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Abstract: The proposed study aims to estimate and conduct an investigation of the performance of a
hybrid thermal/photovoltaic system cooled by nanofluid (Al2O3) utilizing time-series deep learning
networks. The use of nanofluids greatly improves the proposed system’s performance deficiencies
due to the rise in cell temperature, and time-series algorithms assist in investigating its potential
in various regions more accurately. In this paper, energy balance methods were used to generate
the hybrid thermal/photovoltaic system’s performance located in Tabuk, Saudi Arabia. Moreover,
the generated dataset for the hybrid thermal/photovoltaic system was utilized to develop deep
learning algorithms, such as the hybrid convolutional neural network (CNN) and long short-term
memory (LSTM), in order to estimate and investigate the thermal/photovoltaic performance. The
models were evaluated based on several performance metrics such as mean absolute percentage
error (MAPE), root mean square error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R2). The results of the evaluated algorithms were compared and provided high
accuracy ranges of 98.3–99.3%. It was observed that the best model among the others was CNN-
LSTM, with an MAE of 0.375. The model was utilized to investigate the electrical and thermal
performance of the hybrid thermal/photovoltaic application cooled by Al2O3 in addition to the
hybrid thermal/photovoltaic cell temperature. The results show hybrid thermal/photovoltaic cell
temperatures could be decreased to 43 ◦C, while the average daily thermal and electrical efficiencies
were raised by 15% and 9%, respectively.

Keywords: PV; PV/T; LSTM; GRU; CNN-LSTM

1. Introduction

Residential, public, and commercial buildings contribute 26% of global CO2 emissions,
with 69.2% of these emissions coming indirectly from electrical and heat demands [1].
In 2020, almost 85% of the total energy produced by fossil fuels was consumed by the
residential and building sectors in Saudi Arabia, contributing 241 metric tons of carbon
dioxide [2]. In order to control and minimize these figures, renewable energy sources can
be utilized as an alternative solution to generate clean energy. Through solar collectors and
photovoltaic systems, the sun is a main renewable source to generate both electrical and
thermal energy. Nonetheless, the solar photovoltaic industry has obstacles to overcome to
achieve highly efficient electrical conversion, with recent panel efficiency reaching 23% [3].
One of the reasons for this poor number is the rise in solar cell temperature [4].

Studies have been implemented to increase power generation by cooling the PV system
since the 1970s. Wolf developed an initial hybrid thermal/photovoltaic system to enhance
PV electric output and utilize the absorbed heat simultaneously [5]. Recent research has
been applied to achieve the same goal by utilizing either water or air as cooling fluid in
order to absorb the excess heat stored in PV modules [6,7]. A spike in temperature can
reduce the amount of power generated by about 0.5% for every 1 ◦C increase, so researchers
are trying to keep the temperature of PV modules at 25 ◦C [8,9]. Using cooling methods
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that reduced the temperature of a PV module by 4.7 ◦C, Tang et al. were able to increase
the PV’s electrical power and efficiency by 8.4% and 2.3%, respectively [10]. Káiser and
Zamora evaluated the electrical performance by cooling the photovoltaic system through
natural and forced convictions [11]. Their study showed a significant drop in photovoltaic
surface temperature equal to 15 ◦C, resulting in an increase in electrical power of around
15% compared to the natural convection case.

In order to remove the heat that has been stored in solar cells, numerous researchers
have recently attached phase-change material (PCM) and nanofluids to PV/T systems. The
cooling of a PV/T system using three different fluids—water, alumina water nanofluid, and
silver water nanofluid—was numerically explored by Khanjari et al. [12]. For alumina and
silver water, respectively, the electrical efficiency of their system increased by 4.26% and
11.54% as compared to pure water. Manigandan and Kumar applied PCM with nanofluid
to reduce the temperature of a PV/T system [13]. According to the study’s findings, using
a PCM nanofluid system increased power generation by 15% when compared to using a
single PV cell. Also, thermal efficiency increased by 8% for the PV/T systems and 12%
for the PCM systems. Al-Waeli et al. studied electrical and thermal improvements using
SiC nanoparticles and water-based nanofluid on a PV system [14]. The scientists discov-
ered electrical and thermal capabilities improved by 24.1% and 100.191%, respectively,
as compared to a traditional thermal/photovoltaic system. Nada et al. conducted an
experimental study to compare the performance of PCM/nanofluid-PVT systems and a
single PV system [15]. The result presented an increase in electrical efficiency in PCM-PVT
and PCM/nanofluid-PVT systems of 5.7% and 13.2%, respectively.

Nowadays, machine learning (ML) and artificial neural networks (ANNs) are widely
used to predict PV/T efficiency. Al-Waeli et al. developed ANN models to predict the
thermal and electrical efficiency of three cooling PV/T systems [16]. Of all the developed
artificial neural networks (ANNs), the best mean absolute error (MAE) for the thermal and
electrical efficiency models was 1.42 and 1.164, respectively. Yousif and Kazem used three
machine learning algorithms to predict PV/T power [17]. They found that the ANN model
had the best performance, with an MAE of 0.65084. Furthermore, Al-Waeli et al. attempted
to train a neural network model with the target of predicting the electrical performance of
a thermal/photovoltaic system integrated with nano-phase-change material (PCM) and a
nanofluid cooling system [18]. The best model in their study scored a rate of determination
(R2) of 0.81 and a root mean square error (RMSE) of 0.371. Similarly, Shahsavar et al.
aimed to forecast the performance of a building-integrated PV/T system through the
utilization of machine learning [19]. They presented a highly accurate predictive model
with R2 ranges of 0.9997–0.9999 for the dataset used in their study. Recently, Jakhar et al.
developed a multi-layer perceptron (MLP) in order to match other researchers’ targets
in predicting the performance of a thermal/photovoltaic system with nanofluids-based
geothermal cooling [20]. The average rate of determination (R2) of their predictive model
reached 98%, and the improved predicted cell temperature and electrical performance
were 32.1 ◦C and 10.66%, respectively. Similarly, Diwania et al. attempted to prognosticate
the performance of hybrid thermal/photovoltaic systems operated by pure water and
Fe/water nanofluid through the utilization of a Gaussian process regression model [21].
The rate of determination (R2) and mean absolute error (MAE) achieved by the proposed
model were 96% and 11.6, respectively. Margoum et al. used K-Nearest Neighbor (K-NN)
to predict the electrical generation of a Ag/water-based thermal/photovoltaic system [22].
The reported R2 and mean square error (MSE) of the developed model were roughly 82%
and 16.47, respectively.

The need for the utilization of thermal/photovoltaic systems cooled by nanofluids
in hot-climate regions is a necessity to improve the generation of electricity and heat.
The potential of implementing this application can be well investigated by leveraging
recent time-series neural networks to guarantee precise predictions. The above-mentioned
studies focused on predicting the electrical and thermal performance of various PV/T
applications utilizing conventional machine learning algorithms. To the best of the author’s
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knowledge, there is no study that has applied time-series (deep learning neural networks)
models to forecast the proposed system’s performance. Therefore, this study aims to utilize
hybrid deep learning neural networks to predict and investigate PV/T performance at a
hot-climate location. The main objectives of the current paper are as follows:

(1) Numerically study the effect of cooling a PV/T system with alumina nanofluid (Al2O3)
in Tabuk, Saudi Arabia.

(2) Develop neural network algorithms using long short-term memory (LSTM), gradient
recurrent unit (GRU), convolutional neural network (CNN), hybrid LSTM-GRU, and
hybrid CNN-LSTM to train the numerical data and predict the PV/T performance.

(3) Evaluate the developed models based on various metrics, including the coefficient of
determination (R2), mean absolute percentage error (MAPE), the root mean square
error (RMSE), and mean absolute error (MAE).

2. Methodology
2.1. PV/T System Modeling

An analytical model was developed based on the analysis of the integration of a PV/T
system into a residential building. The performance of the proposed system was analyzed
by applying the laws of thermodynamics. This section provides the relevant equations for
analyzing the PV/T system.

Cell temperature, thermal gain, outlet fluid temperature, and electrical and thermal
efficiency are the primary factors to be considered when assessing a PV/T system. Utilizing
the resistances to conduction, convection, and radiation heat transfer, energy balance
equations are applied to the PV/T system to derive the theoretical expressions of the
parameters. An illustration of the cooling system connected to the PV module is shown in
Figure 1. Equation (1) provides the expression for computing the temperature of the cell
based on the energy balance between glass and Tedlar [23].

Tc =
(ατ)effG + UcaTa + UctTbs

Uca + Uct
(1)

where G represents the solar radiation that the PV module absorbs, Uca represents the total
heat transfer coefficient from the photovoltaic cell to the surroundings through glass, Uct
represents the entire heat transfer coefficient from the photovoltaic cell to fluid through
Tedlar, Ta is the ambient temperature, Tbs represents the temperature of the module’s back
surface, and (ατ)eff represents the multiplicity of functional absorptivity and transmittivity
and can be expressed in Equation (2) [24].

(ατ)eff = τg
[
αcβc + (1− βc)αted − ηC,elcβc

]
(2)

The back surface temperature expression obtained from the energy balance between
Tedlar and rear surface is given by Equation (3) [25].

Tbs =
hp1(ατ)effG + UgtTa + UawTw

Ugt + Uaw
(3)

where Ugt is the total heat transfer coefficient from the top surface of the photovoltaic
cell to Tedlar through the photovoltaic cell, Uaw is the entire heat transfer coefficient from
the absorbent sheet to the working fluid, and hp1 is the penalty factor caused by the
combination of the photovoltaic cell material, glass sheet, and EVA [26].

Ugt =
UcaxUct

Uca + Uct
(4)

hp1 =
Uct

Uca + Uct
(5)
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The outlet fluid temperature, based on the equilibrium condition for heat balance
when fluid streams below the solar cell, is expressed by Equation (6) [27].

Tfo =

[
hp1hp2(ατ)effG

UT
+ Ta

][
1− exp

(
−F

′
APVTUT

mwCw

)]
+ Tfiexp

(
−F

′
APVTUT

mwCw

)
(6)

where UT is the total heat transfer coefficient from the thermal/photovoltaic system to the
atmosphere, APVT is the area of the PV module or panel, mw is the working fluid mass
flow rate, Cw is the specific heat capacity of the working fluid, and hp2 is the penalty factor
caused by the existence of an interaction between the working fluid and Tedlar [24].

hp2 =
Utw

Utw + Ugt
(7)

From the integration of Equation (6), the average working fluid temperature can be
expressed by Equation (8).

Tf =

[
hp1hp2(ατ)effG

UT
+ Ta

]1−
1− exp

(
−F

′
APVTUT

mwCw

)
F
′
APVTUT

mwCw

+ Tfiexp


1− exp

(
−F

′
APVTUT

mwCw

)
F
′
APVTUT

mwCw

 (8)

Equation (9) provides the thermal energy produced from the combined hybrid thermal
photovoltaics system, and Equation (10) expresses the thermal efficiency of the hybrid
thermal photovoltaics system [28].

Qu = mwCw(Tfo − Tfi) (9)

ηth =
Qu

APVTG
(10)

The efficiency of the solar cell can be evaluated by Equation (11) [29,30].

ηce = ηSTC[1− β0(Tc − TSTC)] (11)

According to [31], the properties of the nanofluid (Al2O3) used in the hybrid thermal
photovoltaics system are modeled using the following equations:

ρnf = ρfb(1−∅) + ρnp∅ (12)

Cnf =
(1−∅)ρfbCfp + Cnpρnp∅

ρnf
(13)

{
unf = (1 + 2.5∅)ufb for ∅ < 0.05

unf =
(

1 + 2.5∅ + 6.5∅2
)

ufb for ∅ > 0.05
(14)

knf = kfb
knp + 2kfb − 2∅

(
kfb − knp

)
knp + 2kfb −∅

(
kfb − knp

) +
ρnp∅Cnp

2
.

√
2xTnf

3πdnpufb
(15)

where ρnf, Cnf, unf, knf, and ∅ are nanofluid density, nanofluid specific heat capacity,
nanofluid viscosity, nanofluid thermal conductivity, and nanofluid volume fraction. The
term fb refers to the base fluid, which is water. Table 1 illustrates all the utilized properties
in developing the mathematical model of the thermal/photovoltaic system.
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Figure 1. A schematic illustration of the PV module’s integrated cooling system [32].

Table 1. Parameters of photovoltaic/thermal system and nanofluid properties.

Parameter Value

PV glass’s transmissivity (τg
)

0.95
PV glass cover’s thickness (tg) 0.0032 m

PV glass cover’s thermal conductivity (kg) 1 W/mk
PV cell’s absorptivity (αc) 0.9

PV cell’s transmissivity (τc) 0.9
PV cell thermal conductivity (kc) 0.036 W/mk

Tedlar’s absorptivity (αted) 0.75
Absorber plate’s thermal conductivity 385 W/m.k

Absorber plate’s thickness 0.002 m
Packing factor of solar cell (βc) 0.83

Temperature coefficient of PV panel (β0) 0.0034
Thermal conductivity of the epoxy adhesive 1.04 W/m.k

Base fluid density ($fb) 998.2 Kg/m3

Nanoparticle density ($np) 3970 Kg/m3

Base fluid thermal conductivity (kfb) 0.6 W/m.k
Nanoparticle thermal conductivity (knp) 40 W/m.k

Base fluid specific heat capacity (Cfb) 4.182 kJ/kg.k
Nanoparticle specific heat capacity (Cnp) 0.765 kJ/kg.k

Nanofluid volume fraction (∅) 5%

2.2. Predictive Models and Evaluations

The mathematical model was validated by ongoing research by Abdulwahed Mushab-
bab et al. [33]. Figure 2 shows the hybrid thermal/photovoltaic system used to validate
the mathematical model in the section above. The developed thermal/photovoltaic sys-
tem model was used to generate a dataset for a 1-year period (8760 h), depending on
historical weather data and generated PV power data. The weather data used to simulate
the mathematical model were obtained from historical weather data for Tabuk, Saudi
Arabia [34]. Additionally, the PV power output for the proposed location was generated
through the implementation of the pvlib Python model [35]. The generated data were
utilized to train multiple neural networks to predict the influence of nanofluid on cooling
a thermal/photovoltaic system. All the simulated parameters were trained in predic-
tive algorithms based on eliminating the highly correlated features within the generated
thermal/photovoltaic system dataset. The features used to train the models were cell
temperature, PV output power, ambient temperature, wind speed, cloud cover, relative
humidity, Reynolds number, inlet temperature to cool the thermal/photovoltaic system,
thermal efficiency, and electrical efficiency.
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Figure 2. A PV/T system utilized to validate the mathematical model.

The software that was used to train, validate, and test the models was the R statistical
computing environment (version 4.1.1), deploying Keras and TensorFlow libraries [35,36].
Similarly, all data were normalized using the min–max method to accelerate the com-
putation time during the training session. The dataset applied by models was divided
into training (80%), validation (10%), and testing (10%) to avoid overfitting during the
training phase. Figure 3 shows a block diagram that clarifies all the processes necessary
to predict the performance of the thermal/photovoltaic collector cooled by nanofluid. All
pre-processing techniques were explained in detail in previous works [37,38].

Processes 2023, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. A block diagram for all the processes to predict the thermal/photovoltaic system perfor-
mance. 

2.2.1. Long Short-Term Memory (LSTM) 
In 1997, Hochreiter and Schmidhuber developed the long short-term memory 

(LSTM) neural network, a subtype of the recurrent neural network (RNN) [39]. Dealing 
with long-term dependencies leading to a gradient vanishing problem or gradient explo-
sion problem is one of the challenges RNNs must overcome. In order to solve this issue, 
LSTM employs a forget gate that enables the current state to forget unimportant previous 
data at the present time. 

The forget gate, input gate, and output gate are the gates that make up the LSTM’s 
architecture. The forget gate determines which data are left out of the cell state. The input 
gate then determines the data that are saved and included in the cell state. The output gate 
then selects the output data and sends them to the following node [40]. Figure 4 shows 
the LSTM model structure. Equations for all gates are: f =  σ(W [h , x ] + b ) (16)i =  σ(W [h , x ] + b ) (17)o =  σ(W [h , x ] + b ) (18)

The cell state C  equation is listed below: C = tanh(W [h , x ] + b ) (19)C =  f ∗ C + i ∗ C  (20)

The output h  that comes out from the LSTM unit is: h =  o ∗ tanh(C ) (21)

Figure 3. A block diagram for all the processes to predict the thermal/photovoltaic system performance.

Long short-term memory (LSTM), gradient recurrent unit (GRU), convolutional neural
network (CNN), hybrid LSTM-GRU, and hybrid CNN-LSTM are the time-series deep
learning models suggested in this work. In general, time-series deep learning algorithms
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typically deploy previously determined timesteps, called lookback periods, for all the
features of the utilized dataset, including the response data, to predict the next-step value.
Additionally, data can be batched through the utilization of time-series deep learning
algorithms to effectively obtain the best predictive model and avoid overfitting issues. All
models’ architectures are described as follows:

2.2.1. Long Short-Term Memory (LSTM)

In 1997, Hochreiter and Schmidhuber developed the long short-term memory (LSTM)
neural network, a subtype of the recurrent neural network (RNN) [39]. Dealing with
long-term dependencies leading to a gradient vanishing problem or gradient explosion
problem is one of the challenges RNNs must overcome. In order to solve this issue, LSTM
employs a forget gate that enables the current state to forget unimportant previous data at
the present time.

The forget gate, input gate, and output gate are the gates that make up the LSTM’s
architecture. The forget gate determines which data are left out of the cell state. The input
gate then determines the data that are saved and included in the cell state. The output gate
then selects the output data and sends them to the following node [40]. Figure 4 shows the
LSTM model structure. Equations for all gates are:

ft = σ(Wf[ht−1, xt] + bf) (16)

it = σ(Wi[ht−1, xt] + bi) (17)

ot = σ(Wo[ht−1, xt] + bo) (18)

The cell state Ct equation is listed below:

C̃t = tanh(Wc[ht−1, xt] + bC) (19)

Ct = ft*Ct−1 + it*C̃t (20)

The output ht that comes out from the LSTM unit is:

ht = ot*tanh(Ct) (21)
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2.2.2. Gated Recurrent Unit (GRU)

Kyunghyun Cho developed a gated recurrent unit (GRU) in 2014 [41]. Long short-term
unit (LSTM) and gated recurrent unit (GRU) both have the capacity to handle the gradient
vanishing problem. Similar to LSTM, GRU can exclude irrelevant prior observations in
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the context of the current data and take into account only prior observations that have an
impact on the response. In contrast to LSTM, which uses a separate memory cell to address
the gradient vanishing problem, GRU has an update gate z and a reset gate r. This is how
the two models differ. Figure 5 shows the GRU model structure. The following equations
refer to activation hj

t, candidate activation h̃j
t, update gate zj

t, and reset gate rj
t.

hj
t = (1− zj

t)h
j
t−1 + zj

th̃
j
t (22)

zj
t = σ(Wzxt + Uzht−1)

j (23)

h̃j
t = tanh(Wxt + U(rt � ht−1))

j (24)

rj
t = σ(Wrxt + Urht−1)

j (25)

where (1− zj
t)h

j
t−1 is the selective “forget” information of the original hidden state, and

zj
th̃

j
t is the selective “memory” information for h̃j

t.
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2.2.3. Convolutional Neural Network (CNN)

The capacity of a CNN to acquire highly abstracted object properties makes it one of
the deep learning models that is appropriate for visual picture analysis and recognition [42].
However, it can be used to anticipate how well thermal/photovoltaic systems would work
because it can also learn time-series data with a variety of attributes.

Figure 6 shows the structure of a CNN. It consists of a convolutional layer, a pooling
layer, a flattening layer, and a fully connected layer. The main layer in this network is the
convolutional layer, which reduces computational complexity through sliding windows
and weight sharing. The layer after that is the pooling layer. It lowers the size of the
feature map and runs each of them independently, which allows for the identification
of the dominant features in the training phase. The pooling layer used in this work is
known as the max pooling layer. The last two layers are the flattening layer and the fully
connected layer, respectively. It is important to note that the flattering layer turns data into
a one-dimensional vector to allow the fully connected layer to connect neurons between
other layers [42].
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2.2.4. Hybrid Neural Network (LSTM-GRU and CNN-LSTM)

The three previous models mentioned above can be developed into hybrid structures.
Figure 7a shows the developed structure for the LSTM-GRU network. Figure 7b demon-
strates the integrated CNN-LSTM structure. Table 2 summarizes all the structure layers for
all the developed models.
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Figure 7. Hybrid deep learning models utilized to predict the performance of the thermal/photovoltaic
system: (a) LSTM-GRU simplified architecture, (b) CNN-LSTM simplified architecture.

Table 2. Summary of the structure layers and hyperparameters for developed models.

Structure of Layer

Model 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer

LSTM LSTM
(N: 25/A: tanh)

dense
(N:1/A: relu) - - -

GRU GRU
(N: 25/A: tanh)

dense
(N: 1/A: relu) - - -

CNN CNN
(F: 30/Fz: 5/A: relu)

max pooling
(Pz: 4) flatten dense

(N: 1/A: sigmoid) -

LSTM-GRU LSTM
(N:25/A: tanh)

GRU
(N: 15/A: tanh)

dense
(N: 1/A:relu) - -

CNN-LSTM CNN
(F: 64/Fz: 5/A: relu)

max pooling
(Pz: 4) flatten LSTM

(N: 25/A: tanh)
dense

(N: 1/A: sigmoid)

Hyperparameters

All models Lookback Steps = 12 Batch Size = 128
Where N: neuron units, A: activation, F: filter units, Fz: filter size, and Pz: pooling size.
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2.2.5. Metric Evaluation

Mean absolute percentage error (MAPE), root mean square error (RMSE), mean ab-
solute error (MAE), and the coefficient of determination (R2) are used to evaluate the
accuracy of predictive ML models. The methods to compute these metrics are shown
below, respectively.

MAPE =
1
n∑n

i=1
(Ai − Pi)

Ai
(26)

RMSE =

√
∑n

i=1
|Ai − Pi|

n
(27)

MAE =
∑n

i=1|Ai − Pi|
n

(28)

R2 = 1− ∑n
i=1(Ai − Pi)

2

∑n
i=1
(
Ai −A

)2 (29)

where Pi is the predicted data, Ai is the actual data, A is the mean of the target data, and n
is the number of the data.

3. Results and Discussion

The main focus of this paper is to develop a time-series deep learning algorithm
to predict the performance of the PV/T system cooled by nanofluid (Al2O3). Figure 8
illustrates a time series of the actual PV/T cell temperature (black line) against the accuracy
of the predicted same parameter (red line) using the best-developed model for a random
9 days in the dataset. It is obvious that predictions follow the actual values, which represent
the high accuracy of the developed algorithm. It is also seen that the PV/T cell temperature
(cooled by nanofluid) during the daytime can reach almost 45 ◦C. Further, improving
the thermal/photovoltaic system’s mass flowrate will improve its performance. As a
result, cell temperature and thermal and electrical efficiencies predicted utilizing nanofluid
(Al2O3) were compared according to the increase in flowrate. Figure 9 shows the predicted
cell temperature for various mass flowrates on 1st July. The blue line represents the
PV/T panel temperature with no cooling, while other lines represent the behavior of
cell temperature with various cooling flowrates using nanofluid. It can be seen that the
temperature decreases with increasing the working fluid flowrate, with the cell temperature
lowering from approximately 71 ◦C to 43 ◦C in the peak time.
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Figure 8. A time series plot for the actual PV/T cell temperature versus the predicted PV/T cell
temperature for 9 days in the dataset.
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Figure 9. A comparison between the cell temperature prediction for a PV/T system for a non-cooling
case with various cooling flowrates using nanofluid.

The performance metrics for each individual model were determined by calculating
the mean absolute percentage error (MAPE), root mean square error (RMSE), mean absolute
error (MAE), and the coefficient of determination (R2). Table 3 presents the comparison
of the results for the trained CNN-LSTM model with LSTM, GRU, CNN, and LSTM-GRU
models utilizing the dataset of a thermal/photovoltaic system cooled by nanofluid (Al2O3).
The best performance for predicting the PV/T cell temperature was achieved by CNN-
LSTM, with a rate of determination (R2) of 99.3% and a mean absolute error (MAE) of
0.375, while other evaluation metrics had the lowest values among other models. The CNN
model recorded the poorest results among other models, scoring R2 at 98.3% and MAE
at 0.6483.

Table 3. Performance measures of the predictive cell temperature deep learning algorithms.

Model MAPE (%) RSME MAE R2

LSTM 0.1456 0.6941 0.4349 0.991
GRU 0.1376 0.7194 0.4104 0.991
CNN 0.2178 1.0237 0.6483 0.983

LSTM-GRU 0.1280 0.6544 0.3815 0.992
CNN-LSTM 0.1260 0.6220 0.3750 0.993

The applied dataset was also utilized to predict the electrical and thermal performance
of the PV/T system cooled by nanofluid. Figure 10 demonstrates a comparison of the
predicted electrical performance of the PV/T for the non-cooling case versus various
nanofluid flowrates in the daytime on the first day of July. It can be observed that the
predicted electrical performance of the non-cooling case could be significantly increased by
nanofluid cooling from approximately 11.8% to 14% under the effect of high temperature.
Figure 11 shows a comparison of the predicted thermal performance of the same system
cooled by nanofluid against water cooling. The average predicted thermal performance of
the proposed system cooled by nanofluid jumped from roughly 65% to 75% in comparison
with water cooling. Figure 12 demonstrates a comparison of the predicted monthly daily
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production for a PV system versus a water cooling and nanofluid cooling PV/T system. For
the PV system, the predicted average daily electrical energy output varied from roughly
1.1 to 1.5 kWh/m2/day all year round. For PV/T cooling by nanofluid, however, the
predicted average daily electrical energy production could be increased to approximately
1.5–2 kWh/m2/day through the whole year.
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case vs. different nanofluid flowrates.
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Figure 11. A comparison of the predicted thermal performance of the PV/T system for a water
cooling case vs. different nanofluid flowrates.
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cooling and nanofluid cooling PV/T system.

4. Conclusions

The presented paper addressed the validity of developing time-series deep learning
algorithms to predict the performance of a PV/T system cooled by nanofluid (Al2O3). The
PV/T system simulated based on weather data and developed mathematical equations
were validated by Abdulwahed Mushabbab and other works, which were referenced in
Section 2.1. The simulated data were trained, validated, and tested through the utilization
of LSTM, GRU, CNN, LSTM-GRU, and CNN-LSTM. The best model among them was
utilized to forecast and investigate the electrical and thermal performance of a PV/T system.
From the Results section, it can be seen that the CNN-LSTM was the best model to predict
the PV/T parameters, with an R2 and MAE of 0.993 and 0.375, respectively. The result
shows the PV/T cell temperature could be decreased to around 43 ◦C using Al2O3 during
the daily peak time. Also, an enhancement in the average daily electrical efficiency of the
PV/T compared to a PV system of 9% was observed. Furthermore, the predicted average
daily electrical energy output could reach 2 kWh/m2/day during the year, and the average
daily thermal efficiency of the PV/T utilizing nanofluid increased by approximately 15%
compared to the PV/T water cooling.

The future scope is to simulate the PV/T-PCM/nanofluid and predict the performance
of the system using new artificial intelligence techniques. This would allow researchers to
obtain more accurate predictions and avoid overfitting issues and wrong forecasts. Similarly,
the challenges of handling nanofluids, such as stability and viscosity, can be addressed in
the implementation of the proposed system. Furthermore, the water-to-nanofluid ratio will
be investigated in detail for hot-climate locations.
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Nomenclature

Symbol Description
(ατ)eff Product of effective absorptivity and transmittivity
αc Absorptivity of a cell
αted Absorptivity of Tedlar
βc Cell packing factor
Cw Specific heat capacity of the working fluid
mw Working fluid mass flowrate
Qu Removal of thermal energy
Ta Ambient temperature
Tbs PV/T back surface temperature
Tc PV/T cell temperature
τg Transmissivity of glass
Tfi Working fluid inlet temperature
Tfo Working fluid outlet temperature
Uca Overall heat transfer coefficient from the cell to the atmosphere
Uct Overall heat transfer coefficient from the cell to Tedlar
Ugt Overall heat transfer coefficient from glass to Tedlar through a solar cell
Utw Overall heat transfer coefficient from Tedlar to the working fluid
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