Evolution Algorithm

The differential evolution algorithm is a global search algorithm based on group opti-
mization. Similar to GA, differential evolution also has mutation, crossover, and selection
operations. However, since all individuals in DE perform genetic mutation operations on
each other, DE has stronger optimization and convergence ability than traditional GA, DE
has faster convergence speed and more accurate results, and the algorithm is relatively
more stable.

4.4.1. Initialization

In the DE algorithm, each individual of a population is represented in the form of a real
parameter vector. Since the encoding method proposed in Section 4.2 contains the informa-
tion on 4d dimensions (d indicates the quantity of all processes), the initialization of the DE
algorithm needs to generate real parameter vector individuals on the same dimension. Sup-
pose that g = 0, 1, 2, . . . , G denotes the generation, i = 1, 2, . . . , 4d indicates the dimension
index of the chromosome and NP is the size of the population. The j-th (j ∈ {1, 2, . . . , NP})
individual in the g-th generation is represented as

→
X j,g =

[
x1,j,g, x2,j,g, . . . , xi,j,g, . . . , x4d,j,g

]
.

The initial population is generated randomly by Equation (58), where xi,max and
xi,min denote the upper and lower bound of xi,j,g, respectively. Since the corresponding
chromosome transformation method has been proposed in Section 4.3, [xi,min, xi,max] is set
to [−δ, δ] to facilitate the operation. Where δ is served as the bound factor and is set to 1 in
this paper.

xi,j,0 = xi,min + (xi,max − xi,min) · rand(0, 1). (58)

4.4.2. Mutation

The principle of mutation is to perturb the target vector (a parent vector from the

current generation) to generate a mutation vector (
→
V j,g =

[
v1,j,g, v2,j,g, . . . , v4d,j,g

]
). Instead

of small alterations of chromosomes in GA mutation, the DE mutation is operated using
individual composition. This paper chooses the DE/best/2/exp operator for mutation
operation (Differential evolution with individual-dependent and dynamic parameter ad-

justment), which is illustrated in Equation (59), where
→
Xb,g denotes the best individual

(with the beat fitness value) at generation g, rj
1, rj

2, rj
3, rj

4 ∈ {1, 2, . . . , NP} are the randomly
selected individual serial numbers, F is the scaling factor with a value range of [0, 2], which
is used to control the disturbance of the difference vector.

→
V j,g =

→
Xb,g + F ·

(→
X

rj
1,g

+
→
X

rj
2,g
−
→
X

rj
3,g
−
→
X

rj
4,g

)
. (59)

4.4.3. Crossover

The crossover operation enhances population diversity by randomly recombining

the dimensional components of the mutation vector
→
V j,g and target vector

→
X j,g. In this

paper, the exponential distribution crossover (exp) is employed to generate a trial vector

(
→
U j,g =

[
u1,j,g, u2,j,g, . . . , u4d,j,g

]
). The generation method is formulated in Equation (60),
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where irand is a random integer in the range [1, 4d] to ensure that the trial vector has at
least one-dimensional component different from the target vector, CP denotes the crossover
probability, its value is a real number in the range [0, 1].

ui,j,g =

{
vi,j,g, from i = irand while rand(0, 1) ≤ CP

xi,j,g, otherwise
. (60)

4.4.4. Selection

The selection operation chooses a more adaptive dimensional component from the
target vector and the trial vector to enter the offspring through the greedy rule, which is

outlined in Equation (61), where f
(→

X
)

is the objective function.

→
X j,g+1 =


→
U j,g, if f

(→
U j,g

)
≤ f

(→
X j,g

)
→
X j,g, otherwise

. (61)

4.5. The Firefly Algorithm

The firefly algorithm was proposed by Xin-She Yang, a Cambridge scholar, and op-
timized by simulating the group behavior of fireflies. Since the algorithm has a strong
local search ability, this algorithm is used in this paper to optimize the offspring generated
by DE to mine potential better solutions [45]. In order to improve the problem of slow
convergence at the late stage of DE, a detailed collaborative process between algorithms
has been developed as shown below.

4.5.1. Algorithm Rules

The firefly algorithm simulates the firefly individuals in nature with the points in the
search space and searches the solution space by simulating the attraction and movement
process of the firefly individuals. The execution of the algorithm is based on the following
principles:

(1) Fireflies have no gender; they are attracted to each other.
(2) The attraction is proportional to their brightness, with each firefly moving towards

the brighter individual.
(3) The brightness of fireflies is determined by the objective function.

4.5.2. Parameter Properties

The algorithm simulates the group behavior of fireflies through the following three
parameter attributes:

(1) Relative fluorescence intensity:

I
(
rij
)
= I0 × e−γr2

ij , (62)

where γ denotes the light absorption coefficient, I0 is the initial fluorescence intensity
(at rij = 0) negatively related to the objective function value, and rij = ‖xi − xj‖ indicates
the Cartesian distance between fireflies i and j.

(2) Attractiveness:

β
(
rij
)
= β0 × e−γr2

ij , (63)

where β0 indicates the initial attractiveness constant (at rij = 0), it is set to 1 in this paper.
(3) Location update:

xi = xi + β
(
rij
)
×
(
xj − xi

)
+ α× (rand− 0.5), (64)

where α denotes the random step factor, rand is a random number that satisfies uniform
distribution in [0, 1].
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4.6. Complexity Analysis

The time requirement of the algorithm is called the time complexity of the algorithm.
It is an important index to evaluate the feasibility of the algorithm. Here, we analyze
the computational complexity of each block and then aggregate the modules to obtain
the total complexity of the DE-FA-CSOS algorithm. In one generation, the complexity
of DE-FA-CSOS is influenced by the following factors: the number of populations, the
number of generations, the number of machines, the number of jobs, and the maximal
operation number. Hence, the computational complexity of DE-FA-CSOS at worst is O
(2RSMN2max{Pn}2). Where R is the population size, S is the total number of iterations, M is
the number of machines, N is the number of workpieces, and Pn is the number of processes
of workpiece n.

5. Case Study

In this section, the performance and optimization effects of the proposed low-carbon
scheduling method are demonstrated by a detailed case study and corresponding compara-
tive experiments. All experiments are coded in MATLAB R2018b and run on a 2.2 GHz
CPU with 16G RAM in the Windows 10 platform.

5.1. Data Source

Since the problem studied in this paper has an industrial application background, the
data sources are obtained in a large cement equipment manufacturing company [4]. The
company mainly produces large-scale cement production equipment and its components,
e.g., roller presses, rotary kilns, vertical mills, etc. Through investigation, the machining
mode of the workshop is a flexible environment (the machines have multiple functions and
multiple adjustable states), and the means of transportation in the workshop is an overhead
crane with multiple states. The case study investigates the processes of 50 sets of common
production tasks in the company to conduct experiments.

The detailed parameters of the machines in the workshop are listed in Table 1. Due
to the discrete processing time of the machining process, that is, the machines do not run
continuously at rated power during the statistical processing time, the operating power
of the machine listed in Table 1 is the average power of the machine running at a certain
speed. The detailed parameters of the crane inside the workshop are as follows:

(1) Crane’s gantry parameters: speed level 1, running speed 25 m/min, running power
4700 W; speed level 2, running speed 50 m/min, and running power 8000 W.

(2) Crane’s trolley parameters: speed level 1, running speed 15 m/min, running power
2800 W; speed level 2, running speed 30 m/min, and running power 5000 W.

(3) Crane’s general parameters: idle power 750 W, startup energy consumption 150 kJ,
lifting appliance mass 900 kg, rated lifting mass 10,000 kg, gantry mass 9746 kg, and trolley
mass 5493 kg.

Table 1. The parameters of machines in the case workshop.

Machine
Level 1 Power (W) Level 2 Power (W) Level 3 Power (W) Location (m) Set Up Startup

Energy
(kJ)Operating Idle Operating Idle Operating Idle Dxm Dym Time (min) Power (W)

1 1120 220 1690 280 1960 390 30 20 1 240 141.6
2 1340 240 1870 310 2320 340 30 80 2 190 133.8
3 1050 180 1520 290 1920 350 130 20 1 210 124.8
4 1210 210 1780 330 2070 410 130 80 1 230 165.6
5 1170 230 1590 270 2260 320 230 20 1 210 118.2
6 1290 190 1810 320 2470 310 230 80 2 180 150.6

5.2. Performance Comparison Analysis

To demonstrate the performance of DE-FA-CSOS, the comparison experiment analyzes
the solution quality, efficiency, and stability of it. Since it is difficult to find other algorithms
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to solve this problem, the random state matching strategy is embedded in the state-of-the-
art workshop scheduling algorithms for comparative analysis.

(1) DE-FA-CSOS.
(2) DE-FA: the hybrid DE-FA algorithm with a random state matching strategy.
(3) ABC: the artificial bee colony algorithm with random state matching strategy.
(4) DE: the differential evolution algorithm with random state matching strategy.
(5) PSO: the particle swarm optimization algorithm with random state matching strategy.

5.2.1. Parameter Setting

Since the algorithm parameters have a significant influence on the algorithm perfor-
mance, the Taguchi method is used to conduct parameter adjustment experiments for
the comparison algorithms [46]. The parameter combinations optimized by the Taguchi
method are as follows: The population size of all the compared algorithms is set to 100.
The number of iterations is set to 5000. In DE-FA-CSOS and DE-FA, the parameters of
the DE are as follows: the crossover probability and scaling factor are set as 0.8 and 0.5,
respectively. The algorithm parameters of the FA are set as follows: the light absorption
coefficient is set as 0.06, the initial attractiveness constant is set as 1, and the random step
factor is set to 1.2. In ABC, the control parameter limit = 25, and the colony size of onlooker
bees is 50. In DE, the scaling factor F = 0.5 and the crossover probability CP = 0.5. In PSO,
the inertia weight w = 0.6, learning factors c1 = c2 = 2, and maximal velocity Vmax = 0.1.

5.2.2. Comparison Results Analysis

To avoid the randomness influence on the result analysis of the compared algorithms,
the 50 groups of experiments were run 20 times independently. Table 2 lists the optimization
results of the comparison algorithms. Figure 9 shows the average convergence iterations of
the compared algorithms.

Table 2. The optimization results of the compared algorithms.

Task
DE-FA-CSOS DE-FA ABC DE PSO

Mean Std Mean Std Mean Std Mean Std Mean Std

1 40.06 0.902 40.10 1.091 41.01 1.079 40.37 1.343 40.25 1.110
2 40.39 0.992 40.55 1.174 41.16 1.098 40.40 1.178 40.39 1.341
3 40.60 0.883 41.35 1.118 41.27 1.378 41.60 1.352 42.20 1.176
4 41.30 0.954 41.87 1.014 41.36 1.293 41.76 1.317 42.70 1.175
5 41.81 0.911 41.67 1.007 41.51 1.196 42.32 1.248 43.12 1.253
6 41.93 0.849 41.73 1.048 41.93 1.379 42.77 1.277 43.77 1.277
7 42.01 1.064 42.27 1.089 42.31 1.356 42.96 1.181 44.61 1.181
8 42.51 0.808 43.37 1.020 42.61 1.307 43.73 1.138 44.71 1.200
9 42.62 1.037 43.61 1.147 42.92 1.110 44.45 1.237 45.16 1.437

10 43.04 0.878 43.64 1.145 44.42 1.379 44.74 1.347 45.30 1.122
11 43.52 1.059 44.51 1.001 44.54 1.075 44.77 1.242 45.77 1.481
12 43.77 0.912 44.90 1.061 45.81 1.237 45.31 1.156 45.92 1.307
13 43.97 0.939 45.33 1.163 46.13 1.193 46.03 1.139 45.98 1.210
14 44.19 1.063 45.60 1.118 46.16 1.227 46.91 1.397 46.42 1.304
15 44.45 0.905 45.93 1.025 46.66 1.072 47.02 1.124 47.08 1.338
16 44.57 0.902 46.02 1.147 47.47 1.236 47.24 1.390 47.50 1.149
17 45.37 0.806 46.31 1.102 47.91 1.267 47.28 1.206 48.40 1.391
18 45.44 0.963 46.80 1.124 48.50 1.354 47.33 1.234 48.47 1.386
19 45.95 0.801 46.90 1.053 48.63 1.066 47.61 1.278 48.93 1.277
20 46.13 0.903 46.92 1.049 48.83 1.201 48.00 1.161 48.95 1.462
21 46.80 1.054 47.09 1.119 49.09 1.078 48.40 1.288 49.04 1.214
22 47.20 1.056 47.12 1.085 49.39 1.287 48.69 1.374 49.83 1.102
23 47.29 1.029 47.37 1.067 49.43 1.368 48.81 1.299 49.84 1.104
24 47.53 1.019 47.93 1.059 49.76 1.118 49.32 1.114 51.16 1.294
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Table 2. Cont.

Task
DE-FA-CSOS DE-FA ABC DE PSO

Mean Std Mean Std Mean Std Mean Std Mean Std

25 48.08 0.976 48.34 1.066 49.78 1.012 49.95 1.307 51.49 1.258
26 48.53 0.954 48.55 1.116 49.90 1.170 50.00 1.207 52.54 1.186
27 48.91 0.925 48.99 1.158 50.28 1.142 50.02 1.176 52.65 1.443
28 49.20 0.935 50.56 1.149 50.40 1.232 50.67 1.288 53.02 1.423
29 50.78 1.027 51.20 1.029 50.83 1.239 51.60 1.291 53.14 1.330
30 50.95 1.054 51.80 1.022 51.33 1.220 51.69 1.108 53.33 1.240
31 51.17 0.816 51.89 1.108 51.45 1.373 51.95 1.155 54.36 1.494
32 51.46 0.844 52.63 1.073 52.75 1.020 52.26 1.246 54.91 1.405
33 51.82 0.803 53.22 1.151 52.84 1.106 52.52 1.326 54.98 1.347
34 51.93 0.823 53.81 1.131 53.05 1.355 52.53 1.163 55.18 1.103
35 52.74 0.994 53.94 1.028 53.43 1.264 53.48 1.285 55.48 1.226
36 53.49 0.845 54.48 1.115 53.57 1.097 53.58 1.243 55.50 1.238
37 53.80 1.075 54.67 1.065 54.24 1.023 53.80 1.150 55.59 1.402
38 53.97 1.003 54.70 1.006 56.77 1.144 54.28 1.242 55.68 1.242
39 54.49 0.806 54.99 1.145 56.92 1.174 54.96 1.163 55.94 1.423
40 55.43 0.990 55.26 1.143 56.95 1.092 55.84 1.369 56.31 1.465
41 55.67 1.031 55.82 1.120 57.21 1.012 55.93 1.384 57.51 1.245
42 55.84 0.910 55.98 1.191 57.34 1.120 56.17 1.245 57.61 1.312
43 56.16 1.059 56.54 1.001 57.36 1.043 56.37 1.175 57.64 1.284
44 56.76 0.837 56.87 1.173 57.72 1.327 57.69 1.252 57.75 1.294
45 56.81 0.998 56.95 1.159 57.95 1.009 57.74 1.271 58.04 1.273
46 57.53 1.090 57.93 1.160 58.07 1.150 57.95 1.102 58.54 1.402
47 57.77 0.930 58.20 1.132 58.84 1.232 58.09 1.108 58.84 1.312
48 58.31 0.910 59.03 1.087 59.25 1.184 58.89 1.178 58.91 1.139
49 58.97 1.025 59.18 1.062 59.41 1.346 59.55 1.284 59.44 1.292
50 59.21 0.843 59.72 1.048 59.64 1.214 59.77 1.328 59.48 1.158

Best/All 46/50 45/50 3/50 3/50 1/50 2/50 0/50 0/50 0/50 0/50
Friedman 1.13 1.14 2.56 2.32 3.46 3.36 3.25 3.91 4.60 4.27
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As shown in the table and figure, PSO has the fastest convergence rate in 50 production
task examples. However, its optimization quality is inferior to that of other comparison
algorithms, with a total rank in the mean value of 4.60 when it comes to the Friedman test.
This proves that the convergence speed of PSO is fast, but it is prone to fall into pre-mature
convergence. The solution quality of ABC and DE is better than PSO, with total ranks in the
mean value of 3.46 for ABC and 3.25 for DE, but their convergence efficiencies are relatively
low. The DE-FA algorithm integrates the global search of DE and the local search of FA so
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that its convergence speed is relatively ideal and its optimization results are better than
ABC, DE, and PSO with a total rank in the mean value of 2.56. Due to the increased CSOS
guiding the search direction of the DE-FA, the DE-FA-CSOS has better search performance
and convergence ability than the DE-FA, leading to 1.43 on total rank in the mean value
and 200 on convergence iteration.

Moreover, it is shown in Table 2 that the DE-FA-CSOS has the best total ranks in both
mean value and std value, which verifies that the DE-FA-CSOS has advantages in both
performance and stability compared with other algorithms. Consequently, the conclusions
are summarized as follows:

(1) The DE-FA has a better search ability than the ABC, DE, and PSO in the LSP-
FM&CT-MCC, which provides a basic guarantee for the embedding of CSOS.

(2) The addition of CSOS further improves the performance and stability of the DE-FA
algorithm in the LSP-FM&CT-MCC.

5.3. Scheduling Solution Analysis

In the above comparison experiment, the DE-FA-CSOS has better solution quality than
DE-FA due to the addition of CSOS. In this section, the specific scheduling effects of DE-
FA-CSOS are analyzed through the Gantt Chart of optimization solutions to demonstrate
the practical role of CSOS. Figure 10 shows the Gantt chart of optimal scheduling solutions
of DE-FA-CSOS for two typical production tasks with the highest frequency of execution.
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As shown in Figure 10, with the application of the load transportation state optimiza-
tion strategy in CSOS, the crane’s transportation process has been optimized well. First,
the workpiece is inserted into the nearby idle machine, effectively reducing the load trans-
portation distance of the crane, and avoiding the load idle time. Then, the crane’s running
speed for the updated process is reconfigured to make the crane operation more continuous.
Meanwhile, since the machine is reassigned for the process in the load transportation state
optimization strategy, the implementation of the machining state optimization strategy in
CSOS synchronously configures the states of updated machines. Under the cooperation
of the two strategies, the multiple operating states of the crane and machines achieve
an optimal balance. The GIA interactive rate of various equipment in the workshop is
improved, and the makespan is significantly reduced. Therefore, the application of the two
strategies in CSOS has a good collaborative optimization effect and plays an obvious role
in scheduling optimization.

5.4. Low-Carbon Optimization Effect Analysis

To further verify the effect of DE-FA-CSOS on low-carbon optimization, the two
strategies in CSOS are added to the DE-FA, respectively, to conduct a compared experiment.
The four combinational algorithms are compared in terms of different types of energy
consumption, which can be defined as follows.

(1) DE-FA-CSOS.
(2) DE-FA-S1: the hybrid DE-FA algorithm with strategy 1: load transportation state

optimization strategy.
(3) DE-FA-S2: the hybrid DE-FA algorithm with strategy 2: machining state optimiza-

tion strategy.
(4) DE-FA: the hybrid DE-FA algorithm with a random state matching strategy.
Figure 11 shows the results of different types of energy consumption during the

machining process optimized by the above four algorithms. Obviously, in Figure 11, these
four algorithms have their own characteristics for the optimization of energy consumption.
For the machining energy consumption shown in Figure 11a, the effect ranking of the
four algorithms is DE-FA-CSOS > DE-FA-S2 = DE-FA-S1 > DE-FA. Since both the DE-FA-
CSOS and the DE-FA-S2 contain the machining state optimization strategy, their machining
energy efficiencies are better than the DE-FA-S1 and the DE-FA. Specifically, the application
of the machining state optimization strategy has significantly reduced the machine energy
consumption of operation, setup, and turn-on/off.

As shown in Figure 11b, due to the DE-FA-CSOS and DE-FA-S1 containing the load
transportation state optimization strategy, their transportation energy efficiencies are better
than the DE-FA-S2 and the DE-FA. For the energy consumption of load and no-load
operation, the optimization results from the DE-FA-CSOS and DE-FA-S1 are significantly
lower than the DE-FA-S2 and DE-FA. For the energy consumption of the crane idle and turn
on/off, the optimization results from the DE-FA-CSOS are 0, which have distinct advantages
over the DE-FA-S1, DE-FA-S2, and DE-FA. In terms of the total crane transportation energy
consumption, the optimization capability ranking of these four algorithms is DE-FA-CSOS
> DE-FA-S1 > DE-FA-S2 > DE-FA. Therefore, the conclusions are summarized as follows:

(1) The strategy 1 and strategy 2 in CSOS have effectively optimized the energy
consumption of machining and transportation, respectively, which shows that the two
strategies play an important role in the algorithm operation.

(2) The DE-FA-CSOS has better low-carbon optimization capability than the hybrid
DE-FA algorithms with separate strategy 1 or strategy 2.
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5.5. Algorithm Robustness Analysis

This section examines the robustness of the DE-FA-CSOS for the LSP-FM&CT-MCC
in different optimization environments. Since the considerations of energy consumption
and makespan are different in diverse manufacturing environments, the dynamic weights
of the two objectives are considered to simulate different optimization environments of
LSP-FM&CT-MCC. The coefficient λ is increased in the objective function as the weight
to integrate the two objectives as shown in Equation (65). By changing the value of
coefficient λ with a step size of 0.05, 19 sets of weights are obtained. The objective function
is conducted with the coefficient λ from 0.05 to 0.95 so that the optimized solutions are
from energy-saving oriented to makespan-saving oriented.

minF = λ× E× PE + (1− λ)×M× PT. (65)

To avoid the influence of the algorithm randomness, the experiments of each set of
weights were run 20 times independently and retained the mean values. Table 3 shows the
statistics of the optimization results of the DE-FA-CSOS and the DE-FA for the objective
function with different weights, and Figure 12 shows the distribution of solutions with
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different weights optimized by the DE-FA-CSOS and the DE-FA. As observed in Table 3,
the energy consumption from the DE-FA-CSOS is better optimized than DE-FA, the mean
gap is 6.98%. The makespan obtained from DE-FA is larger than those obtained from
DE-FA-CSOS, the mean gap is 4.40%. Furthermore, as observed in Figure 12, DE-FA-CSOS
is distinctly better than DE-FA for both the energy consumption and makespan in every
set of weights. The DE-FA-CSOS can maintain the advantages of the optimization effects
with the continuous change of the optimization environment. Consequently, the above
experiments demonstrate that the DE-FA-CSOS has good robustness and can adapt to the
dynamic manufacturing environment.

Table 3. The statistics of optimization results with different weights.

No. λ
DE-FA-CSOS Solution Gap (%) DE-FA

E M F GapE GapM GapF E M F

1 0.05 14.62 1.24 26.25 6.91 7.26 7.24 15.63 1.33 28.14
2 0.10 14.34 1.27 26.96 5.72 6.30 6.24 15.16 1.35 28.64
3 0.15 13.83 1.28 27.13 7.52 6.25 6.45 14.87 1.36 28.88
4 0.20 13.28 1.31 27.48 7.00 3.82 4.45 14.21 1.36 28.71
5 0.25 12.72 1.33 27.50 6.76 3.76 4.47 13.58 1.38 28.74
6 0.30 12.39 1.35 27.51 7.18 2.96 4.14 13.28 1.39 28.65
7 0.35 11.85 1.37 27.25 9.79 2.92 5.08 13.01 1.41 28.64
8 0.40 11.59 1.38 26.95 7.77 2.90 4.63 12.49 1.42 28.19
9 0.45 11.14 1.40 26.51 8.62 2.86 5.10 12.10 1.44 27.86
10 0.50 11.08 1.41 26.23 5.51 2.84 4.00 11.69 1.45 27.28
11 0.55 10.83 1.43 25.80 7.39 2.80 4.98 11.63 1.47 27.08
12 0.60 10.52 1.45 25.20 10.08 2.76 6.54 11.58 1.49 26.84
13 0.65 10.34 1.46 24.59 10.93 4.79 8.25 11.47 1.53 26.62
14 0.70 10.31 1.48 24.21 10.77 4.73 8.44 11.42 1.55 26.25
15 0.75 10.30 1.49 23.75 3.50 5.37 4.11 10.66 1.57 24.73
16 0.80 10.04 1.51 22.90 5.08 5.30 5.14 10.55 1.59 24.08
17 0.85 9.86 1.53 22.10 4.16 5.23 4.39 10.27 1.61 23.07
18 0.90 9.75 1.56 21.37 4.00 4.49 4.07 10.14 1.63 22.24
19 0.95 9.69 1.58 20.64 4.02 6.33 4.21 10.08 1.68 21.51

Mean 11.50 1.41 25.28 6.98 4.40 5.36 12.31 1.47 26.64
Std 1.60 0.10 2.21 2.31 1.47 1.41 1.75 0.11 2.37
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6. Discussion

In the cement equipment manufacturing company under investigation, the scheduling
task of various equipment in the workshop is completed by manual scheduling. This
scheduling mode restricts the low-carbon transformation of the manufacturing enterprise.
First, the dispatchers’ personal experience is limited. They only arrange the machine for
the next process when one workpiece completes the current machining. This kind of local
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manual decision-making leads to a large waste of machining energy consumption and easily
causes a large amount of idle equipment. Second, due to the limited decision-making ability
of dispatchers, they are only responsible for the allocation of machines, and ids difficult
to comprehensively consider the multiple states of machines and cranes for collaborative
configuration, resulting in a waste of transportation energy. Third, the response rate of
manual scheduling is much lower than the proposed low-carbon scheduling method, which
directly production efficiency and increases the makespan of products. The above similar
manual scheduling mode is widely used in traditional manufacturing enterprises, which
undoubtedly increases energy waste and excessive carbon emissions.

To prove the effectiveness of the DE-FA-CSOS algorithm proposed in this paper, we
improve others’ algorithms and use them for experimental comparison. In Section 5.2
Performance comparison analysis, the comparison experiment analyzes the solution quality,
efficiency, and stability of the DE-FA-CSOS, DE-FA, DE [47], ABC [48], and PSO [49]
algorithms. The experimental results show that: “(1) The DE-FA has a better search ability
than the ABC, DE, and PSO in the LSP-FM&CT-MCC, which provides a basic guarantee
for the embedding of CSOS. (2) The addition of CSOS further improves the performance
and stability of the DE-FA algorithm in the LSP-FM&CT-MCC.” In Section 5.4, Low-carbon
optimization effect analysis, to further verify the effect of DE-FA-CSOS on low-carbon
optimization, the two strategies in CSOS are added to the DE-FA, respectively, to conduct
a comparison experiment. The four combinational algorithms are compared in terms
of different types of energy consumption. The experimental results show that: “(1) The
Strategy 1 and Strategy 2 in CSOS have effectively optimized the energy consumption of
machining and transportation, respectively, which shows that the two strategies play an
important role in the algorithm operation. (2) The DE-FA-CSOS has better low-carbon
optimization capability than the hybrid DE-FA algorithms with separate strategy 1 or
strategy 2”. In Section 5.4, Low-carbon optimization effect analysis, the experiments
demonstrate that the DE-FA-CSOS has good robustness and can adapt to the dynamic
manufacturing environment.

Table 4 lists the scheduling results of the DE-FA-CSOS and the dispatcher mode. By
comparing the actual application of 10 scheduling tasks, the results show that the machining
energy consumption and the transportation energy consumption are reduced by 25.17%
and 34.52% on average with the application of the DE-FA-CSOS. This proves that the DE-
FA-CSOS effectively improves workshop energy efficiency and reduces carbon emissions.
Furthermore, the makespan from DE-FA-CSOS is reduced by 37.02% on average compared
with manual methods, which shows that the proposed scheduling method effectively
improves the production efficiency of the workshop. Therefore, the DE-FA-CSOS effectively
ameliorates the drawbacks of the dispatcher mode and can serve as a reference to promote
low-carbon and green development for China’s traditional manufacturing enterprises.

Table 4. The comparison of the DE-FA-CSOS and the dispatcher mode.

Task
DE-FA-CSOS Result Gap (%) Dispatcher Mode

Em Ec M GapEm GapEc GapM Em Ec M

1 8.69 1.89 1.37 34.46 28.41 29.38 13.26 2.64 1.94
2 11.38 3.52 1.52 25.03 27.12 29.95 15.18 4.83 2.17
3 9.18 3.46 1.45 34.29 36.86 38.30 13.97 5.48 2.35
4 11.08 2.03 1.48 23.95 45.28 40.08 14.57 3.71 2.47
5 13.03 2.85 1.38 19.91 39.87 43.44 16.27 4.74 2.44
6 12.64 3.77 1.47 26.64 21.13 39.26 17.23 4.78 2.42
7 11.61 3.23 1.39 22.13 30.69 39.30 14.91 4.66 2.29
8 12.75 3.56 1.41 18.01 33.46 33.80 15.55 5.35 2.13
9 12.79 2.51 1.42 17.59 45.79 36.61 15.52 4.63 2.24

10 11.66 2.57 1.54 29.63 36.54 40.08 16.57 4.05 2.57
Mean gap 25.17 34.52 37.02
Max gap 34.46 45.79 43.44
Min gap 17.59 21.13 29.38
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7. Conclusions

To promote the low-carbon transition of the heavy manufacturing industry, this paper
introduces a novel LSP-FM&CT-MCC based on a heavy cement equipment manufacturing
enterprise. The novelty of this problem is that it considers not only collaborative scheduling
optimization of machines and cranes but also the multi-state configuration optimization
of multifunctional machines and variable-speed cranes. Due to the more comprehensive
consideration, the quality and feasibility of the solution can be greatly improved. In
addition, a novel hybrid differential evolution algorithm and firefly algorithm with a
collaborative state optimization strategy (DE-FA-CSOS) are proposed in this paper.

The research objective of this paper is to minimize the total energy consumption and
makespan of the production process, which in turn reduces carbon emissions for the pro-
posed problem. A new mixed integer planning (MIP) model is established for the proposed
problem. In the MIP model, a multi-state integrated energy consumption model based on
machining machines and cranes is established to describe the integrated energy consump-
tion of machine and crane operation processes in detail. Since there is no effective solving
method, a novel hybrid DE-FA-CSOS algorithm is developed to solve it. An experimental
study is conducted with a real production case to verify that the DE-FA-CSOS algorithm
can solve the problem in a reasonable time frame and obtain a higher-quality solution.
Through repeated comparative experiments, the results show that the machining energy
consumption and transportation energy consumption are reduced by 25.17% and 34.52%
on average. Compared with manual scheduling, the optimized makespan is shortened by
37.02% on average. This proves that the method in this paper effectively improves the work-
shop’s energy efficiency and reduces carbon emissions. Therefore, the proposed method
has a wide application background in various heavy manufacturing enterprises and is an
important guideline for the low-carbon manufacturing of traditional heavy industry.

In terms of the limitations in this paper, the proposed LSP-FM&CT-MCC does not
consider the optimization problem of collaborative scheduling of multi-crane transport;
it does not take into account the repair and maintenance time of the equipment; the
handling of conflicts during machining and transportation has not been fully considered.
Additionally, for different machining environments, the effect of order insertion factors
should be considered, and the ambiguity of machining time should be reflected in the
mathematical model. Concerning the above limitations, the suggestions for further research
are as follows:

(1) Study the problem of the multi-state shop and multi-crane transportation collabo-
rative scheduling optimization.

(2) Consider the repair and maintenance time of the equipment in the next step of the study.
(3) Consider handling conflicts in processing and transportation processes in mathe-

matical models.
(4) Considering the effect of order insertion factors in mathematical models.
(5) To apply fuzzy theory to determine the machining time based on the actual ma-

chining environment.
(6) Extend this study to other types of shops in the manufacturing industry.
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Nomenclature

M The quantity of machines
N The quantity of workpieces
Q The quantity of machine’s operation speed level
R The quantity of crane’s operation speed level
m The index of machine, m = 1, 2, 3, . . ., M
n The index of workpiece, n = 1, 2, 3, . . ., N
q The index of machine’s operation speed level, q = 1, 2, 3, . . ., Q
r The index of crane’s operation speed level
Pn The process quantity of workpiece n
Pi,n The i-th process of workpiece n, i = 1, 2, 3, . . .Pn
P1 The first process
Qi,n,m The operation speed level of machine m for Pi,n
θ(Pi,n) The available machine set for Pi,n
ϕ(P1,m) The set of the first process on each machine
σ(P1,n) The set of the first process of each workpiece
Mi,n The operation machine for Pi,n
M1 The operation machine for the first process
Mn

i,n The crane’s no-load operation target machine for Pi,n
Ml

i,n The crane’s load operation target machine for Pi,n
Ts

i,n,m,q The set-up time of Pi,n on machine m with speed q
To

i,n,m,q The operation time of Pi,n on machine m with speed q
T i

i,n,m The idle time of machine m before Pi,n starts to operate
Tsi,n The processing start time of Pi,n
Tci,n The processing completion time of Pi,n
Tno,g

i,n The gantry’s no-load operation time for Pi,n

Tno,t
i,n The trolley’s no-load operation time for Pi,n

T lo,g
i,n The gantry’s load operation time for Pi,n

T lo,t
i,n The trolley’s load operation time for Pi,n

Tni
i,n The crane’s no-load idle time for Pi,n

T li
i,n The crane’s load idle time for Pi,n

Ps
m The set-up power of machine m

Po
m,q The operation power of machine m with speed q

Pi
m,q The idle power of machine m with speed q

Eof
m The energy that machine m starts up once

Pr
g,r The rated power of the gantry at r-th speed level

Pr
t,s The rated power of the trolley at s-th speed level

Pi
c The idle power of the crane

Eof
c The energy that the crane starts up once

Vg,r The gantry’s operation speed with r-th level
Vt,r The trolley’s operation speed with r-th level
Wn The weight of workpiece n
Wlc The lifting weight of the crane
Wla The weight of the lifting appliance
Wg The weight of the gantry
Wt The weight of the trolley
Dxm The horizontal distance of machine m
Wym The vertical distance of machine m

https://www.sciencedirect.com/science/article/pii/S0959652618336345
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Di
c The initial location of the crane

Dn
c (Pi,n) The crane’s no-load operation location for Pi,n

Dl
c(Pi,n) The crane’s load operation location for Pi,n

xi,n,m,q The decision variable of the machining process
yi,n,m The decision variable of the machine’s shutdown status
zi,n,r The decision variable of the crane’s operation speed level
wni

i,n The decision variable of the crane’s shutdown status at the no-load idle phase
wli

i,n The decision variable of the crane’s shutdown status at the load idle phase
u(Pi1,n1, Pi2,n2) The decision variable of the adjacent process
u(m, Pi1,n1, Pi2,n2) The decision variable of adjacent process on a machine
v(Qi1,n1,m, Qi2,n2,m) The decision variable of the machine’s operation speed
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