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Abstract: This study investigates and compares the experimental heat transfer performance and
simulation via computational fluid dynamics (CFD) of graphene nanoplatelets (GNP) and water
nanofluids GNP/water in the double-tube-type heat exchanger (DTHE). Tests were conducted with
water/water and GNP/water fluids, with the nanofluid for the hot-fluid circuit and water for the
cold-fluid circuit, with counterflow direction, varying the nanofluid concentrations by weight (wt%)
at 0.0125%, 0.025%, and 0.050%, the operating temperature at 50 and 60 ◦C, and Reynolds numbers
between 2000–6000. The results showed that 0.025 wt% GNP presented better thermal performance,
with a 28% increase in the temperature gain. The 0.025 wt% GNP had slightly better performance
for the Nusselt number (Nu), and the 0.05 wt% GNP had a slightly better thermal effectiveness.
The comparison between the experimental values showed good agreement with those calculated by
empirical correlations and the CFD model, with maximum and minimum relative error values of 9%
and 1%, respectively, when the Petukhov equation was used.

Keywords: double tube heat exchangers; heat transfer; nanofluids; graphene

1. Introduction

Given the current rise in global energy consumption, the generation and use of energy
have become a pressing issue worldwide. The high costs and growing use of fossil fuels
have raised concerns about the scarcity of these nonrenewable resources. As a result, large
industries have invested heavily in developing high-performance systems and devices that
can optimize the use of available resources to reduce energy consumption and improve
efficiency [1]. Energy savings can be achieved through efficient use and by avoiding
damage to the environment and depletion of resources in the long term. Some ways to
reduce energy consumption include conversion, conservation, and energy recovery [2].
Heat exchangers and/or recuperators are devices that have been helping to optimize the
use of inputs in different industrial processes, such as chemical, petrochemical, food, power
plants, pharmaceutical, environmental engineering, refrigeration, and air conditioning,
among other applications [3].

Scientists, engineers, and researchers have been attempting for decades to improve
the heat transfer efficiency of heat exchangers [4]. There are different heat exchanger
configurations, such as shell and tube, plate, coil, and double tube, among others, which
can be used in various heat transfer applications that require specific conditions and
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specifications for effective heat transmission. However, these types of equipment can
present a high investment cost, which has lead to the search for optimization methods, as
seen in the literature [5]. Models and optimization tools based on energy and financial
balances have been analyzed to improve the thermal–hydraulic performance [6–9].

Conventional heat transfer fluids have low transfer properties, which has led to an
increasing demand for developing fluids with better heat transfer performance [6,10]. One
solution is to incorporate suspended solid particles, called nanoparticles, of nanometric size
within the range 1–100 nm, into conventional fluids to increase their energy performance.
These new fluid configurations are called nanofluids (NFs) [11].

NFs are considered as a new class of engineering fluids and are used as new heat
transfer media, presenting a higher absorption capacity [12]. The trough thermal processes
of nanofluids in heat exchangers have several advantages, such as improved thermal con-
ductivity stability, as shown in the literature. Consisting of the dispersion of nanomaterials
in a base fluid, such as ethylene glycol, water, oils, or even ionic liquids, the thermal
properties (e.g., thermal conductivity) of nanomaterials are better than the base fluid [13].
They also present advantages in the application of heat exchangers not only because of
their thermophysical properties but also in the geometric parameters of the heat exchange
equipment and the working conditions. It can reduce the pressure drop and volume of
the heat exchangers when compared with the base fluids, and increase the effectiveness
of the heat exchanger regarding the nanofluid used [14,15], hence, leading to low energy
consumption and low economic cost [16,17].

Furthermore, due to their higher thermal conductivity compared to base fluids [18],
and high cooling potential, NFs provide excellent thermal performance in heat exchangers
used in thermal energy transport applications, promising higher heat absorption and heat
transport capacity, as shown in the literature [8,19].

The use of NFs in heat exchangers has gained attention in research worldwide due to
the solid particles in suspensions contributing to a greater and better heat exchange between
the fluids in the exchangers. The behavior of double-tube-type heat exchangers (DHTE)
using nanofluids has been the subject of several studies, as shown in the literature [20].

Moghadam et al. [21] performed an analysis and optimization of the thermohydraulic
system in a DTHE, with Fe3O4/water nanofluid and longitudinal for turbulent flow, evalu-
ating diameter ratio (DR) and performance ratio (PEC) parameters, with each parameter
being optimized by using the single objective function (SOF) and multiobjective function
(MOF) methods. The results showed that DR exerts the most and AR the least impact
on the performance of the analyzed heat exchangers. Nonetheless, the addition of 0.03%
nanoparticles in water leads to a 6.2% decrease in entropy generation number and a 13%
increase in irreversibility distribution ratio.

Analyzing the same heat exchanger configuration (DTHE) and using a CuO/water
nanofluid as the coolant, Khosravi et al. [22] numerically investigated the heat transfer
characteristics with different inner tube geometries. The results showed that the convective
heat transfer coefficient increased by up to 22% in the four-finned tube compared to the
smooth tube, and increased by 17% in the eight-finned tube with air and nanofluid as
working fluid as compared to the four-finned tube.

Testing the thermal and hydraulic performance of using nanofluid in DTHE heat
exchangers, Raei et al. [23] analyzed the pressure drop decrease and heat transfer perfor-
mance using a drag reduction agent (surfactant) in Al2O3/water nanofluid at different
concentrations in a finned tube heat exchanger. It was found that the nanofluid with a
weight concentration of 0.2% (without the drag reducing agent) increased the heat transfer
by 20% with a penalty of 5% increase in pressure drop. On the other hand, with a surfactant
concentration of 100 ppm and the highest concentration of nanoparticles (0.2% by weight),
there was an overall increase in heat transfer coefficient at 17.2% and a reduction in friction
factor at 4.8% compared to water.

Bashtani and Esfahani [24] numerically studied a DTHE with a single and a corrugated
tube, assuming three different wave amplitudes and water flow in parallel, where it was
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determined that the Nusselt number for the DTHE with corrugation was 1.75 times that
of the single tube DTHE exchanger. Wijayanta et al. [25] performed a study with double
delta-wing ribbon inserts in a DTHE, using water as the working fluid and analyzing the
heat transfer characteristics, varying the Reynolds number from 5300 to 14,500, applying
wing widths at 0.31, 0.47, and 0.63, and using CuO/water nanofluid as the cooling fluid.
The Nusselt number, thermal performance factor, and friction factor of the heat exchanger
increased as the proportion of the width of the double-delta wing tapes increased.

It is known that an important aspect to consider in DTHE heat transfer is increasing
the convective coefficient. In this regard, when analyzing the incorporation of Al2O3/water
nanofluid into a counterflow DTHE, Bahmani et al. [26] found that increasing the volume
fraction of the nanoparticles or the Reynolds number leads to an increase in the Nusselt
number and the convective heat transfer coefficient. The maximum thermal efficiency and
average Nusselt number increased by 30% and 32.7%, respectively, compared to water.

Another important factor that has been investigated is the pressure drop, in this case,
the friction factor that the introduction of nanoparticles into the working fluid can cause, as
shown in Kumar et al. [8]. Heeraman et al. [27] reported an experimental study targeting
heat transfer and friction factor using a double tube heat exchanger. Concavity grooves
were placed to increase heat transfer and slightly reduce pressure drop. The effect of using
tubes with different corrugation diameters on heat transfer and friction factor properties
was discussed. The result showed that modifications of corrugated tubes provide an
excellent and economical alternative to improve heat transformation in heat exchangers.
It was found that using water, lower operating parameters, and a higher Reynolds (Re)
number resulted in better thermal conditions. The new geometry caused a lower pressure
drop despite its higher convective heat transfer coefficient. The results also showed that
increasing the nanofluid concentration and Re number increases pressure drop.

In an experimental analysis on a DTHE, Heeraman et al. [27] tested friction factor
and effectiveness using Fe3O4/water nanofluid for the hot circuit and water for the cold
circuit in different concentrations (0.005%, 0.010%, 0.030%, and 0.060%, by weight), with
longitudinal tab inserts with aspect ratios 1, 2, and 4, and a wide Reynolds number range
(15,000–30,000). The results showed that the heat transfer process increased with nanopar-
ticle concentration and Reynolds number. However, this increase was further intensified
with the reduction in aspect ratio values for the longitudinal insertions of the strip.

Wu et al. [28] experimentally investigated the pressure drop and convective heat
transfer characteristic using Al2O3/water nanofluid in a helical DTHE, varying nanofluid
concentrations (0.78% to 7.04%, by weight) and applying laminar and turbulent flows. The
use of nanofluid showed remarkably similar behavior (in pressure drop and performance)
to that in tubes with helical coils.

Nagaraju et al. [29] presented a new alternative elliptical tube manufactured from
graphene nanofluids to improve the convection heat transfer characteristics. The work
was divided into two parts, the first part aiming at the experimental configuration using
circular tubes and the second part through developing a CFD model using the finite volume
method.

It was found that placing the oval tube in an alternate direction tends to improve
the secondary flow region with a high eddy, leading to a lower thickness in the thermal
boundary layer. On the other hand, the Nusselt number increases by an average of 10%,
29%, and 39% for graphene nanofluids prepared using weight concentrations of 0.05%, 0.1%,
and 0.2%, respectively, considering 80 ◦C temperature. In the same context, however, a
performance study was carried out considering a microchannel exchanger using nanofluids
with graphene quantum dots [30]. The graphene quantum dot nanofluid considered had
0–0.5% concentrations and Reynolds numbers ranging from 50 to 200 (hot fluid) and
Reynolds numbers from 100 (cold fluid). The study had a 3D numerical approach based
on the finite volume technique. The results revealed that with Reynolds numbers of 50
and 100, using the nanofluid tends to significantly improve the heat transfer rate, with a
slight increase in the pressure drop. However, for Reynolds numbers 150 and 200, using
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the nanofluid imposes a significant pressure drop on the system. These results indicate
that using the graphene quantum dot nanofluid allows for excellent performance between
Reynolds numbers of 50 and 100. For Reynolds numbers 150 and 200, the use of the
nanofluid is limited by the significant increase in the pressure drop.

Elbadawy et al. [19] presented a numerical study on fluid and heat transfer character-
istics considering different nanofluids (Al2O3–H2O, TiO2–H2O, and SiO2–H2O), as well as
different microchannel heat sink configurations (rectangular, triangular, trapezoidal, and
circular). The average heat transfer coefficient h and the pressure drop ∆p quantify the
fluid flow and heat transfer characteristics in each microchannel configuration on the heat
transfer (MCHS) configuration and for each nanoparticle concentration. It was found that
the best heat transfer coefficient was obtained with Al2O3-H2O compared to other types of
nanoparticles and pure water. In addition, the best geometric configuration for the system
was with the triangular-type microchannel heat sink, with a higher pressure drop due to
the smaller hydraulic diameter.

The literature review showed that studies have analyzed other energy performance
parameters in double-tube-type heat exchangers from the experimental or numerical points
of view, seeking promising and innovative nanofluids based on graphene nanoparticles
(GNP). However, no specific conclusions have been made on the effectiveness, energy
performance, and hydrodynamic behavior of the system. Therefore, the aim of this work
is to investigate and compare the heat transfer performance of GNP/water nanofluids in
the double-tube-type heat exchanger (DTHE), through experimental/numerical analysis
via CFD. The study considers different fluids, such as water/water and GNP/water, and
a counterflow heat exchanger. A sensitivity analysis was performed to test the energy
performance of the fluids with or without nanofluid in the heat exchanger, and varying the
nanofluid concentrations, operating temperature, and at different Reynolds numbers.

The significance and novelty of the study presented is its use of nanofluid, specifically
graphene as nanoparticles, which reflects a new component that could help design smaller
heat exchangers, lower-cost devices, greater efficiencies, and even less head loss along the
system by adding a sufficient volume of nanofluid at a specific concentration to enrich the
heat and mass transfer process for industrial applications.

2. Nanofluids Preparation and Characterization

There are several methods described in the literature for development and improve-
ment of GNP nanofluids production. Depending on the quality of the desired product and
the intended application, one or more methods can be used [31,32]. Two basic methods
are used to synthesize nanofluids: the one-step and the two-step methods. In the one-step
method, the nanofluid is prepared simultaneously by producing and dispersing nanopar-
ticles in the liquid base, which includes the chemical deposition methods of liquids and
vapors. It includes only one step: drying, storage, transport, and stable dispersion of the
nanoparticles to minimize their agglomeration [33]. However, this method is not feasible
for large-scale nanofluids due to its high production cost. The two-step method was the
one developed for the fabrication of the GNP nanofluids used in this research. It is the
most widely used method to synthesize nanofluids, and it consists of synthesizing the
nanoparticles in the form of ultrafine dry powder, which is subsequently dispersed in the
base fluid by physical processes (ultrasound, magnetic stirrer, and homogenizer) and by
using a dispersion agent to avoid nanoparticle agglomeration [33–36].

The fabrication of GNP nanofluids was performed by electrochemical exfoliation, as
described by Hernandez et al. [37]. Initially, pre-exfoliation occurred, where the graphite
bar was placed in a three-way flask with 100 mL of sodium hydroxide solution, connected to
an ICEL PS-1500 Source with the power at 10.0 V for 1 h at a constant voltage. Subsequently,
the electrodes were transferred to a 0.5 M sulfuric acid solution under a voltage of 7.5 V for
24 h. At the end of exfoliation, the precipitate is filtered with a paper filter and washed with
distilled water, ethanol, and propanol for further removal of impurities and pH regulation.
The exfoliated graphite in powder form was placed in an oven to dry at 60 ◦C for 24 h. It is
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then ground and dissolved in 500 mL of distilled water with the addition of the surfactant
Sodium Lauryl Ether Sulfate at different concentrations and placed in a Bandelin ultrasonic
homogenizer for 3 h to finish the exfoliation of graphite particles to produce the GNPs. At
the end of the homogenization, the GNP nanofluid was dissolved in 7 L of distilled water
so that it could be used in the heat exchanger tests.

Figure 1 presents the scanning electron microscopy (SEM) image of the morphology
and structure of the GNPs, made from the graphite bar. Its analysis was characterized using
a Tescan MIRA3 SEM. The SEM image indicates the formation of sheet-shaped graphene
nanolayers, a material formed by sheets [38] that are interconnected and have roughness on
their surface. It can be observed Figure 1a that the ordered stacking of at least four graphene
layers in a nanoplatelet, in a two-dimensional structure, confirming the multilayered nature
of analyzed graphene sheets, as indicated by the arrow. In Figure 1b, note its rough surface,
which can be compared with results found in the literature [39,40].
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For analysis of nanoparticle stabilization in the graphene nanofluid, time-sequenced
sample decantation tests were performed at 0, 4, and 24 h for the exfoliated graphite.
Sodium Lauryl Ether Sulfate (Lauryl) and Sodium Polystyrene Sulfonate (PSS) were used
as surfactants, which are the two most commonly reported in the literature for use in heat
exchanger nanofluids. Two observations can be made: Lauryl showed greater temporal
stability than PSS; and after 24 h, Lauryl presented no sedimentation or agglomeration
of the nanoparticles, with visual inspection, indicating that it allows the formulation of
nanofluids that have a lower tendency to precipitation in use, verifying the stability of
graphene nanofluids in heat exchange processes. These analyses are consistent with the
literature [41,42].

Figure 2 presents the diffractograms obtained from the commercial graphite pow-
der and the sample obtained by the electrochemical process of exfoliation, through the
technique of X-ray diffraction (XRD) performed using a model XRD-7000 (Shimadzu Cor-
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poration, Kyoto, Japan) diffractometer. The deflection of the angle of the X-ray beam is
presented horizontally and the intensity vertically.
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Figure 2. Diffractograms of graphite samples.

The exfoliated graphite sample shows the same diffraction peaks as the powdered
graphite, but with a reduced intensity, which indicates a smaller amount of material pre-
senting the same crystallinity as the graphite. The maximum position of the peak appears
at 2θ = 26.5, which is attached to the exfoliated graphite 2θ = 26.8, clearly demonstrating
that the material is considered as a line structure. This can be interpreted as a strong
indication for the efficiency of the exfoliation performed. Based on properties reported by
other researchers [43,44], the XRD structure corresponds to the structure of GNP.

Figure 3 shows the sedimentation process of the GNP nanofluid. Owing to the
concentration of nanofluids, sedimentation is observed after 48 h of rest. However, the
pumping system of the analyzed heat exchanger was able to redisperse the nanoparticles,
and changes in the thermal performance of the nanofluid after the repetitions of the
experiments were not observed.

Processes 2023, 11, x FOR PEER REVIEW 7 of 28 
 

 

 

Figure 3. Sedimentation of the GNP nanofluid. 

3. Experimental Setup and Procedure 

For the experimental analysis, a test bench was used, as shown in Figure 4. The tests 

were performed with water/water and GNP/water fluids, with the nanofluid for the hot-

fluid circuit and water for the cold-fluid circuit, with counterflow direction. The nanofluid 

concentrations were varied by weight, 0.0125%; 0.025%, and 0.050%, with operating tem-

perature at 50 and 60 °C, flow rates of 2.5, 2.0, 1.5, 1.0, and 0.5 L/min for the hot circuit, 

and a constant 2.5 L/min for the cold circuit. The Reynolds numbers were between 2000 

and 6000. The system used K-type thermocouple temperature measuring sensors with a 

resolution of 0.1 °C for the external and internal temperature reference, and an instrument 

error of 0.05 °C for the measurement of temperature. For the measurement of the volu-

metric flow of the fluids, manually adjusted turbine-type flow meters with an accuracy of 

±1% were used. A proportional–integral–derivative (PID) controller with an electric re-

sistance was used to heat the hot fluid, and a 7 L capacity storage tank and a centrifugal 

pump were used for recirculating and storing the fluid of the hot circuit, which operates 

within a closed loop. 

 

Figure 4. Schematic diagram of the DTHE experimental system. 

Figure 3. Sedimentation of the GNP nanofluid.



Processes 2023, 11, 2735 7 of 27

3. Experimental Setup and Procedure

For the experimental analysis, a test bench was used, as shown in Figure 4. The
tests were performed with water/water and GNP/water fluids, with the nanofluid for
the hot-fluid circuit and water for the cold-fluid circuit, with counterflow direction. The
nanofluid concentrations were varied by weight, 0.0125%; 0.025%, and 0.050%, with op-
erating temperature at 50 and 60 ◦C, flow rates of 2.5, 2.0, 1.5, 1.0, and 0.5 L/min for the
hot circuit, and a constant 2.5 L/min for the cold circuit. The Reynolds numbers were
between 2000 and 6000. The system used K-type thermocouple temperature measuring
sensors with a resolution of 0.1 ◦C for the external and internal temperature reference, and
an instrument error of 0.05 ◦C for the measurement of temperature. For the measurement
of the volumetric flow of the fluids, manually adjusted turbine-type flow meters with an
accuracy of ±1% were used. A proportional–integral–derivative (PID) controller with an
electric resistance was used to heat the hot fluid, and a 7 L capacity storage tank and a
centrifugal pump were used for recirculating and storing the fluid of the hot circuit, which
operates within a closed loop.
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The cold-water circuit of the test bench is connected to an external water supply from
the city’s supply network, making it an open circuit. This heat exchanger has thermocouples
at the inlets and outlets of the hot and cold fluids, as well as thermocouples for checking the
average temperatures of the circuits. Ten readings were obtained at intervals of 1 s each, for
each flow rate, totaling 50 readings for each fluid, 200 in all for each temperature, through
the VDAS software of the bench. All the information collected is stored for analysis and
statistical treatment.

Table 1 shows the values for the statistical analysis of the uncertainties and errors of
the collected data. These errors were within ±1%, indicating that there is good agreement
between the data. The results prove the reliability of the test bench for heating, transfer,
and fluid flow measurements.

Table 1. Average percentage of measurement errors.

Experiments Nanofluids Errors (%)

1 Water ±1.0
2 0.0125 ±1.0
3 0.025 ±1.0
4 0.050 ±1.0
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3.1. Heat Exchanger DTHE

The double tube heat exchanger (DTHE), shown in Figure 5, is the simplest exchanger
used in processes, consisting of two concentric tubes of different diameters, usually with
two straight sections and with appropriate connections at the ends of each tube. In this
design, one fluid flows through the smaller tube while the other flows through the annular
space between the two tubes. The heat exchange occurs through the wall of the inner
tube [45,46].
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Table 2 shows the complete specifications of the heat exchanger used on the test bench.
The main advantages of this type of exchanger are the ease of construction, assembly, area
expansion (i.e., additional area can be installed in an existing unit), and maintenance, with
easy access for cleaning on both sides of flow, depending on the end connections [47].

Table 2. Technical specifications of the DTHE.

Items Specification Items Specification

Breadth (mm) 500 External diameter (mm) 30
Depth (mm) 260 Internal diameter (mm) 20
Height (mm) 160 Inner tube: Material: stainless steel
Weight (kg) 3.5 External diameter (mm) 1

Shell tube (outer): Material: transparent acrylic Internal diameter (mm) 10
Average transfer area of heat (m2) 0.02

3.2. Thermophysical Properties of GNP/Water Nanofluids

For the analyzed thermophysical properties of the nanofluids with graphene nanopar-
ticles, a KD2 Prothermal needle from Decagon Devices, Inc. (Pullman, WA, USA), was
used. It uses the transient hot-wire method to measure the thermal conductivity with
an accuracy of ±5%. A Haake Viscotester 6 L plus viscometer measured the viscosities
of the nanofluids, and the measurement of their densities was performed by electronic
weighing and by Equation (1), using a pycnometer and a precision balance. The specific
heats were calculated using the method of Xuan and Roetzel [48], in which they modified
the model of Pak and Cho [49] by considering the difference between the specific masses of
the nanoparticles and the base fluid, thus proposing a new model shown in Equation (2).

ρ =
Mn f (kg)
Vn f (m3)

(1)

Cn f =
(1−∅V)ρ f bCp, f b

+∅VρnpCp,np

(1−∅V)ρ f b +∅Vρnp
(2)
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Table 3 presents the results of the thermophysical properties of graphene nanofluids
at 25 ◦C used in the experimental tests and CFD simulation on the DTHE.

Table 3. Thermophysical properties of graphene nanofluids.

wt (%) k (w/mK) ρ (Kg/m3) µ (Kg/ms) Cp (J/kg.k) T (◦C)

Water 0.62 937.5 0.000891 4120.0

25
0.0125 0.57 947.1 0.000919 3842.0
0.025 0.6 964.0 0.000948 3846.1
0.050 0.63 971.5 0.001008 3854.5

Thermal conductivity is an essential parameter to be studied and analyzed when
considering nanofluids [50]. The literature recommends not using low concentration per-
centages to avoid increased viscosity and sedimentation of the nanofluid [51,52]. Although
there is a slight decrease in the thermal conductivity of the nanofluid with the base ele-
ment (water), the values were very similar, with maximum relative differences of 8% for
the concentration of 0.0125 wt% and minimum of 3% for the concentration of 0.025 wt%;
however, in the case of the concentration of 0.050 wt%, there was a slight increase of
approximately 1.6%. These values found follow a similar behavior to that discussed in
the work of Yarmand et al. [51], where for concentrations of 0.06 wt% and 0.02 wt%, the
thermal conductivity values were 0.60 and 0.631, respectively, being within the range of
experimentation due to the uncertainties in the experimental measurements. It is essential
to point out that the thermal conductivity coefficient tends to increase with increasing
concentration and/or temperature; however, there is no rule of proportionality or linear-
ity since the volumetric fraction is related to the nature of the hybrid nanoparticle and
the fluid base selected. The improvement in the effective thermal conductivity is linked
to the high thermal conductivity of the GNPs and Pt nanoparticles. The increase in the
concentration of nanoparticles tends to decrease the distance between particles (free path)
due to the percolation effect. This type of behavior has been reported and discussed in the
literature [10,31,34,52].

The order of the tests and the concentrations of graphene nanofluid by weight (wt%)
used can be seen in Table 4.

Table 4. Tests with graphene.

Experiments Cold Hot Weight Concentration (wt%)

1 Water Water Water
2 Water Graphene 0.0125
3 Water Graphene 0.0250
4 Water Graphene 0.0500

3.3. Experimental Data Processing

All data from the experiments were collected and recorded by the Versatile Data
Acquisition System (VDAS) with values of the inlet and outlet temperatures for the hot and
cold circuit together with their flow rates. The initial parameters are calculated using the
following equations [53]:

A = πDiL (3)
.

m = ρVA (4)

V =
4

.
m

ρπD2
H

(5)
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The heat transfer rates and their average rate can be calculated using the following
equations [54]:

qw =
.

mwCpw(Tc2 − Tc1)w (6)

qn f =
.

mn f Cpn f (Th2 − Th1)n f (7)

Qave =
qn f + qw

2
(8)

The convective heat transfer coefficient (Equation (10)), where phase change of a fluid
occurs, can be expressed and calculated by Newton’s law for cooling [55].

q′′ =
Qave

A
(9)

h =
q′′

Twall − Tn f
(10)

The method used to choose a heat exchanger that allows for achieving a specific
temperature change with known mass flow rates is the logarithmic mean temperature
difference (LMTD) method [56]:

∆TLMTD =
∆T2 − ∆T1

ln
(

∆T2
∆T1

) (11)

where ∆T1 and ∆T2 are the temperature differences between the hot and cold fluid at both
ends (inlet and outlet) of the heat exchanger.

∆T1 = TH2 − TC1 (12)

∆T2 = TH1 − TC2 (13)

Through Equations (3), (9) and (11) the overall heat transfer coefficient (U) can be
calculated using the relationship reported by Bahiraei and Monavari [4]:

U =
Qave

∆TLMTD A
(14)

The Reynolds number can be calculated using Equations (15a) and (15b), which
represent the calculated Reynolds number for the tube and annulus, respectively [57].

Ren f =
ρVDi
µ

=
4

.
m

πDiµ
(15a)

Rew =
ρVDh
µ

=
4

.
m

π(De + Di)µ
(15b)

To determine the friction factor for the nanofluids, Equation (16) was used, according
to the pressure drop in the test section [58].

f =
∆P

L
D

ρV2

2

(16)

The Nusselt number and Prandtl number can be calculated using Equations (17) and
(18), respectively [59].

Nu =
HDH

k
(17)
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Pr =
Cpµ

k
(18)

To find the pressure drop (∆P) associated with the additional height that must be
increased to the fluid by the pump used, Equation (16) is applied. Once the pressure drop
is known, the power required at the pump (Pumping Power—

.
W) to overcome the flow

resistance associated with this pressure drop can be determined from Equation (19) [60].

.
W =

.
m ∗ ∆P

ρ
(19)

The heat transfer effectiveness (ε) (Equation (22)) in a heat exchanger is defined
through Equation (9) and the maximum possible heat transfer rate (qmax). The latter can be
determined through Equation (21), where Cmin is the lowest value found among the heat
capacity rates (Equation (20)) [24].

Cw =
( .
mCp

)
w (20a)

Cn f =
( .
mCp

)
n f (20b)

qmax = Cmin(Th1 − Tc1) (21)

ε =
Qave

qmax
(22)

To determine the efficiency (η) (performance index) regarding thermal exchange with
the use of graphene-based nanofluids in comparison to water, Equation (23) [61].

η =
Qave

∆P
(23)

4. CFD Modeling and Mesh Generation

Computational modeling of the double tube heat exchanger was performed by ap-
plying the CFD method, using SolidWorks for the physical modeling and separating the
solid and fluid domains. To model the turbulent flow in the investigation and ensure
the accuracy of the results, the k-ε model was implemented in the numerical procedure,
including all transport equations representing the tuflow’s turbulent properties for internal
and bounded flows and the wall boundary condition [54]. This model was used since it is
the most common model using CFD to simulate medium flow characteristics for turbulent
flow conditions. The k-εmodel is a two-equation model that provides a general description
of turbulence using two transport equations.

Simulations were performed using the same geometry and dimensions as those for
the DTHE in the experimental tests and under the same operating conditions. Figure 6
shows the heat exchanger model via CFD, with the hot-nanofluid (red) and cold-water
(green) flow circuit differences. The boundary conditions used in the CFD simulation were
inlet, outlet, and wall.
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For mesh generation, ANSYS meshing was used, considering a tetrahedral mesh
through the skewness quality metric, with 70,077 elements, as shown in Figure 7.
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The analysis of the mesh was based on validation with experimental results using
water as the working fluid. This approach eliminated the need for further refinement of
the mesh since it was already refined to an error tolerance with the experimental data. The
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mesh was verified through mesh analysis, which involved checking the gain in accuracy
with the increase in the number of nodes. The criterion used for this analysis was based on
the accuracy of the K-type thermocouples used in the experiment, which had an accuracy
of 2% of the reading value. The gain in accuracy was found to be below 1%, indicating that
the mesh was sufficiently accurate for the experiment.

In different views, Figure 8 illustrates the monitoring points corresponding to the
thermocouple positions equal to the real model, for validation purposes of the CFD model.
The solver used was ANSYS CFX, which is based on the finite volume technique and
combines an advanced solver with powerful pre- and post-processing features. The CFX
solver is responsible for solving the Navier–Stokes equations and other equations inserted
to establish the heat and mass transfer phenomena through the finite volume method [62].
Initially, the heat exchanger operation was simulated with water only in the two flow
circuits to validate the model accuracy by comparing the numerical and experimental
results.
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Governing Equations

To analyze the nanofluids in the heat exchangers, transport equations were used.
Conservation of mass, conservation of momentum (Navier–Stokes), and conservation of
energy were solved with effective properties. The fluids were considered Newtonian with
permanent incompressible flow, with single-phase turbulent countercurrent motion in
smooth tubes, i.e., no roughness in the flow. The relevant governing equations in their
general forms are as follows [56]:

Conservation of mass:
∇·

(
ρ
→
ν
)
= 0 (24)

Conservation of momentum:

∇·
(

ρ
→
ν
→
ν
)
= −∇+∇·

(
µ∇→ν

)
(25)

Conservation of energy:

∇·
(

ρ
→
ν CpT

)
= ∇·(k∇T) (26)

5. Results and Discussion

The exposition of the results is firstly performed through the validation of the exper-
imental and numerical analyses in the heat exchanger using only water and comparing
with other models under study, through the analyses of the Nusselt number and the fric-
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tion factor. Subsequently, the analyses of the results for the heat exchanger in the energy
behavior parameters are presented.

5.1. Comparison of the Results (Numerical–Experimental) Validation of Study

The nondimensional Nusselt numbers were used as validation parameters for the
numerical study. Experimental data were used to compare with those predicted by stan-
dard correlations to validate the test bench and evaluate the measurement uncertainties.
The empirical correlations used for determining the Nusselt numbers from the experi-
mental data were Dittus–Boelter [63,64], Gnielinski [65], and Petukhov [66], respectively,
Equations (27)–(29) (see Table 5). The Nusselt number considered was for fluids in com-
pletely developed turbulent single-phase flows in smooth tubes. The Dittus–Boelter equa-
tion is one of the most often used equations in the literature, but with implicit errors up
to 25%. However, the last two equations are more complex, but with better accuracy and
considerably reduced errors, around 10%. Figure 9 shows the comparison of the experimen-
tal results through the empirical correlations: Dittus–Boelter (Equation (27)), Gnielinski
(Equation (28)), and Petukhov (Equation (29)), with the values numerically determined
through the model developed via CFD.

Table 5. Empirical correlations used to determine the Nusselt number.

Nu = 0.023Re
4
5 Prn

Re ≥ 10, 000
0.7 < Pr < 160

L
D ≥ 10

(27)

Nu =
f
8 (Re−1000)Pr

1+12.7( f
8 )

0.5
(

Pr
2
3 −1

) 2300 < Re < 5·106

0.5 < Pr < 2000
(28)

Nu =
f
8 RePr

1.07+12.7( f
8 )

0.5
(

Pr
2
3 −1

) 104 < Re < 5·106

0.5 < Pr < 2000
(29)
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Figure 9. Comparison of the CFD numerical and experimental results through the empirical correla-
tions: (a) fluid temperature 50 ◦C; (b) fluid temperature 60 ◦C.

Figure 9a,b present the experimental results using the empirical correlations, consid-
ering the average fluid temperatures of 50 and 60 ◦C, for the calculation of the Nusselt
numbers (Nu) in the DTHE and through the CFD simulated with water, as a form of
validation between the numerical and experimental models, respectively.

The values of the Nusselt numbers determined from the experiments showed good
agreement with those calculated by the empirical correlations and the CFD model, being
able to simulate the heat transfer characteristics of graphene-based nanofluids. The largest
relative errors found between the correlations and the numerical model values were 31%,
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36%, and 9%, and the smallest relative errors were 21%, 13%, and 1% for the Dittus–Boelter,
Gnielinski, and Petukhov correlations, respectively. Besides the error propagation in the
experimental values, approximately 5%, this emphasizes that even with these divergences
the values obtained are within the ranges considered by the numerical and experimental
uncertainties of the correlations. Therefore, it can be stated that the model developed via
CFD was able to adequately represent the behavior of the convective heat transfer coefficients
for the double tube heat exchanger. Furthermore, one can see that the divergence between
numerical and experimental values was found with the use of the Petukhov equation, which
more accurately represents the Nusselt number values, thus confirming that the model
can accurately reproduce the results found in the actual operation of the double tube heat
exchanger, with maximum and minimum relative error values of 9% and 1%. The results in
Figure 8a,b show similar behavior to those presented in the literature [67–69].

A relative difference between the results found experimentally and those obtained
numerically was observed, in some cases analyzed, due to the materials used, deviations
in the thermophysical properties of the nanofluids, and even in the uncertainties of the
sensors and equipment used in the measurements. One of them is the type of water
used in the experiments, which was supplied by the utility in the state, and has minerals
and impurities, which were not taken into consideration in the numerical simulation
due to the increased complexity in the model. Another source of deviation might be the
lack of a better mesh refinement that would help approximate the experimental results.
Finally, the environmental conditions to which the exchangers are exposed (external natural
convection), were not considered in the CFD simulation performed and might also be a
source of errors.

The CFD analysis showed great potential in representing the thermohydraulic be-
havior of heat exchangers using graphene nanofluid for other concentrations, thereby
increasing the scope of the analysis, in addition to the results found in the experimental
tests.

5.2. Behavior of the Nanofluids and the Water on the DTHE

This section shows the behavior resulting from the addition of graphene nanoparticles
in water to verify the thermal and hydraulic performance, and its overall behavior effect
when compared to the heat exchanger reference fluid, in this case, water.

5.2.1. Nusselt Number Behaviors of the Nanofluids and the Water on the DTHE

The behavior of the Nusselt numbers for pure water and graphene nanofluids with
concentrations of 0.0125, 0.025, and 0.05 wt% was analyzed based on experimental results.

Figure 10a (left side) and Figure 10b (right side) show that the addition of graphene
nanofluids to the general fluid results in an energy gain for thermal performance in heat
exchange in the DHTE. For instance, the Nusselt numbers with the nanofluid of 0.025 wt%
concentration by weight showed a percent increase of 6.66% and 4.89% compared to water.

In contrast, for the simulated results, the highest Nusselt number was found for the
0.0125 wt% concentration (Figure 9a) compared to water, which was 3.44%. The lowest
standard error found was for the experimental and CFD nanofluid concentration of 0.025
wt% and 1.36%, as shown in Figure 9a. This analysis can also be seen in the literature [57,70].
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Figure 10. Behavior of Nusselt numbers as a function of Reynolds number considering water as the
reference fluid, and graphene nanofluids with 0.0125, 0.025, and 0.050 wt% concentrations: (a) fluid
temperature 50 ◦C; (b) fluid temperature 60 ◦C.

5.2.2. Friction Factor Behavior of the Nanofluids and the Water on the DTHE

The correlations for the friction coefficients in turbulent flows were based on experi-
mental studies, as it is difficult to manage turbulent flow theoretically [71]. This procedure
of comparing results has been used in several studies of flow and correlations, as can be
seen in the literature [72,73].

An important parameter to be verified in heat exchangers is the friction factor as a
function of the pressure drop along the equipment. Therefore, the following correlations
were considered to evaluate this parameter: Petukhov [67], Blasius [74], Von Kármán [75],
Prandtl [71], and Colebrook [76], as shown in Table 6.

Table 6. Equations used to determine the friction factor.

f = (0.790ln(Re)− 1.64)−2

2300 < Re < 5·106 (30) Petukhov [66]

f = 0.3164Re−0.25

3000 < Re < 105 (31) Blasius [74] 1√f = −2log
(

2.51
Re√f

)
(32) Von Kármán [75]

1√f = −2log (33) Prandtl [71] 1√f = −2log
(

2.51
Re√f +

E
D

3.7

)
(34) Colebrook [76]

For smooth pipes with fully developed turbulent flow, the friction factor can be
calculated using the explicit Petukhov equation [66] for water as a base fluid. Stainless-
steel pipes were used in this work and can be considered smooth pipes with negligible
roughness.

Figure 11 presents the variation in the friction factor as a function of the Reynolds
number for water, considering the correlations presented.
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Figure 11. Behavior of the friction factor as a function of the Reynolds number through empirical
correlations, considering the water as the reference fluid.

The results obtained using water as the working fluid in the heat exchangers through
the empirical correlations cited in the literature [77,78] showed a coherent behavior regard-
ing the friction factor and its relationship with the pressure drop in the system. The values
found for the friction factors showed good agreement with an 8% range in maximum
relative error and a minimum of 0.04% when compared to the Blasius equation. These
deviations tend to be smaller for Reynolds values above 8000, where the values are almost
superimposed on each other. This indicates good accuracy between the values found since
it is pertinent to note that these empirical correlations present errors of uncertainty in the
calculations. Furthermore, the uncertainties are within ±5%, indicating a reliable exper-
imental setup. Taking the values determined by the Petukhov correlation as a reference,
being the one used for smooth pipes with fully developed turbulent flow, the maximum
relative errors were 4.78%, 7.99%, 5.10%, and 5.13%, and the minimum ones were 0.71%,
0.04%, 1.73%, and 1.75%, among the other correlations of Colebrook, Blasius, Prandtl, and
von Kármán, respectively.

Figure 12 presents the variation in the friction factor relative to the Reynolds number
for water, and different concentrations of graphene nanofluids via the Petukhov equation.

There is an increase in the friction factor as the concentration of the nanofluid by
weight of GNP/water increases, and at the same time, there is a decrease in this friction
factor as the Reynolds number increases.

Graphene nanofluids showed slightly larger friction factors than indicated for the base
fluid (water), with maximum relative errors of 1.10%, 2.19%, and 4.46% for the concentration
of 0.0125, 0.025, and 0.050 wt% respectively. The friction factors of the GNP/water nanofluids
in this study are similar to the results reported in several works [57,79,80] that used graphene
nanofluids. Therefore, although the values of the factors are larger, the ranges for the values
are insignificant and are within the error uncertainties (±5%), and the errors are extended by
Petukhov’s empirical correlation.
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Figure 12. Behavior of the friction factor as a function of the Reynolds number through empirical cor-
relations, considering the water as a reference fluid and the graphene nanofluids with concentrations
of 0.0125, 0.025, and 0.05 wt%.

5.2.3. Pressure Drop Behavior of the Nanofluids and the Water on the DTHE

As an identifying parameter on the hydrodynamic behavior of the addition of graphene
nanofluids in water, the pressure drop calculation and the energy power value for the
pumping system drive along the heat exchanger were introduced.

Figure 13 shows the values of pressure drop (a—left) and power consumed by the
system pump (b—right) along the heat exchanger as a function of Reynolds number, using
the friction factor calculated by Petukhov’s correlation. The friction factor and the load
losses were calculated using Equations (16) and (30), respectively.
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Figure 13. Behavior of the friction factor as a function of the Reynolds number through empirical
correlations, considering water as the reference fluid and graphene nanofluids with concentrations of
0.0125, 0.025, and 0.05 wt%.

The experimental results, as shown in Figure 13a, indicate that the pressure drop
increases along with the measured growth of the friction factor with the increment in
the Reynolds number. This behavior was observed for both pure water and graphene
nanofluids. The pressure drops increased as the concentration by weight of the nanofluid
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increased compared to water. The relative maximum and minimum values of the pressure
drop were 1.42% and 0.01% with the 0.05 %wt and the 0.0125 %wt concentration nanofluid,
respectively.

The behavior of the power consumed by the heat exchanger pump (Figure 13b) was
similar to that of the pressure drop (Figure 13a) since these values are directly proportional.
The pumping power result was calculated using Equation (19), where the relative errors
presented values of 0.16%, 1.10%, and 2.23%, for 0.0125; 0.025, and 0.050 wt%, between
water and graphene nanofluids, respectively. It should be noted that the dynamic viscosity
of water is lower than that of nanofluids. The highest power consumption occurs for high
Reynolds numbers, with the growth rate being almost exponential. This is due to the
lubricating properties of the GNP particles, thus reducing the friction between the fluid
particles and the exchanger surfaces. The pumping power of the GNP/water nanofluids
was close to that of water, as observed in Figure 13a,b.

The experimental results show that the pressure drop and friction factor depend
on the concentration by weight of the GNP/Water and the Reynolds number, with a
higher pressure drop as the concentration of the nanoparticles in the nanofluids increases.
Therefore, the energy consumption required in pumping nanofluids is equal or in some
cases lower when compared to water.

5.3. Parametric Analysis of Energy Behavior

A parametric analysis was performed via CFD considering the influence of the addition
of the graphene nanofluids in water on the temperature profile, the overall heat transfer
coefficient, and the effectiveness and efficiency of the heat exchanger used.

5.3.1. Temperature Behavior in the DTHE via CFD Simulation

The temperature profile along the DTHE heat exchanger is shown in Figure 14. At
the nanofluid inlet and water outlet circuits (black circle), the convective heat transfer
process was relatively low along the whole first tube. However, when the nanofluid flows
through the end of the DHTE equipment (second tube of the circuit), at the nanofluid
outlet and water inlet circuits (gray circle), an increase in the heat exchange was observed.
The introduction of nanofluids improves heat exchange between cold (pure water) and
hot (nanofluid) fluids, with a gain in average temperature of 18% using 0.050, 0.025,
and 0.0125 wt% concentrations A sensibility analysis was conducted to verify the CFD
performance of the nanofluid in the heat exchanger, considering the heat exchanger’s
overall heat transfer coefficient, heat transfer effectiveness, and performance index, as seen
in the literature [61,81].

Processes 2023, 11, x FOR PEER REVIEW 20 of 28 
 

 

The introduction of nanofluids improves heat exchange between cold (pure water) and 

hot (nanofluid) fluids, with a gain in average temperature of 18% using 0.050, 0.025, and 

0.0125 wt% concentrations A sensibility analysis was conducted to verify the CFD perfor-

mance of the nanofluid in the heat exchanger, considering the heat exchanger’s overall 

heat transfer coefficient, heat transfer effectiveness, and performance index, as seen in the 

literature [61,81].  

 

Figure 14. Temperature profile behavior of hot and cold fluids in a double tube heat exchanger. 

5.3.2. Behavior of the Overall Heat Transfer Coefficient 

The results of the overall heat transfer coefficient for DHTE via CFD as a function of 

the Reynolds number are presented in Figure 15, varying the concentrations of the gra-

phene-based nanofluids for temperature of 50 °C in Figure 15a and 60 °C in Figure 15b, 

calculated using Equation (14). The results obtained with the water-based fluid showed 

the best performance for the overall heat transfer coefficient (U) when compared to the 

fluids with the introduction of the graphene nanofluids. The maximum relative difference 

was presented by the nanofluid at 0.0125 wt% with temperatures of 50 and 60 °C, main-

taining the trend, with U = 19%, and the relative difference was smaller with the fluid at 

0.050 wt%, with U = 2%, approximately, for both temperatures of 50 and 60 °C. However, 

when exclusively evaluating the fluid with nanofluid, the greater the graphene concentra-

tion in the fluid, the greater the overall heat transfer coefficient, and the greater the Reyn-

olds number, the greater the overall heat transfer coefficient. The trend of the values ob-

tained with the nanofluids was consistent with the results found in the literature 

[67,70,81], where it is verified that the higher the nanoparticle concentration in the fluid 

and the larger the Reynolds number (Re), the overall heat transfer coefficient tends to be 

higher, which is also compatible with the results shown in Bahiraei et al. [82].  

Figure 14. Temperature profile behavior of hot and cold fluids in a double tube heat exchanger.



Processes 2023, 11, 2735 20 of 27

5.3.2. Behavior of the Overall Heat Transfer Coefficient

The results of the overall heat transfer coefficient for DHTE via CFD as a function
of the Reynolds number are presented in Figure 15, varying the concentrations of the
graphene-based nanofluids for temperature of 50 ◦C in Figure 15a and 60 ◦C in Figure 15b,
calculated using Equation (14). The results obtained with the water-based fluid showed the
best performance for the overall heat transfer coefficient (U) when compared to the fluids
with the introduction of the graphene nanofluids. The maximum relative difference was
presented by the nanofluid at 0.0125 wt% with temperatures of 50 and 60 ◦C, maintaining
the trend, with U = 19%, and the relative difference was smaller with the fluid at 0.050 wt%,
with U = 2%, approximately, for both temperatures of 50 and 60 ◦C. However, when
exclusively evaluating the fluid with nanofluid, the greater the graphene concentration
in the fluid, the greater the overall heat transfer coefficient, and the greater the Reynolds
number, the greater the overall heat transfer coefficient. The trend of the values obtained
with the nanofluids was consistent with the results found in the literature [67,70,81], where
it is verified that the higher the nanoparticle concentration in the fluid and the larger the
Reynolds number (Re), the overall heat transfer coefficient tends to be higher, which is also
compatible with the results shown in Bahiraei et al. [82].
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Figure 15. Behavior of the overall heat transfer coefficient for the double tube heat exchanger. (a) fluid
temperature 50 ◦C; (b) fluid temperature 60 ◦C.

5.3.3. Heat Transfer Effectiveness Behavior

The thermal performance of a working fluid is evaluated by its heat transfer effec-
tiveness in the system of a heat exchanger, as demonstrated in Figure 16. The evaluation
was made through Equations (21) and (22), which presented the results in CFD versus Re,
for 50 ◦C in Figure 16a and 60 ◦C in Figure 16b for the DTHE. It can be visualized that
the introduction of graphene nanofluids to the system provided an improvement in the
effectiveness of the heat exchanger, specifically with a higher concentration of nanoparticles,
i.e., 0.050 wt%, with a percentage gain of 3%, and lower for the concentration of 0.0125 wt%,
with 0.5%, compared to water. This was evident for 50 ◦C. This gain was significant for
Reynolds number (Re > 4000). With increasing temperature, 60 ◦C, this effect changes
toward having better effectiveness with the base fluid, water, and subsequently with the
nanofluids, being better for the 0.050 wt% concentration and lower for 0.0125 wt%. Despite
this improvement, the differences between the effectiveness values with water and the
nanofluids were remarkably similar. This behavior had the same trend as the results shown
in the literature [59,79,83].
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Figure 16. Behavior of the overall heat transfer coefficient of the double tube heat exchanger: (a) fluid
temperature 50 ◦C; (b) fluid temperature 60 ◦C.

5.3.4. Performance Index of the Heat Exchangers

The performance index for the use of nanofluids in the double tube heat exchanger
was evaluated using Equation (23). This parameter checks the behavior of the energy gain
in the average heat exchange rate relative to the increase in the pressure drop in the system.
Figure 17 shows the behavior of the performance index with the variation in the Reynolds
number for the two analysis temperatures, 50 and 60 ◦C.
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Figure 17. Performance index behavior of nanofluid in the double tube heat exchanger: (a) fluid
temperature 50 ◦C; (b) fluid temperature 60 ◦C.

The results showed that with increasing temperature (50 to 60 ◦C) the performance in-
dex was higher. In terms of nanofluid concentrations, the lowest values provided a slightly
better performance index compared to water, in the case of 0.0125 wt% concentration, with
values from 5 to 2 at 50 ◦C and from 8 to 4 at 60 ◦C. It should be noted that the highest
values of the performance index were found for lower Reynolds numbers. This is due to
the increase in the pressure drop with the increase in the Reynolds number, which is related
to the increase in the flow rate. However, for the 0.025 and 0.050 wt% concentrations, the
values were lower than the performance indices obtained for water, due to the higher rate
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of pressure drop growth compared to the heat exchange rate achieved by the introduction
of the nanofluids. These results were consistent with the values experimentally analyzed,
with the same trend regarding the concentrations. However, it can be emphasized that the
size and area of the heat exchanger may have influenced the higher pressure drop, since the
flow section is small and with the addition of nanofluids, the friction and the pressure to
sustain the fluid flow is higher, causing this decrease in the performance index. This verifies
the hypothesis that the higher the concentration of nanofluids, the higher the pressure drop,
and therefore, the lower the performance index, which was also corroborated by the study
presented by Bahiraei et al. [82].

6. Conclusions

From the study on the application process of graphene-based nanofluid in the double-
tube heat exchanger, it was possible to verify that the evaluated parameters influence
the final characteristics of the heat exchanger effectiveness. The computational model
developed was able to simulate the energy behavior of the double tube heat exchanger
through the CFD method. Based on the results obtained, there are some conclusions:

• The values of the Nusselt numbers determined from the experimental results showed
good agreement with those calculated by the empirical correlations and the CFD
model, being able to simulate the heat transfer characteristics of graphene-based
nanofluids.

• The smallest divergence between numerical and experimental values was found by
using the Petukhov equation, which more accurately represents the Nusselt number
values, thus confirming that the model can accurately reproduce the results found in
the actual operation of the double tube heat exchanger, with maximum and minimum
relative error values of 9% and 1%.

• A relative difference between the results found experimentally and those obtained nu-
merically was observed, in some cases analyzed, due to the materials used, deviations
in the thermophysical properties of the nanofluids, and even in the uncertainties of
the sensors and equipment used in the measurements.

• Regarding the thermal performance of the heat exchange in the DHTE when graphene
nanofluids were added to the general fluid, the Nusselt numbers with the nanofluid of
0.025 wt% concentration showed a percent increase of 6.66% and 4.89% in comparison
to water. In contrast, for the simulated results, the lowest Nusselt number was found
for the 0.0125 wt% concentration compared to water;

• The values found for the friction factors showed good agreement with a range of
maximum relative error of 8% and a minimum of 0.04% when compared to the Blasius
equation. This indicates good accuracy between the values found since it is pertinent to
note that these empirical correlations present errors of uncertainty in the calculations.
There is an increase in the friction factor value as the concentration of the nanofluid
by weight of GNP/water increases, and at the same time there is a decrease in this
friction factor as the Reynolds number increases.

• Graphene nanofluids showed slightly larger friction factors than indicated for the
base fluid (water), with maximum relative errors differences of 1.10%, 2.19%, and
4.46% for the 0.0125, 0.025, and 0.050 wt% concentrations, respectively. Therefore, even
though the values of the factors are larger, the ranges of the values are insignificant and
are within the error uncertainties (±5%), and the errors are extended by Petukhov’s
empirical correlation.

• The pressure drops increase together with the measured growth of the friction factor,
with the increment in the Reynolds number. The behavior was similar for pure water,
and with the graphene nanofluids. Hence, the pressure drop increased by increasing
concentration by weight of the nanofluid compared to water. The relative maximum
and minimum values of the pressure drop were 1.42% and 0.01% with the 0.05 %wt
concentration nanofluid and the 0.0125 wt% nanofluid, respectively.
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• The behavior of the power consumed by the heat exchanger pump was like that of the
pressure drop since these values are directly proportional. The relative differences of
the pumping power result were 0.16%; 1.10%, and 2.23%, of 0.0125 wt%; 0.025 wt%,
and 0.050 wt%, between water and graphene nanofluids, respectively. It was observed
that the highest power consumption occurs for high Reynolds numbers, with the
growth rate being almost exponential;

• The experimental results show that the pressure drop and friction factor depend on the
concentration by weight of the GNP/water and the Reynolds number, with a higher
pressure drop as the concentration of the nanoparticles in the nanofluids increases.
Therefore, the energy consumption required in pumping nanofluids is equal to or in
some cases lower when compared to water.

• The introduction of the nanofluid in the heat exchanger improves a gain in temperature
of 8 ◦C, i.e., approximately 28% compared to the 0.025 wt% GNP nanofluid for the
base fluid, (water).

• It was verified that the results obtained with the water-based fluid showed the best
performance for the overall heat transfer coefficient (U) when compared to the fluids
with the introduction of the graphene nanofluids. The maximum relative difference
was presented by the 0.0125 wt% nanofluid at 50 and 60 ◦C, maintaining the trend,
with U = 19%, and the relative difference was smaller with the 0.050 wt% fluid, which
gave U = 2%, approximately, for both 50 and 60 ◦C.

• The introduction of graphene nanofluids to the system provided an improvement
in the effectiveness of the heat exchanger, specifically with a higher concentration
of nanoparticles, i.e., 0.050 wt% with a percentage gain of 3%, being lower for the
concentration of 0.0125 wt% with a value of 0.5%, compared to water. Despite this
improvement, the differences between the effectiveness values with water and the
nanofluids were remarkably similar.

• The results showed that with increasing temperature (50 to 60 ◦C), the performance
index was higher. Regarding the nanofluid concentrations, the lowest values provided
a slightly better performance index compared to water, in the case of 0.0125 wt%
concentration, with values from 5 to 2 at 50 ◦C and from 8 to 4 at 60 ◦C. It should be
noted that the highest values of the performance index were found for lower Reynolds
numbers. However, for the 0.025 and 0.050 wt% concentrations, the values were lower
than the performance indices obtained for water, due to the higher rate of pressure
drop growth compared to the heat exchange rate achieved by the introduction of the
nanofluids.

• These results were consistent with the values experimentally analyzed, with the same
trend regarding the concentrations. However, it can be emphasized that the size and
area of the heat exchanger may have influenced the higher pressure drop, since the
flow section is small and with the addition of nanofluids, the friction and the pressure
to sustain the flow of the fluid were higher, causing this decrease in the performance
index.
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Nomenclature

A Area m2 Subscripts
C Heat capacity W/k ave Average value
cp Specific heat J/kg k bf Base fluid
DH Hydraulic diameter m c1 Cold-fluid inlet
f Friction factor fanning - c2 Cold-fluid outlet
h Convective heat transfer coefficient W/m k e External
L Tube length m H1 Hot-fluid inlet
.

m Mass kg/s H2 Hot-fluid outlet
Nu Nusselt number - i Internal
Re Reynolds number - p Particle
.
v Average speed m/s max Maximum value
.

W Pumping power W nf Nanofluid
U Overall heat transfer coefficient W/m2.k np Nanoparticles
T Temperature ◦C w Water

wall Wall tube
Greek Letters
ε Effectiveness - Acronyms
η Efficiency - DTHE Double tube heat exchanger
k Thermal conductivity W/m k GE Grapheme
µ Dynamic viscosity kg/m s OG Graphene oxide
ρ Density kg/m3 GNP Graphene nanoparticles
∆TLTMD Temperature difference, average logarithmic ◦C NFs Nanofluid
∆P Drop loss Pa
φ Equivalence ratio -
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