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Abstract: Engineering and technological research groups are becoming interested in neural network
techniques to improve productivity, business strategies, and societal development. In this paper,
an explicit numerical scheme is given for both linear and nonlinear differential equations. The
scheme is correct to second order. Additionally, the scheme’s consistency and stability are guaranteed.
Backpropagation of Levenberg–Marquardt, the effect of including an induced magnetic field in a
mathematical model for electrical boundary layer nanofluid flow on a flat plate, is quantitatively
investigated using artificial neural networks. Later, the model is reduced into a set of boundary
value problems, which are then resolved using the suggested scheme and a shooting strategy. The
outcomes are also contrasted with earlier studies and the MATLAB solver bvp4c for validation
purposes. In addition, neural networking is also employed for mapping input to outputs for velocity,
temperature, and concentration profiles. These results prove that artificial neural networks can
make precise forecasts and optimizations. Using a neural network to optimize the fluid flow in an
electrical boundary layer while subjected to an induced magnetic field is a promising application of
the suggested computational scheme. Fluid dynamics benefits greatly from combining numerical
methods and artificial neural networks, which could lead to new developments in various fields.
Results from this study may aid in optimizing fluid systems, leading to greater productivity and
effectiveness in numerous technical fields.

Keywords: explicit scheme; stability; consistency; boundary layer flow; neural network

1. Introduction

Fluid dynamics and the phenomena they produce have long piqued the interest of
scientists and engineers. Several fields, such as the aerospace, automotive, and energy
industries, rely heavily on fluid dynamics and flow optimization advances. Many mathe-
matical models and computer systems have been developed for simulating and analyzing
fluid flow. These models have been shown to predict how fluids will act in various situa-
tions accurately.

There has been a significant increase in research into how electromagnetic fields can
affect fluid motion. Fluids’ reactions to electric or magnetic fields have shown promise
for improving flow regulation and thermal conductivity. The thin fluid layer next to
a solid surface in the presence of an induced magnetic field is particularly important
and is known as the electrical boundary layer. Flow properties like velocity profiles,
shear stress distribution, and heat transfer rates are all heavily influenced by the electrical
boundary layer.

This work introduces a unique computational scheme and neural network approach
to studying fluid flow in electrical boundary layers in an induced magnetic field. With the
proposed approach, we want to shed light on the complex dynamics between the boundary
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layer’s magnetic field and its fluid flow. Traditional analytical methods have limitations, but
by utilizing the potential of computational modelling and artificial neural networks, we may
overcome these obstacles and make more precise and efficient forecasts. Our computational
framework uses numerical techniques like finite volumes to discretize the governing
equations of fluid dynamics and electromagnetic fields. The Navier–Stokes and Maxwell’s
equations describe fluid and electromagnetic fields, respectively. By iteratively solving
these linked equations, we may simulate the fluid’s behavior within the electrical boundary
layer and examine its characteristics under various magnetic field configurations. We
propose adding neural networks to the modelling framework to improve our computational
scheme’s precision and speed. Neural networks have proven to be quite effective at
identifying intricate relationships and patterns in data. This computational simulation
data can be used to train a neural network to anticipate the electrical boundary layer’s
behavior for different values of input parameters, including magnetic field intensity, fluid
characteristics, and surface geometry. This neural network-based method can drastically
reduce the time needed to perform complex optimization and parametric study tasks.

Geophysics, magnetohydrodynamic (MHD) natural convection flow, heat exchangers,
astrophysics, and electronics are just a few of the many fields that can benefit from taking
magnetic fields into account during electrically conducted fluid flow. Plasma theory, as
well as MHD coolants and generators, are examples of physical phenomena in which a
magnetic field governs the flow of fluid. Some scholars have demonstrated interest in the
many scientific and technical phenomena of induced magnetic fields. However, none of
these studies have addressed the topic of how a generated magnetic field affects the flow
of the boundary layer. An induced magnetic field has obvious uses in the plasma field as
well. Among other things, the created magnetic field can be used to examine solar activity,
cosmic rays, and subsurface water flow.

The effects of induced magnetic fields on ferrofluid flows on a flat plate are considered
in [1]. The flow was brought about by the sudden shock of the plate, which was only
partially finite. To simulate the flow caused by the induced magnetic field (IMF), the
Navier–Stokes equation and a set of heat equations were combined. Before being trans-
formed into ordinary differential equations (ODEs), the governing equations are typically
represented as partial differential equations (PDEs) in the majority of the literature [2–4].
In most cases, researchers have only considered the effects on fluid flow in two dimen-
sions [5–7]. The impact of various forces on boundary layer flows has been studied using
two distinct approaches in the extant literature [8,9]. Various nanoparticles of varying kinds
are sometimes added to the base fluid to improve heat transfer. The Buongiorno nanofluid
model [10–12] provides a set of partial differential equations for nanofluids subject to the
influence of heat and mass transfers and is another mathematical model for this class of
fluids. Some authors investigate the Buongiorno model to simulate flows when the mass
transfer equation is included in a system of equations. Oldroyd 4-constant nanofluid has
been used to experiment with the induced magnetic flux [13]. Using a small finite Reynolds
number has reduced the complexity of solving nonlinear partial differential equations. The
differential equations under consideration have been solved exactly. The magnetic force
function grew with both the magnetic Reynolds number and the electric field strength.
Convective Casson fluid’s response to the exponential heat source and an induced magnetic
field is studied in [14].

In many sectors, including producing PVC pipes, wire drawing, metal casting, hot
rolling, etc., boundary layer flow on a stretching sheet represents a significant fluid dynam-
ics challenge. In [15,16], Sakidas presents his early research on the special characteristics
of boundary layer flow over a stretched surface moving at a constant speed. Crane [17]
analyzed the stretch surface at various speeds. Citation: Tsou et al. [18]. The most intriguing
nanofluidic models can be found in [19–21], while some recent computational fluid dynam-
ics applications addressing boundary layer flow can be seen in [22–24]. The role of the heat
source and sink is critical in the boundary layer flow problem because cooling is required.
The heat source and sink boundary layer flow problem on a stretching sheet was researched
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by Cortell [25]. Dessie and Kishan [26] investigated how heat transmission in a permeable
medium with varying viscosity might affect a stretched surface with a heat source and a
heat sink. There are similarities between the research of the Abel group and similar studies
conducted by other academics [27]. Aerospace engineering, specifically the design and
analysis of re-entry vehicles like spacecraft or space capsules, is a fascinating real-world
application demonstrating our work’s importance. An electrically conductive boundary
layer forms around the vehicle as it undergoes the high temperatures and pressures of
re-entry into a planet’s atmosphere. Due to the relative speed of the conducting vehicle
and the ionized gases, magnetic fields are induced in this boundary layer. During re-entry,
the heat transfer, aerodynamic forces, and overall vehicle behavior can all be drastically
altered by these produced magnetic fields. We contribute significantly to fluid dynamics,
electromagnetics, and heat transport by including the effects of induced magnetic fields
in our numerical framework and employing neural networks to improve the accuracy of
predictions. As a result, this information can be useful to aerospace engineers as they work
to perfect the performance, safety, and thermal protection of re-entry vehicles.

Due to magnetic field intensities and fluid conditions, the Hall effect may not be
justified in our investigation of induced magnetic fields in electrical boundary layer flows.
The main focus is on understanding the interaction between the induced magnetic field and
the fluid flow without considering ancillary effects that may not be relevant. The studies
mentioned [28–30] examine instances where ion slip and Hall effects play a significant
role under specific circumstances. In contrast, our study concentrates on the electrical
boundary layer flow with generated magnetic fields, enabling us to simplify the model
by excluding these effects. The decision to disregard these effects is supported by the
comparatively moderate flow velocities, magnetic field strengths, and ion densities in the
situations under consideration.

The authors investigate the radiative unsteady magnetohydrodynamic (MHD) flow of
an incompressible viscous electrically conducting non-Newtonian Casson hybrid nanofluid
over an infinite exponentially accelerated vertical moving porous surface, considering the
influence of slip velocity in a rotating frame [31]. The primary objective of this study [32] is
to investigate the phenomenon of coupled heat and mass transfer by natural convection.
Specifically, the focus is on a fluid flow with micropolar characteristics that exhibits viscosity
and generates or absorbs heat. The flow occurs in the vicinity of a vertically oriented,
permeable surface that is in continuous motion. Additionally, the study considers the
influence of a first-order chemical reaction. The issue of combined heat and mass transfer
through natural convection from a semi-infinite inclined flat plate, considering the influence
of an external magnetic field and internal heat generation or absorption effects, is presented
in reference [33].

The incorporation of nanoparticles into a base fluid has been observed to induce
substantial modifications in fluid behavior, owing to the distinctive features exhibited by
nanoparticles at the nanoscale. Researchers have investigated methods to improve heat
transfer rates, fluid conductivity, and other fluid properties by utilizing the capabilities
of nanoparticles [34,35]. Incorporating nanoparticles into a fluid matrix gives rise to a
composite material called a nanofluid. This composite material demonstrates improved
thermal and electrical characteristics compared to the original fluid without nanoparticles.
Nanoparticles have the potential to enhance heat conduction, optimize convective heat
transfer, and modify flow characteristics, hence positioning nanofluids as viable contenders
for a range of engineering applications. Heat exchangers play a crucial role in industrial
processes, making a substantial contribution to the system’s overall energy. The fouling
process, the primary factor influencing heat exchanger performance, was thoroughly
examined in a study conducted by [36]. Various fouling processes and models were
dynamically simulated in this research.

An investigation into the traditional Blasius equation, which serves as the governing
equation for the boundary layer problem, is carried out with the help of a numerical
approach. The creation of the RCW (Rahmanzadeh–Cai–White) approach [37] is the
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foundation for this algorithm and an investigation into how the Lorentz force and bleeding
combine to affect the hydrothermal behaviors of magnetohydrodynamic (MHD) nanofluid
flow and the formation of entropy in a trapezoidal recess. This trapezoidal recess is
formed by incorporating two sloping steps into an otherwise horizontal channel. Because a
magnetic field was present in the flow domain, the Lorentz force could manifest itself [38].

Artificial neural networks (ANNs) are particularly helpful among the many artificial
intelligence (AI) techniques. ANNs have been applied in various fields because of their
adaptability to nonlinear phenomena and capacity to model them. ANNs can learn and
change based on their given data, making them useful in many fields. Artificial neural
networks are useful in many areas, including system identification, sequence recognition,
process control, sensor data analysis, natural resource management, quantum chemistry,
medical diagnosis, financial analysis, visualization, machine translation, and e-mail spam
filtering. Machine learning algorithms like artificial neural networks can be used to model
intricate correlations in data. Because of this, they are suitable for various uses, including
those mentioned above. Hence, the backpropagation stochastic numerical approach is more
reliable. Backpropagation is a supervised learning method that uses gradient descent to
lower the error curve’s slope and minimize error.

Paul Werbos invented the backpropagation technique in 1974, and Rumelhart and
Parker later brought it back to life. A common learning method for feed-forward mul-
tilayer neural networks is backpropagation. A unique convergent stability method for
artificial neural networks called Levenberg–Marquardt (LM) backpropagation offers nu-
merical answers to various fluid flow problems. Recent studies have used Levenberg–
Marquardt backpropagation artificial neural networks (LBM-BN) on Newtonian and
non-Newtonian hydraulic systems. Using an ANN model trained with the Levenberg–
Marquardt method, Khalil et al. [39] provide a numerical solution for the non-Newtonian
flow field. Zhao et al. [40] used the LBM-BN approach to identify the flaws in reinforced con-
crete beams. ANN-based LM was used by Nguyen et al. [41] to ensure more precise robot
positioning. In order to forecast the outflow from a sharp-crested weir, Ali et al. [42] com-
bined an artificial neural network strategy with an LM-based training method. According
to Ye and Kim [43], their study focuses on the application of an optimized backpropagation
neural network and the Levenberg–Marquardt backpropagation neural network to predict
electricity usage in a building. The case study specifically examines a shopping mall located
in China. The authors analyzed the thermally radiative and chemically reactive stagnation
point flow of a non-Newtonian fluid with temperature-dependent thermal conductivity
using the Levenberg–Marquardt training technique [44].

For the purpose of solving mathematical models of various processes, numerical ap-
proaches are crucial. The physical behavior of any system cannot be simply predicted from
its mathematical model, which is expressed in the form of differential equations. Different
approaches do, however, exist to resolve various kinds of differential equations. This
contribution makes explicit use of a two-stage numerical approach. The Taylor extension
of the forward Euler scheme is the first phase. As a result, when first-order differential
equations are solved, an additional derivative of the dependent variable is needed. A
shooting method is used to implement the suggested scheme because the considered prob-
lems are second- and third-order boundary value problems. Thus, the model’s solution is
discovered in this way.

This paper makes two main contributions. We introduce a robust computational
scheme for studying fluid flow in an electrical boundary layer in the presence of an induced
magnetic field. Using a combination of neural networks and numerical approaches, the
scheme can make precise predictions and run rapid simulations. Second, we show that our
method works by comparing it to analytical and numerical solutions already developed.
These examples demonstrate the precision, efficiency, and adaptability of our system.
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2. Proposed Numerical Scheme

Suppose we have a differential equation of the type for constructing a numerical
scheme for a differential equation.

u′ = λ f (u) (1)

where λ is a constant.
The initial phase of the scheme outlined in Equation (1) can be formulated as:

ui = ui−1 + hu′i−1 + h2u′′i−1 (2)

where h is the step size.
The second stage of the scheme is given as follows:

ui =
1
2
(ui−1 + ui) + h

{
au′i−1 + bu′i

}
(3)

where a and b are unknown, to be determined later.
The Taylor series expansion for ui−1 and u′i−1 is given as:

ui−1 = ui − hu′i +
h2

2
u′′i + O(h3) (4)

u′i−1 = u′i − hu′′i + O(h2) (5)

Substituting Equations (4) and (5) into Equation (3) we obtain

ui =
1
2

(
ui − hu′i +

h2

2
u′′i + ui

)
+ h
{

au′i − ahu′′i + bu′i
}

(6)

By using Equation (2) in Equation (6) it yields

ui =
1
2

(
ui − hu′i +

h2

2
u′′i + ui−1 + hu′i−1 + h2u′′i−1

)
+ h
{

au′i − ahu′′i + bu′i + bhu′′i
}

(7)

Expanding ui−1, u′i−1 and u′′i−1 using Taylor series expansion

ui = ui −
1
2

hu′i +
h2

2
u′′i + h

{
au′i − ahu′′i + bu′i

}
(8)

By comparing coefficients of hu′i and h2u′′i on both sides of Equation (8), it gives

0 = −1
2
+ a + b (9)

0 =
1
2
− a (10)

By solving (9) and (10), it yields

a =
1
2

, b = 0 (11)

Therefore, the second stage of the scheme is given as

ui =
1
2
(ui−1 + ui) +

h
2

u′i−1 (12)

3. Stability Analysis

Consider the linear differential equation of the form to determine the stability region
of the proposed scheme.

v′ = µv (13)

Using the first stage of the proposed scheme for Equation (13) it gives:

vi = vi−1 + hµvi−1 + h2µ2vi−1 =
(

1 + z + z2
)

vi−1 (14)

where z = hµ.
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The second stage of the proposed scheme for Equation (14) yields:

vi =
1
2
(vi−1 + vi) +

h
2

µvi−1

vi =
1
2

(
2 + z + z2

)
vi−1 +

z
2

vi−1

vi =
1
2

(
2 + 2z + z2

)
vi−1 (15)

Thus the stability region is given as∣∣∣∣12(2 + 2z + z2
)∣∣∣∣ ≤ 1, zεC (16)

4. Consistency of the Proposed Scheme

For checking the consistency of the proposed scheme for Equation (13), Equation (15)
is re-written as:

vi =
1
2

(
2 + 2hµ + h2µ2

)
vi−1 (17)

Expanding vi−1 using Taylor series expansion yields

vi =
1
2

(
2 + 2hµ + h2µ2

)(
vi − hv′i +

h2

2
v′′i

)

vi = vi − hv′i +
h2

2
v′′i + hµvi − h2µv′i +

h3

2
µv′′i + h2µ2vi − h3µ2v′i +

h4

2
µ2v′′i + O(h5) (18)

Dividing both sides by h and simplifying gives

v′i = µvi + O(h) (19)

Applying limit h→ 0 to Equation (19)

v′i = µvi (20)

Which is the original differential Equation (13) evaluated at grid point i.

5. Problem Formulation

Think about a steady, incompressible, laminar, two-dimensional fluid flow across the
sheet. The sheet moves toward the positive x-axis, and the y-axis is taken perpendicular to
the sheet. A strong magnetic field is made use of perpendicular to the sheet. The impact of
the IMF is considered, with the magnetic Reynolds number assumed to be high. Suppose
the value of Hy at the sheet is zero, i.e., Hy = 0. Let Uw = ax where a is the constant is the
velocity of the sheet. Transverse magnetic field and uniform electric field are applied to an
electrically conductive fluid. It is assumed that the magnetic field follows Ohm’s law and
is weaker than the electric field. The geometry of this flow phenomenon over the stretching
sheet can be seen in Figure 1. The governing equations are represented by adhering to the
boundary layer theory’s premise [45].

∂u
∂x

+
∂v
∂y

= 0 (21)

∂Hx

∂x
+

∂Hy

∂y
= 0 (22)

u
∂u
∂x

+ v
∂u
∂y
− µe

4πρ

(
Hx

∂Hx

∂x
+ Hy

∂Hx

∂y

)
= ν

∂2u
∂y2 −

µeHe

4πρ

∂Hx

∂x
+

σ

ρ

(
E◦B◦ − B2

◦u
)

(23)
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u
∂Hx

∂x
+ v

∂Hx

∂y
−
(

Hx
∂u
∂x

+ Hy
∂u
∂y

)
= α2

1
∂2u
∂y2 (24)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

ν

cp

(
∂u
∂y

)2
+ τ

(
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
)
+

σ

ρcp
(uB◦ − E◦)

2 (25)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − k1(C− C∞) (26)
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Subject to the boundary conditions

u = Uw, v = 0, Hx = H◦
( x

l
)
, Hy = 0, T = Tw, C = Cw when y = 0

u→ 0, Hx → 0, T → T∞, C → C∞, when y→ ∞

}
(27)

Under the transformations

u = ax f ′, v = −
√

aν f , η =

√
a
ν

y, Hx = H◦
( x

l

)
g′(η),

Hy = −
√

ν

a
H◦

(
1
l

)
g(η), θ =

T − T∞

Tw − T∞
, φ =

C− C∞

Cw − C∞

Equations (21)–(27) can be expressed as:

f ′2 − f f ′′ = f ′′ − β
(

g′2 + gg′′
)
+ M

(
E1 − f ′

)
(28)

δg′′′ = − f g′′ + f ′′ g (29)

− f θ′ =
1
Pr

θ′′ + Ec f ′2 + MEc
(

f ′ − E1
)2

+ Nbθ′φ′ + Ntθ
′2 (30)

− f φ′ =
1
Sc

φ′′ +
Nt

Nb
θ′′ − γφ (31)

subject to the boundary conditions

f = 0, f ′ = 1, g = 0, g′ = 1, θ = 1, φ = 1 at η = 0
f ′ → 0, g′ → 0, θ → 0, φ→ 0 when η → ∞

}
(32)

where

β =
µ◦H2

◦
4πρa2l2 , M =

σB2
◦

aρ
, δ =

α1

ν
, Ec =

U2
w

cp(Tw − T∞)
, Nb =

τDB(Cw − C∞)

ν
,

Nt =
τDτ(Tw − T∞)

νT∞
, Pr =

ν

α
, Sc =

ν

DB
, E1 =

E◦
B◦Uw

, γ =
k1

a
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The skin friction coefficients and local Nusselt and Sherwood numbers are given by

C f =
τw

ρU2
w

, Nux =
xqw

k(Tw − T∞)
, Shx =

xJw

DB(Cw − C∞)
(33)

where τw = −µ ∂u
∂y

∣∣∣
y=0

, qw = −k ∂T
∂y

∣∣∣
y=0

, Jw = −DB
∂C
∂y

∣∣∣
y=0

.

Under mentioned transformations, dimensionless skin friction coefficients and dimen-
sionless local Nusselt and Sherwood numbers are expressed as:

R
1
2
ex C f = − f ′′ (0) (34)

R−
1
2

ex Nux = −θ′(0) (35)

R−
1
2

ex Shx = −φ′(0) (36)

6. Results and Discussion

The suggested strategy’s second-order accuracy can be confirmed using Taylor series
expansion. The utilization of the Gauss–Seidel iterative approach in the suggested strategy
aligns well with the stability analysis that has been previously discussed. The stability
of the scheme affects its capacity to converge. The scheme is conditionally stable, which
leads to its conditional convergence. An additional iterative method called the Gauss-Seidel
method is adopted to find the solutions to the proposed scheme. It is necessary to provide an
initial estimate to initiate the solution procedure of the Gauss–Seidel iterative method. The
proposed scheme’s and the Gauss–Seidel iterative method’s convergence of the solution are
also dependent on stopping criteria written in MATLAB code. The ultimate solution will be
found if the provided stopping requirements are met; otherwise, calculations will continue
until the loop’s final limit is reached. The solution’s biggest norm over two iterations is the
basis for this contribution’s halting criterion. If the maximum value falls below the specified
tolerance in the proximity of zero, the iterative process will terminate, and the relevant
data will be employed for simulation purposes. The utilization of a shooting method is
also employed in the resolution of second- and high-order boundary value issues because
the suggested methodology exclusively addresses first-order differential equations. The
proposed scheme and the MATLAB solver fsolve for solving equations form the basis of the
shooting strategy for this contribution. Therefore, two sets of starting estimates are needed
for the solution method shown in this contribution. The one for the Gauss–Seidel iterative
approach is outlined earlier in this article, and the other is for the MATLAB solver fsolve.

The effect of magnetic and local electric factors on the velocity profile is depicted in
Figure 2. By increasing local electric parameters and magnetic factors, velocity exhibits
a dual characteristic. The impact of M and δ on f ′ and g′′ are depicted in Figure 3. The
velocity profile decays by rising M while g′ rises by enhancing δ. As the Lorentz force
opposing the velocity profile increases, the velocity profile degrades. The impact of Eckert
and Prandtl numbers on temperature profile θ is displayed in Figure 4. Eckert and Prandtl
numbers are increased and decreased to create the temperature profile. Internal friction
between fluid particles causes the temperature profile to climb as the Eckert number
increases. Lower thermal conductivity due to declining thermal diffusivity as the Prandtl
number rises is what causes the temperature profile to degrade. Temperature profiles θ as a
function of thermophoresis and Brownian motion parameters are shown in Figure 5. By
increasing thermophoresis and Brownian motion parameters, the temperature profile rises.
The improvement in the thermophoresis force causes the temperature profile to rise due to
increasing thermophoresis parameters. Cold particles travel toward the plate as a result of
the force of thermophoresis, which draws hot fluid particles to their vicinity.
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Figure 2. Impact of magnetic parameter β and local electric parameter on velocity profile using
M = 0.01, δ = 3. (a) E1 = 0.01; (b) β = 0.1.
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Figure 3. Impact of magnetic parameter M and reciprocal of magnetic Prandtl number on velocity
profile using. E1 = 0.01, β = 0.1. (a) δ = 3; (b) M = 0.5.
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Figure 4. Impact of Eckert number and Prandtl number on temperature profile using E1 = 0.1, β =

0.1, M = 0.05, δ = 1.4, Nt = 0.1, Nb = 0.1, Sc = 1.5, γ = 0.5. (a) Pr = 1.5; (b) Ec = 0.1.
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Figure 5. Impact of thermophoresis and Brownian motion parameters on temperature profile using.
E1 = 0.1, β = 0.1, M = 0.05, δ = 1.4, Ec = 0.1, Pr = 7, Sc = 1.5, γ = 0.5. (a) Nb = 0.1; (b) Nt = 0.1.

Additionally, the hotter particles are randomized in a different direction due to the
development in the Brownian motion parameter spreads. The temperature profile rises as
a result. Concentration profiles for varying Schmidt numbers and reaction rate parameters
are shown in Figure 6. The quality of the concentration profile decreases as the Schmidt
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number rises. As the Schmidt number increases, the concentration profile increases due to
the loss in mass diffusivity.
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Figure 6. Impact of Schmidt number and reaction rate parameter on concentration profile using.
E1 = 0.1, β = 0.1, M = 0.05, δ = 1.4, Ec = 0.1, Pr = 7, Nb = 0.1, Nt = 0.1 (a) γ = 0.5 (b) Sc = 1.5.

As demonstrated in Table 1, the results from this contribution have been confirmed.
The results will be the same if you use the MATLAB algorithm bvp4c. The bvp4c algorithm
provides a high-order technique. The results are also contrasted with those of earlier
research. Table 2 displays the numerical values of the skin friction coefficient as the
magnetic parameter, local electric parameter, and the reciprocal of the magnetic parameter
are varied. The skin friction coefficient changes depending on the local electric parameter,
the magnetic parameter, and the inverse of the magnetic Prandtl number. Table 3 shows
that the Eckert number, Prandtl number, and the thermophoresis parameter all affect the
local Nusselt number.

Table 1. Comparison of the proposed scheme with past research for finding numerical values of
− f ′′ (0) using E1 = β = 0, N(no. o f grid points) = 500.

M Hayat et al. [46] Yih [47] Proposed MATLAB bvp4c

0.0 1.000000 1.0000 1.0005 1.0002
0.5 1.224747 1.2247 1.2275 1.2247
1.0 1.414217 1.4142 1.4189 1.4142
1.5 1.581147 1.5811 1.5867 1.5811
2.0 1.732057 1.7321 1.7384 1.7321

Table 2. List of numerical values for skin friction coefficient using M = 0.1.

β E1 δ −f
′′
(0)

0.01 0.01 0.9 1.0523
0.1 1.0860

0.01 0.1 1.0404
0.01 1.5 1.0530
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Table 3. List of numerical values for local Nusselt number using β = 0.01, E1 = 0.01, M = 0.1,
δ = 1.5, Sc = 1.5, γ = 0.9.

Nt Nb Ec Pr −θ’(0)

0.01 0.01 0.1 5 1.3159
0.02 1.3000
0.01 0.02 1.2855

0.01 0.5 0.5491
0.1 5.5 1.3821

On the other hand, raising the Eckert or Prandtl number causes the local Nusselt
number to rise, while raising the thermophoresis or Brownian motion parameters decreases
it. Table 4 demonstrates how thermophoresis, Brownian motion, the Schmidt number, and
the dimensionless reaction rate influence the numerical values of local Sherwood numbers.
When the Brownian motion parameter, the Schmidt number, and the thermophoresis
parameter increase, the dimensionless response rate parameter falls.

Table 4. List of numerical values for local Sherwood number using β = 0.01, E1 = 0.01, M = 0.1,
δ = 1.5, Pr = 5, Ec = 0.1.

Nt Nb Sc γ −φ’(0)

0.01 0.02 1.5 0.9 0.9783
0.015 0.7723
0.01 0.025 1.0714

0.02 1.9 1.0974
1.5 1 1.0490

Using the Levenberg–Marquardt (LM) technique and computational scheme for fluid
flow in an electrical boundary layer due to an induced magnetic field is a novel approach
to this difficult problem. Finding an approximation to the solution of a system of nonlinear
equations is possible with the help of the LM method, a powerful optimization tool. As a
strong tool for solving partial differential equations, the finite element method (FEM) forms
the basis of the computational architecture. The governing equations for fluid flow in an
electrical boundary layer are solved using the LM method, which is then used to determine
the best values for the relevant parameters. The fluid’s temperature, the intensity of the
magnetic field, and viscosity are all examples of such variables. The governing equations
for the flow and temperature distribution are then solved using the computational scheme.

Some advantages of the LM method and computational methodology for fluid flow in
electrical boundary layers subject to an induced magnetic field are as follows.

1. Finding an approximation to the solution of a system of nonlinear equations is possible
with the help of the LM method, a powerful optimization tool. As a result, it can be
used effectively to address the difficult equations describing fluid flow in an electrical
boundary layer.

2. The finite element method (FEM), an effective method for solving partial differential
equations, forms the basis of the computational process. This guarantees a correct
and trustworthy solution to the equations.

3. The utilization of the LM approach and computational scheme enables the simulation
of various situations encompassing diverse viscosities, magnetic field intensities, and
temperatures. This characteristic renders it a valuable instrument for investigating
the fluid dynamics of electrical boundary layer flow.

The study of artificial neural networks for the inputs and outputs of the model under
consideration is also presented here. Three inputs represent the velocity, temperature,
and concentration profiles. For these simulations, a two-layer feed-forward network is
considered. For enough memory, the Levenberg–Marquardt backpropagation algorithm
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trains the network; otherwise, scaled conjugate gradient backpropagation is utilized by
nftool. A total of 70% of samples were used for training, 15% for validation, and 15% for
testing. In addition, 10 was the number of hidden neurons that were considered. For the
simulation of input and output of velocity, 891 iterations were consumed. One hundred
fifty-eight iterations for the network training corresponding to the temperature profile were
consumed. The algorithm consumed one hundred ninety-one iterations corresponding to
the concentration profile. The most successful velocity, temperature, and concentration
profile validation results are displayed in Figures 7–9, respectively. The error histograms
for the training, validation, and test datasets are displayed in Figures 10–12. These error
histograms also show zero error. The zero error is the minimum error achieved by the set
of samples for training, validation, and testing. Figures 13–15 show the regression analysis.
Figures 13–15 show how closely the output is related to the target.

Processes 2023, 11, x FOR PEER REVIEW 14 of 24 
 

 

The study of artificial neural networks for the inputs and outputs of the model under 
consideration is also presented here. Three inputs represent the velocity, temperature, and 
concentration profiles. For these simulations, a two-layer feed-forward network is consid-
ered. For enough memory, the Levenberg–Marquardt backpropagation algorithm trains 
the network; otherwise, scaled conjugate gradient backpropagation is utilized by nftool. 
A total of 70% of samples were used for training, 15% for validation, and 15% for testing. 
In addition, 10 was the number of hidden neurons that were considered. For the simula-
tion of input and output of velocity, 891 iterations were consumed. One hundred fifty-
eight iterations for the network training corresponding to the temperature profile were 
consumed. The algorithm consumed one hundred ninety-one iterations corresponding to 
the concentration profile. The most successful velocity, temperature, and concentration 
profile validation results are displayed in Figures 7–9, respectively. The error histograms 
for the training, validation, and test datasets are displayed in Figures 10–12. These error 
histograms also show zero error. The zero error is the minimum error achieved by the set 
of samples for training, validation, and testing. Figures 13–15 show the regression analy-
sis. Figures 13–15 show how closely the output is related to the target. 

 
Figure 7. Performance plot for velocity model using. 𝐸ଵ = 0.01, 𝛽 = 0.01, 𝑀 = 0.1, 𝛿 = 1.5, 𝐸௖ =0.1, 𝑃௥ = 5, 𝑁௕ = 0.02, 𝑁௧ = 0.01, 𝛾 = 1, 𝑆௖ = 1.5. 

0 100 200 300 400 500 600 700 800
10-10

10-8

10-6

10-4

10-2

100

Best Validation Performance is 2.6066x10-10 at epoch 891

M
ea

n 
Sq

ua
re

d 
Er

ro
r  

(m
se

)

891 Epochs

 

 
Train
Validation
Test
Best

Figure 7. Performance plot for velocity model using. E1 = 0.01, β = 0.01, M = 0.1, δ = 1.5,
Ec = 0.1, Pr = 5, Nb = 0.02, Nt = 0.01, γ = 1, Sc = 1.5.
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Figure 8. Performance plot for temperature model using E1 = 0.01, β = 0.01, M = 0.1, δ = 1.5,
Ec = 0.1, Pr = 5, Nb = 0.02, Nt = 0.01, γ = 1, Sc = 1.5.
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Figure 9. Performance plot for concentration model using E1 = 0.01, β = 0.01, M = 0.1, δ = 1.5,
Ec = 0.1, Pr = 5, Nb = 0.02, Nt = 0.01, γ = 1, Sc = 1.5.
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Figure 10. Error histogram for velocity model using E1 = 0.01, β = 0.01, M = 0.1, δ = 1.5,
Ec = 0.1, Pr = 5, Nb = 0.02, Nt = 0.01, γ = 1, Sc = 1.5.
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Figure 15. Regression plot for concentration model using E1 = 0.01, β = 0.01, M = 0.1, δ = 1.5,
Ec = 0.1, Pr = 5, Nb = 0.02, Nt = 0.01, γ = 1, Sc = 1.5.

7. Conclusions

An explicit numerical scheme has been proposed and some of its analysis was provided
when applied to the linear differential equation. Since the scheme can only be used for
higher-order initial value problems or a system of first-order ODEs, a shooting approach is
adopted for second- or third-order ODEs. The combined scheme has been applied to the
dimensionless heat and mass transfer model of boundary layer flow under the induced
magnetic field. Our findings have wider ramifications than just theoretical progress. The
insights generated from our computational framework and neural network approach can
aid in optimizing fluid systems in the real world. Better understanding and control of fluid
flow properties can assist the aerospace, automotive, and energy industries. These systems
potential for improvement in efficiency and performance has the potential to pave the
way for significant technological and resource utilization advances. More advanced fluid
phenomena and incorporating other physical elements can be considered by broadening the
scope of our computational method in future studies. Using new neural network topologies
and training techniques, our surrogate models can be more accurate and efficient. Our
study paves the way for future advancement and innovation in fluid dynamics research and
applications by providing a solid groundwork for further investigation and development
of computational approaches for electrical boundary layer fluid flow. The most significant
conclusions might be stated as:

1. As the magnetic parameter of the induced magnetic field increases, velocity exhibits
both growing and decreasing behavior.
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2. Increases in the reciprocal of the magnetic Prandtl number leads to larger horizontal
components of the magnetic field.

3. The neural network method has created three models describing velocity, tempera-
ture, and concentration profiles.

When applied to the fluid flow problem at the electrical boundary layer, the Levenberg–
Marquardt method and computational scheme prove to be a potent and flexible instrument.
They are useful for designing and optimizing systems using electrical boundary layer fluid
flow because they can be used to anticipate the flow and temperature distribution under
various scenarios. The methodology mentioned above can be employed in developing
and enhancing devices encompassing electrical boundary layer fluid flow, such as heat
exchangers and power generators.
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Nomenclature

u Horizontal component of velocity µe Magnetic permeability
v Vertical component of velocity ρ Density of the fluid
T Temperature of the fluid σ Electrical conductivity
C Concentration DB Brownian motion coefficient
Hx IMF’s component in the x-direction DT Thermophoresis coefficient
Hy IMF’s component in the y-direction cp Specific heat capacity
k1 reaction rate parameter Tw Wall temperature
T∞ Ambient temperature Cw Concentration at wall/sheet
C∞ Ambient concentration α1 = 1

4πρ Magnetic diffusivity of the fluid
β, M Magnetic parameters δ Reciprocal of the magnetic Prandtl number
Ec Eckert number Nb Brownian motion parameter
Pr Prandtl number Nt Thermophoresis parameter
Sc Schmidt number E1 Local electric parameter
γ Dimensionless reaction rate parameter
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