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Abstract: The process industry is confronted with rising demands for flexibility and efficiency. One
way to achieve this is modular process plants, which consist of pre-manufactured modules with
their own decentralized intelligence. Plants are then composed of these modules as unchangeable
building blocks and can be easily re-configured for different products. Condition monitoring of such
plants is necessary, but the available solutions are not applicable. The authors of this paper suggest
an approach in which model-based symptoms are derived from a few measurements and observers
that are based on the manufacturer’s knowledge. The comparisons of redundant observers lead to
residuals that are classified to obtain symptoms. These symptoms can be communicated to the plant
control and are inputs to an easily adaptable diagnosis. The implementation and validation at a
modular mixing plant showcase the feasibility and potential of this approach.
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1. Modularization in the Process Industry

The volatility of global markets has forced the process industry to rethink its practices.
The diversification of highly specialized products yields the most capital gains. However,
these products also have shorter life cycles, resulting in the requirement for a faster time
to market [1]. Other stakeholders, such as regulating bodies and society as a whole,
expect high product quality and more energy and resource efficiency from the process
industry [2]. All in all, more flexibility and shorter response times are required to tackle
these challenges [3].

So far, the options for the production of chemicals can be divided into the following two
categories: multipurpose batch production and continuous production for specific products.
Specialty and fine chemicals are usually produced using batch production. The high level
of flexibility of multipurpose vessels for different recipes and products is the main concern
here. This comes at the cost of lower efficiency regarding both energy and resources such
as solvents [4]. For the production of basic chemicals, including petrochemicals, efficiency
is a major concern. Therefore, designated plants for the continuous production of the
aforementioned chemicals are designed, sized, and constructed. Continuous production
allows for more efficient reactions and continuous optimization [5]. However, there is very
limited flexibility, as the plant is only designed for the specified product.

One approach used to combine the advantages of both options is the continuous
production of fine chemicals using modular process plants. These plants consist of modular
building blocks for different process steps that are interchangeable and reconfigurable
depending on the product. This allows for more flexibility and the utilization of more
efficient process technology for the reaction. The enormous effort required for a desig-
nated continuous production plant is reduced by reusing the engineering effort for each
module [6].

Modular process plants require various technologies and standardization for physical
and automation interfaces, process control, and planning. Joint research efforts led and co-
ordinated by the German Society of Chemical Engineering and Biotechnology, DECHEMA,
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have recently made considerable progress. The basic terms for the understanding, planning,
and design of modular plants are described in the VDI standard 2776 [7], whereas the
automation of such plants is defined in VDI/VDE/NAMUR 2658 [8]. The smallest units
of modular plants are called components such as machines, pipes, or fittings. Functional
Equipment Assemblies (FEAs) are groups of components that satisfy a special process
function, e.g., a pump consisting of a pumping head, motor, fittings, and pipes. Process
Equipment Assemblies (PEA) are made up of at least one FEA and have their own in-
telligence in the form of a controller. They allow for safe decentralized operation. Data
exchange between PEAs is realized through a Module-Type Package (MTP), a supplier-
independent standardized interface. The highest hierarchical layer is the modular plant,
where all PEAs are connected, and the process control is implemented in the process
orchestration layer (POL) [9].

The vision of completely modular production assumes that standardized process
modules are pre-engineered, pre-automated, and pre-fabricated by the supplier. They
can be delivered at short notice with standardized interfaces, both mechanical and for
automation, and incorporate decentralized intelligence. The interest and efforts of many
companies to realize this vision were observed at ACHEMA 2022 [10].

The design of modules is fundamentally different from the design of designated
process plants, as modules are designed for an operational range rather than an operational
point. The operation within a range of conditions facilitates higher wear rates, e.g., for
pumps in partial load operation. The uncertain operational state and condition necessitate
the condition monitoring of modules and the entire modular process plant. At the same
time, condition-monitoring solutions should be cost-effective and not unnecessarily increase
the complexity of the modules and/or plants. The structure and knowledge that are
distributed among the stakeholders should be used wisely. All this is especially relevant,
as the operation of these modular plants may occur without on-site personnel [11].

To summarize, modular production is based on modules as the invariant building
blocks of modular process plants. They are reusable, replaceable, and combinable elements
with their own intelligence. Modular process plants are composed of these modules and
reconfigured regularly depending on the specific products. Therefore, their topology varies
frequently. Condition monitoring of the modules and the modular process plant as a whole
is necessary. The aim of this paper is to present a condition-monitoring solution for modular
process plants that requires as few sensors as possible while utilizing the domain-specific
knowledge of manufacturers and operators.

In the following sections, the state of the art for condition monitoring in the process
industry is described, followed by the suggested approach of the authors. Then, the
implementation of this approach and the experimental validation are outlined. Finally, the
results are discussed and summarized.

2. State of the Art

Condition monitoring of different equipment in the process industry is widespread.
Specific condition-monitoring solutions for modular processes have not yet been published.
Fault detection (“Is there a problem?”), fault diagnosis (“Where is the problem and how
severe is it?”), and fault prediction (“When will there be a problem?”) can be achieved
using various approaches, as described below.

2.1. Expert Knowledge-Based Approach

This approach involves using the knowledge and expertise of experienced operators
and maintenance personnel to diagnose faults. They use their experience and intuition to
identify patterns of behavior or symptoms that indicate a specific fault [12]. Such symptoms
could originate from infrared thermography to detect hotspots and temperature variations
in equipment and machinery, which indicate potential problem areas [13]. Oil analysis of
the lubricating oil used in equipment and machinery can also be applied. Variations in
the physical and chemical properties of the lubricant can hint at contamination, wear, and
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oxidation [14]. Acoustic monitoring involving microphones and sensors is used to detect
potential problems such as leaks, vibrations, or cavitation [15]. It can also be carried out by
experienced staff who know the “normal” sound of the machinery.

Advancements in this approach are so-called expert systems. These are artificial intelli-
gence methods that allow a computer to use expertise to solve problems, such as diagnosing
equipment failures [16]. Expert systems reason with domain-specific knowledge and apply
heuristics to perform as well as specialists in the given problem area. Applications of
expert systems in the condition monitoring of gears [17], machining tools [18], and power
transformers [19] have been published in recent years. They all focus on the interpretation
of signals that have been available to experienced personnel and attempt to replicate their
reasoning.

This approach can be effective, but it is often subjective and reliant on the expertise of
the individual.

2.2. Model-Based Condition Monitoring

Model-based condition monitoring involves developing mathematical models of
the equipment and machinery. These models are used to simulate the behavior of the
equipment under normal and faulty conditions. By comparing the simulated behavior
to the actual behavior of the equipment, faults can be identified [20]. This approach
requires accurate models of the equipment, which can be time-consuming to develop. The
comparison of the modeled and the real behavior can be realized in different ways, e.g.,
using parity equations or state observers [21].

In the process industry, model-based monitoring is mainly used for process monitoring
of biotechnological processes. Many variables of these processes cannot be measured
directly but are calculated using software sensors (soft sensors) [22]. A software sensor
estimates state variables and parameters in real time based on available measurements and
models of the process [23]. The most common methods used for model-based software
sensors are nonlinear observers, as examined by Misawa [24]; extended Kalman Filters [25];
and adaptive observers [26].

Model-based condition monitoring of process equipment such as pumps, motors,
valves, and reactors is not commonly described in the literature. The application of this
method is focused on wind turbines [27], wheel–rail interfaces of rail vehicles [28], or
ball bearings [29]. These applications have in common that a system failure would be
critical and that the equipment itself is well-known to its manufacturer. The equipment is
produced in high quantities, which, therefore, justifies the efforts of modeling its behavior.

The different model-based monitoring approaches differ in their robustness toward
the uncertainty of the underlying models and the measurements. However, they all rely
heavily on the knowledge of the structure and the behavior of the system to be modeled.

2.3. Data-Driven Approach

Another way to assess the current condition of machinery is based on data from
specific sensors that measure representative state variables. These additional sensors
provide measurements that are usually uploaded to cloud storage. There, indicators are
calculated or limit checking, based on historical data to distinguish between normal and
faulty conditions, is applied [30]. The most common application, especially for centrifugal
pumps and other rotating equipment, is vibration measurement with subsequent frequency
analyses [31]. There are various solutions on the market. Leading pump manufacturers
provide vibration sensors on their pumps. The data are uploaded to cloud storage and
analyzed there. The calculated health indicators can then be accessed via a separate app
or web portal, cf. [32,33]. There are also condition-monitoring solutions based on this
technology for retrofitting to any other rotating machinery [34]. For all these solutions,
two aspects have to be considered: (i) the vibration measurement is heavily influenced by
background noise and the surrounding electromagnetic fields [35], and (ii) the frequency
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analyses are based on historical data for training purposes. These data need to be available
to apply the aforementioned solutions.

The data-driven approach for condition monitoring is less about the procurement of
the aforementioned data and more about the information that can be extracted from it. For
this purpose, the application of machine learning and especially deep learning has seen a
rising research interest in the recent past [36]. The interpretation of vibration measurements
was demonstrated by Kalmar [37] and Surek [38] for pump condition monitoring. While
machine learning can be helpful if the system is complex and difficult to model, it requires
large amounts of meaningful historical data. This includes data on system operation and
maintenance for labeling the data sets [39]. Furthermore, most deep learning methods are
designed to detect single faults. However, in industrial settings with complex systems, it is
common to encounter several faults at the same time [36].

2.4. Applicability to Modular Process Plants

The design and operation of modular process plants entail specific prerequisites that
affect the applicability of the aforementioned approaches. The unvaried modules are well-
known to their manufacturer and their complexity is limited. A plant composed of these
modules can be complex and needs to be regularly reconfigured.

Expert knowledge-based approaches are based on the experience of personnel with
regard to the operation of machinery in a known system. The ever-changing nature of
a modular process plant makes the acquisition of experience more difficult compared
to a specific plant with constant operation conditions. However, general guidelines for
plant behavior and module interaction can be obtained from experienced operators and
integrated into expert systems. Nevertheless, the question remains: which signals are
available for decision making?

Model-based approaches aim to generate a model of the plant that is as accurate as
possible. Modeling the individual modules is a manageable task, and the validation of these
modules can be performed by their manufacturers. Modeling the whole plant with the
module interactions is more time-consuming. Furthermore, this task has to be performed
every time the modular process plant is reconfigured to produce another product. Therefore,
the effort required for modeling is expensive and time-consuming, which contradicts the
desired flexibility.

Data-driven approaches rely heavily on appropriate training data. These data sets
need to represent the behavior of equipment and the whole plant in both normal and
faulty conditions. As the plant topology affects the interaction between the modules and,
therefore, the measured variables throughout the plant, the training data need to be up to
date with the respective plant topology. Therefore, the data-driven methods need to be
trained with appropriate training data for the plant every time it is reconfigured, which
negates the flexibility and time savings of modular plants.

To summarize, the available solutions are applicable to non-changing equipment
and plants. The efforts required to understand the plant (expert-based), model it (model-
based), or train machine learning methods (data-driven) need to be repeated for every
plant reconfiguration. Moreover, the integration of the individual solutions into the process
control is mostly unclear or relies on manufacturer-bound software solutions.

Therefore, the next section presents an approach for condition monitoring that com-
bines aspects of different approaches for a modular process plant.

3. Condition-Monitoring Approach for Modular Process Plants

This paper describes an approach for condition monitoring tailored to modular process
plants. It considers the specific conditions of the engineering, composition, and operation
of modular process plants and uses them to their advantage. The approach consists of
two steps: firstly, model-based symptoms are calculated for each module, and secondly,
all symptoms are utilized in a central diagnosis system at the process control level. In this
way, the shortcomings of the available solutions with regard to the condition monitoring of
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modular process plants, as described earlier, are overcome. The separation of the task at
hand into two parts provides an elegant method for addressing these challenges.

3.1. Symptoms

Each module is manufactured as a building block of the modular process plant and as
such, is not modified after manufacturing. The manufacturer presides over the knowledge
of how each module and the equipment it contains behaves and how to describe this
behavior. The complexity of a single module is manageable.

Therefore, a model-based approach is suggested to generate symptoms for each mod-
ule that are independent of the overall plant topology. The procedure used to generate these
symptoms consists of three steps, as seen in Figure 1: (i) observers utilize the describing
model equations and the measurements of the already installed sensors to calculate state
variables redundantly, (ii) to detect changes in the module’s behavior due to faults or wear,
redundant state variables are subtracted from each other, resulting in residuals, and (iii)
the residuals are classified, taking the current operation point of the module into account
to generate symptoms.

symptoms

𝑥𝑄,1

𝑥𝑄,2

𝑥𝑄,3

𝑥𝑄,4

…

residuals

𝑅𝑄,1

𝑅𝑄,2

𝑅𝑄,3

𝑅𝑄,4

…

observer

𝑄pump

𝑄FC

𝑄plant

𝑄meas

…

Figure 1. Approach for the model-based symptoms of each module.

The model-based symptoms are fueled by the supplier’s knowledge and the measure-
ments of a few, already installed, sensors. The calculations necessary for generating the
symptoms are simple and can be executed on the module’s controller. The symptoms from
each module are then communicated to the central process control. This can be carried
out via the manufacturer-independent interface Module-Type Package (MTP) that was
specifically developed for modular process plants.

3.2. Diagnosis

The symptoms of each module are inputs for the central diagnosis system. The correct
identification of the faulty module and the individual fault type can be difficult when
utilizing only a few sensor measurements in each module. Therefore, the authors suggest
also using the redundancies of the topology within a modular process plant. For example,
if module A doses a medium into module B, then a volume flow estimation of the observer
in module A can also be used in module B, given that no external leakage is present.

A central diagnosis system leveraged the knowledge of the interconnection of the
modules to gain more information from the limited data. As the operator of a modular
process plant knows its topology, the central diagnosis system is also their responsibility
and can be implemented in the process control.
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Experienced operating personnel know the correlations between certain symptoms
and the cause. Rules can be derived from this knowledge and fundamental conservation
equations, such as the continuity equation. A rule-based system that can be implemented
using fuzzy logic is, therefore, the preferred approach for the central diagnosis system. The
central diagnosis system has to be adapted every time the plant topology is reconfigured,
as this is the whole point of modular process plants. To base this process on rules makes it
easy to set up and adapt.

4. Implementation

In the previous chapter, the general approach for condition monitoring of modular
process plants was described. The following chapter concentrates on the implementation
of the model-based symptoms for different modules. The diagnosis will be addressed in
future works.

While the approach can be applied to most modules, this paper focuses on two
different types of modules, as they are also present in the test rig (see Figure 2): dosing
modules, including different pump types, and mixing modules. In the following, the
implementation of the observers, residuals, and symptoms is explained in more detail.

PIR
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FIR
1

TIR
1

PIR
2

FIR
2

TIR
2

PIR
3

FIR
3

TIR
3

PIR
4

FIR
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TIR
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water

product

M

syrup

cyan

Mmixer 1 mixer 2

M PIR
5
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M

M

M

M
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M
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LIR
3

yellow

LIR
2

LIR
6

Figure 2. Piping and instrumentation diagram of modular mixing plant.

4.1. Observers

The observers use models to calculate state variables in different ways, thus creating
redundant information for further analysis. In this paper, the redundant variable is the
volume flow. The different observers rely solely on the available measurements of the
pressure difference across the pumps ∆ppump, their rotational speed n, the pressure loss
across the module ∆pmodule, and the electric input power to their motors Pel.

The first observer for the dosing modules is the pump observer. It is based on static
pump models, which depend on the specific pump type. While feedback controllers for
each module rely on dynamic models, the operation of the plant results in quasi-stationary
operational conditions. Preliminary testing has shown that static models perform very well
under these circumstances. For eccentric screw pumps, a modified version of the type-
independent efficiency model for positive displacement pumps by Pelz and Schänzle [40]
is used. Equation (1) demonstrates the model. The volume flow Qpump is calculated using
the difference between a theoretical volume flow Qth = nV and the leakage flow Ql, which
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is calculated using a semi-empirical approach represented by the model parameters C0, C1,
C2, and C3.

Qpump = nV − (C0 + C1∆pC2
pump + C3n) (1)

There are other models for different pump types, such as membrane and centrifugal
pumps, which are not discussed further here. The second observer is based on the pressure
loss within the dosing module. This pressure loss ∆p is proportional to the squared volume
flow ∆p = kplant

0 + kplant
2 Q2 with the plant model parameters kplant

0 and kplant
2 . Therefore,

the so-called plant observer consists of the following equation:

Qplant =

√√√√∆pmodule − kplant
0

kplant
2

. (2)

The last observer for the dosing modules is based on the energy conservation in the
module. The electric motor of the pump converts electricity Pel into mechanical power
Pmech. The pump itself uses mechanical power to increase the hydraulic power of the
fluid Phyd = Q∆p. The power conversion is prone to losses, which are represented by
the motor efficiency ηel and the pump efficiency ηpump. The efficiencies depend on the
current operating point and can be modeled via an efficiency map. If the electric power is
measured, it can be used for the power observer in Equation (3):

Qpower = ηelηpump
Pel

∆ppump
(3)

The mixing modules rely on the observers of their upstream modules. Without external
leakage, the medium conveyed by the dosing modules has to flow through the following
mixing modules. Hence, a pump, plant, and power observer for the mixing modules are
derived through the summation of the respective upstream observers.

There is a fourth observer for the mixing modules: the resistance observer Qresis. It
is similar to the plant observer and utilizes the pressure loss across the mixing modules
∆pmixer, which is measured through a pressure sensor. This pressure loss is again propor-
tional to the squared volume flow and allows the estimation of the volume flow with the
resistance model parameters kresis

0 and kresis
2 and the given equation:

Qresis =

√
∆pmixer − kresis

0

kresis
2

. (4)

4.2. Residual Generation

The residuals R provide information about the state of the respective modules by
comparing the results of the different observers. All observers should estimate the same
volume flow for normal operation. If there is a change in the system, some observers can
recognize this change, whereas others cannot. This discrepancy will be obvious in the
residuals, which are defined as the following subtractions for the dosing modules:

Rpump−plant = Qpump − Qplant, (5)

Rpower−plant = Qpower − Qplant, (6)

Rpower−pump = Qpower − Qpump. (7)

The mixing modules provide four different observers, but only the resistance observer
is independent of the upstream modules. Therefore, all the residuals of the mixing modules
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are defined as the difference between the upstream observer and the resistance observer:
Rpump−resis, Rplant−resis, Rpower−resis.

Specific residuals will rise or fall for different types of wear or faults. In this way, they
can provide valuable information for further analysis and wear detection. However, the
residuals output absolute values, which are dependent on the operating point. A small
residual can mean severe wear if the rotational speed of the pump is low, or negligible wear
if the rotational speed is high. This ambiguity is taken into account by the classification.

4.3. Classification

The aim of the classification is to generate symptoms that are independent of the oper-
ation point and, therefore, provide unambiguous information about the module’s condition.
This is implemented by linking the manufacturer’s knowledge about the residuals R at
different operating points (n, ∆p) to a given condition that is represented by a symptom x.
For the dosing modules, the decline in the volumetric efficiency ηvol = Qreal/Qth is chosen
as the symptom. The symptom x is, therefore, the difference between the volumetric effi-
ciency of a reference module and the actual volumetric efficiency at a given reference point:

x = ηref − ηreal (8)

The information about the residuals at different operating points of a given module
condition x is represented by 3D surfaces in the [Rx − ∆p − n]-space. These surfaces are
described using polynomials. The classification works as follows: (i) measurements at
the module provide information about the calculated residuals Rcalc and the measured
operating points (n, ∆p); (ii) the residuals Rx(n, ∆p) are calculated using the polynomials;
and (iii) the classification is performed by finding the closest residuals Rx to Rcalc and
interpolating the symptoms x.

5. Validation

The following section describes the experimental validation of the proposed approach.
The focus is on the observers, residuals, and symptoms. For this reason, the test rig used
is outlined first. The validation scenarios are defined in the subsequent subsection, and
finally, the results are presented.

5.1. Test Rig: Modular Mixing Plant

The test rig is a modular mixing plant that consists of five dosing modules and two
mixing modules. A simplified piping and instrumentation diagram of the test rig is shown
in Figure 2. The mixing plant is designed to produce colored sugar syrup. Therefore, the
first three dosing modules are identical and dose the colors cyan, yellow, and magenta
through eccentric screw pumps. The syrup dosing module is similar, but the tank has a
stirrer to homogenize the syrup and contains a membrane pump. The water dosing module
utilizes a centrifugal pump, and water in the tank can be heated for cleaning purposes.

Each dosing module is equipped with level and temperature sensors for its safe
operation. Furthermore, the pressure difference and volume flow are measured. The electric
power of the motor and its rotational speed are derived from the frequency converters that
feed the electric motors. A full list of the measuring equipment used is shown in Table 1.

Each pump is additionally equipped with a bypass from the pressure to the suction
side. A ball valve with a step motor usually closes the bypass in normal operation. When
the ball valve is opened, the fluid will partly flow back to the suction side. This replicates
an internal leakage caused by pump wear.

Mixing module 1 is fed from the syrup and water dosing modules. It consists of a static
mixer and piping. Unidirectional flow is ensured by recoil check valves in the feeding pipes.
The pressure difference across the mixer is detected by a differential pressure transmitter.
To simulate mixer clogging, a motorized ball valve is built in series with the mixer. It is
open in normal operation. Closing the ball valve increases the pressure loss across the
module and decreases the flow.
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Table 1. Sensors on the test rig.

Variable Sensor Type Systematic Uncertainty

∆p piezoresistive pressure transmitter ±0.1% FS
n frequency converter ±8 rpm
Q magnetic-inductive flow meters ±0.4 % MV
Pel frequency converter ±10 W
l ultrasonic level sensor ±0.5 mm
T resistance thermometer ±0.2 K

Mixing module 2 is analog to mixing module 1. It is additionally fed from the three
color dosing modules. The absolute pressure is measured after mixing module 2 to calculate
the pressure loss between the dosing modules and the mixing modules.

5.2. Scenarios

The validation scenarios work as follows: All dosing modules operate simultaneously
with different pump speeds. At first, the plant is in normal operation, i.e., all bypasses are
closed and the mixer ball valves are open. The measurements of the volume flow meters
are used to validate the different observers.

For the scenario in Figure 3, wear is introduced into the plant by opening the bypass
valve of the yellow dosing module. The bypass flow reduces the volumetric efficiency
of the module that is to be detected by the observers, residuals, and symptoms. For the
scenario in Figure 4, the mixer is clogged by closing the mixer valve. This is carried out
in two steps, resulting in different severely clogged states. All other modules remain in
normal operation mode.

5.3. Uncertainty Quantification

The measurements that are conducted at the test rig are subject to uncertainty. To
assess the influence of the uncertainty on the validation, it has to be quantified [41]. The
systematic uncertainty of the different measurement equipment is displayed in Table 1.
All sensors are operated with a sampling rate of 1000 Hz. The calculated values for the
observers, residuals, and symptoms are only of interest on a larger timescale. Therefore,
temporal averaging of the measured values is applied with a resolution of 1 s. The statistical
and systematic uncertainties are combined using the case of uncorrelated input quantities,
cf. the Guide to the Expression of Uncertainty in Measurement (GUM) [42]. Furthermore,
uncertainty propagation is conducted accordingly. The diagrams of all results contain the
mean values as a line and the uncertainty as a gray interval behind the lines.

5.4. Results

The results of the validation scenarios are illustrated in Figures 3 and 4. The observers
in Figure 3 follow the measured volume flow Qmeasured quite well, as long as there is no
wear. The plant observer Qplant overestimates the volume flow permanently. Starting at
t = 60 s, the bypass valve is opened, which has a noticeable effect on the pump behavior, i.e.,
the volume flow decreases significantly. This is also reflected in the plant observer Qplant.
The observers Qpump and Qpower do not detect the changed behavior. These observers
are centered on the pump itself. The bypass flow only decreases the volume flow that
leaves the module. The flow within the pump is still the same and is detected by these two
observers.
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Figure 3. Results for the speed-up of the color dosing module: at t = 60 s the pump condition
noticeably changes.

This is utilized by the residuals. As seen in the third subplot in Figure 3, all residuals
are close to zero in normal pump operation. The residuals Rpump−plant and Rpower−plant are
negative due to the overestimation of the plant observer. As the bypass flow is introduced
at t = 60 s, they increase significantly. They indicate the discrepancy between the volume
flow that exits the module (Qplant) and the volume flow that should be conveyed by the
pump (Qpump or Qpower). The residual Rpower−pump is almost zero and indicates no change,
as it is based on two observers that only “see” the internal flow of the pump.

The simulated wear is constant from t = 65 s on. Nevertheless, the residuals decrease
at t = 90 s when the rotational speed of the pump is reduced. This showcases the fun-
damental problem with absolute values. The classification is supposed to mitigate the
influence of the operation point and its results are depicted in the lower subplot in Figure 3.
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Figure 4. Results for the clogging of mixing module 2: the uncertainty intervals of Qpower,
Rpower−plant, and xpower−plant are indicated by the gray background.

The negative values of Rpump−plant and Rpower−plant in normal operation are counter-
acted, resulting in a symptom that is nearly zero, indicating no wear. Once the significant
wear is introduced, the symptoms xpump−plant and xpower−plant rise to values of ≈0.3 each.
This represents the correct condition of the module. The change in the operation point at
t = 90 s has a far lower impact on the symptom than on the residual. The condition is there-
fore presented in a more universally usable way. The combination of the two symptoms
xpump−plant and xpower−plant, indicating wear, and xpower−pump, indicating no wear, can be
interpreted by an expert or the central diagnosis system to identify the cause.

The second scenario shows the effect of mixer clogging on the observers, residuals,
and symptoms. Figure 4 presents the results for the advancing wear of mixer 2. Initially,
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all modules operate normally. The clogging starts at t ≈ 25 s and reaches a first plateau at
t ≈ 40 s. At t ≈ 60 s, the clogging becomes more severe to reach the final mixer condition.
The results for the different observers are detailed in the second subplot. The plant observer
Qplant slightly overestimates the measured volume flow throughout the scenario. The
pump observer Qpump and the power observer Qpower underestimate the measured values
and fluctuate throughout the scenario. However, these observers are not deceived by the
advancing clogging. The resistance observer Qresis estimates the real volume flow very
well when there is no wear. As the observer is based on the unworn mixer behavior, it
estimates an increasing volume flow due to the rising pressure loss across the clogged
mixer. The difference between the estimated and the real volume flow is also reflected in the
residuals. They are based on a comparison of the volume flow estimation of the preceding
modules (Qplant, Qpump, Qpower) and the estimation at the mixer itself (Qresis), and they
decrease with every increase in the clogging of the mixer. The corresponding symptom is
the relative variable that represents the increased pressure loss across the module and is
defined as x = ∆preal/∆pref. The clogging of the mixer leads to a pressure loss of two times
the original value. The power observer and its related residuals and symptoms show a
higher uncertainty, which is indicated by the gray background in Figure 4. This is because
it is based on uncertain efficiency maps, which are propagated through the calculations.

6. Discussion

The presented approach for condition monitoring of modular process plants is based
on the separation of the symptoms per module and the central diagnosis system. The
validation in this paper focuses on the first step.

The presented results show that the observers based on the manufacturer’s knowledge
of individual modules work very well to estimate the volume flow for fault-free operation.
Once wear is introduced to the system, the observers react in different ways, which is
helpful for the residual generation. Residuals that are not zero are a strong indicator of
wear in the system. To identify the magnitude of this wear, the classification is necessary
and leads to symptoms that depict the effect of the wear on a module’s function.

The model-based approach for the individual modules is successful and shows how
effective simple models and a few measurements can be. The efforts required for modeling
are manageable, as only smaller units of the whole plant are modeled. These models are
valid no matter how much the topology of the entire modular process plant is modified.

Different symptoms react to specific faults. The connections between the symptoms
and their causes were not further discussed in this paper. Generally, they can be derived
from expert knowledge of the modules’ interactions and the implementation of rule-based
expert systems such as fuzzy inference systems, which are the subject of current research
by the authors of this paper.

This overall approach offers one possibility for closing the research gap that exists for
condition monitoring of modular process plants.

7. Summary and Outlook

This paper presented the concept of modular process plants to meet the demands
for more flexibility and efficient production. Pre-manufactured and unvarying modules
are arranged to form different plants, depending on the current recipe. To allow safe and
reliable production, the plant’s condition has to be monitored. The available condition-
monitoring solutions do not consider the specific challenges of modular process plants.
Therefore, an approach designed specifically for modular process plants was suggested.
Each module consists of several model-based observers to redundantly estimate a state
variable, i.e., the volume flow. The residuals are generated by subtracting the observer
outputs and hinting at changes in the system. By combining the manufacturer’s knowledge
of the residuals at different operating points in given conditions, the residuals are classified
and the symptoms are generated. The validation of the approach proves its feasibility, as
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the observer estimates the volume flow correctly in normal operation and specific residuals
and symptoms increase, depending on the fault type.

So far, the last step of this approach has not been demonstrated. Based on the symp-
toms in each module and the expert’s/operator’s knowledge of the interactions between
the modules, a central diagnosis system will be set up. By employing fuzzy logic, the
symptoms will be classified, and rules based on the operator’s knowledge will be applied
to receive an output for the diagnosis system. This is still the subject of current research
and will be published in the next paper.
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Nomenclature
The following variables are used in this manuscript:

∆p Pressure difference
η Efficiency
Ci Pump model parameter
kresis

i Resistance model parameter
kplant

i Plant model parameter
n Rotational speed
Pel Electric power
Q Volume flow
R Residual
x Symptom
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