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Abstract: Coal and gas outbursts are some of the most serious coal mine disasters, and effective
prediction of coal and gas outbursts can reduce the likelihood of accidents and fatalities. Previously
conducted studies have established that machine learning has achieved results in the prediction of
coal and gas outbursts, but there is a problem that the available accident data of coal and gas outbursts
are diminished or missing. This paper proposes a prediction model based on multiple filling of
chained equations for random forests (miceforest) and the Harris Hawk optimization algorithm
with Piecewise chaos mapping (PHHO) to optimize the kernel extreme learning machine (KELM)
to solve the problem of missing data in coal and gas outburst prediction and to improve prediction
accuracy in the case of missing data. Firstly, the miceforest algorithm was adopted to fill missing
values in the salient samples, and then the PHHO algorithm was used to optimize the parameters
of KELM. Finally, the datasets before and after filling were input into the PHHO–KELM model
for experimentation and comparison with other models. The results show that miceforest filling
is effective in improving the salient sample accuracy and overall accuracy of predictions, but the
improvement is not significant for non-salient samples. The use of the PHHO–KELM model can
effectively avoid falling into a local optimum and further improve the prediction accuracy of the
KELM algorithm. The salient sample accuracy and overall accuracy of the miceforest–PHHO–KELM
model prediction are 96.77% and 98.50%. And an effective coal and gas outburst model has been
proposed, which is the miceforest–PHHO–KELM model.

Keywords: coal and gas outburst prediction; missing data filling; multiple filling of chained equations
for random forests; kernel extreme learning machine; Harris Hawk optimization algorithm with
Piecewise chaotic mapping

1. Introduction

Coal is the largest energy source in China, and gas outbursts are an important source
of danger in coal mining. From 2001 to 2020, there were 484 coal and gas outburst accidents
and 3195 deaths in China [1]. Although the number of coal and gas outburst accidents and
deaths have decreased in recent years in China, the situation of coal mine safety is still not
optimistic. Therefore, we still need to pay great attention to the prevention and control
of coal and gas outburst accidents, and to accurately and efficiently predict coal and gas
outburst accidents.

Many scholars have carried out a lot of research on the coal and gas outburst prob-
lem [2–4]. With the development of science and technology, scholars have introduced
machine learning algorithms into coal and gas outburst prediction, and have improved
the accuracy of coal and gas outburst prediction by optimizing these machine learning
algorithms. As a machine learning algorithm, support vector machine performs well
in coal and gas outburst prediction; in order to further improve prediction accuracy,
scholars have used the improved particle swarm algorithm [5], adaptive differential
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evolution algorithm [6] and improved gravity algorithm [7] to improve and optimize
accuracy and achieve a good prediction effect. And scholars have also used optimized
neural network algorithms such as the Neuron-Evolution of Augmenting Topologies
algorithm [8], the adaptive learning rate to improve BP neural network [9] and the
quantum gate line neural network [10] to improve the accuracy of coal and gas outburst
prediction. Ref. [11] proposed a gas outburst hazard prediction model based on an
adaptive tensile whisker search algorithm to optimize an extreme learning machine,
which effectively improves prediction accuracy. Ref. [12] constructed a dynamic pre-
diction model with multiple algorithms and multivariate analysis, which provided a
new way for the prediction of coal and gas outburst hazard levels. However, in machine
learning, the prediction results of algorithms are more skewed to the category of a large
amount of data, and the influence of data on prediction accuracy is much larger than the
influence of algorithms. In order to solve this kind of problem, scholars have improved
the effectiveness and accuracy of coal and gas outburst prediction by optimizing the
known measurable data. Ref. [13] proposed for the first time to use the correlation
coefficient to fill missing data in real time and then use the random forest algorithm to
achieve coal and gas protrusion prediction. Ref. [14,15] proposed to use the multiple
filling method to fill missing data and then use support vector machines to predict coal
and gas outbursts, which effectively improve the accuracy of protrusion prediction.
Furthermore, the missForest method [16,17] has been used to fill the missing data of
coal and gas outbursts and has achieved a good data filling effect, which is of great
significance for improving the accuracy of outburst prediction. Ref. [18] proposed a coal
and gas outburst prediction model based on chained support vector machine multiple
interpolation and a whale optimization extreme learning machine, and the MICE–SVM
interpolation algorithm significantly improved the accuracy of protrusion prediction.
Although the above model has had a significant effect in improving the accuracy of coal
and gas outburst prediction, there is still room for progress, and the existing missing
value filling algorithm can be further optimized to improve data accuracy in order to
enhance prediction accuracy.

In view of this, the multiple filling of chained equations for random forests (mice-
forest) is used to fill missing values in datasets to improve data accuracy. In order to
make the prediction model more effective, the Harris Hawk optimization algorithm with
Piecewise chaotic mapping (PHHO) is used to optimize the parameters of the kernel ex-
treme learning machine (KELM), and a coal and gas outburst prediction model based on
miceforest–PHHO–KELM is established. Simulation experiments are carried out using
a measured dataset of the Huainan Zhuji mining area, and comparison and analysis are
carried out with other models.

2. Selection of Characteristic Variables and Data Preprocessing
2.1. Selection of Characteristic Variables

The factors affecting coal and gas outbursts are complex and diverse, and prediction
results derived from the selection of different influencing factors in modeling can be very
different. A large amount of energy will be released when a coal and gas outburst accident
occurs. Shi Haoyu et al. [19] analyzed the influencing factors of outburst through the
ideal gas equation of state and pointed out that gas content and gas pressure have a great
influence on the value of outstanding energy release. Wang Gang et al. [20] concluded that
gas content had the greatest influence on protrusion through the Morris filtering method,
followed by the gas diffusion coefficient, gas pressure and porosity. Zheng Xiaoliang
pointed out that porosity, the coal seam coefficient of solidity and the initial velocity of gas
dissipation have a greater influence on the desorption rate of gas and whether a certain
pressure can be formed [14]. Therefore, combined with measured data from the Huainan
Zhuji Mine [14], and with consideration that the gas diffusion coefficient is difficult to
measure, five parameters in this dataset, namely, gas content, gas pressure, initial velocity
of gas dissipation, coefficient of coal-bed solidity, and porosity of coal, are selected as
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prediction indexes. There are 133 sets of data in this dataset, among which there are 62 sets
of salient data and 71 sets of non-salient data, and only salient data are missing. The
relevant statistics of the salient sample data are shown in Table 1.

Table 1. Relevant statistics of the salient sample data.

Parameter Gas Content Gas Pressure Porosity of Coal Coefficient of
Coal-Bed Solidity

Initial Velocity of
Gas Dissipation

Groups 62 62 48 47 51
Missing 0 0 14 15 11

Maximum 26.00 4.54 9.60 2.00 35.00
Minimum 7.12 0.28 2.94 0.12 5.00

Mean 12.15 1.86 5.70 0.55 9.90
Standard deviation 4.01 1.04 1.68 0.35 4.74

2.2. Multiple Filling of Chained Equations for Random Forests (Miceforest)

When it comes to scientific research, complete datasets are more valuable than
incomplete ones. Missing data can result in less efficient predictions and tend to produce
inaccurate results. Therefore, the problem of data accuracy is one of the main issues
that need to be solved urgently to make effective predictions. Compared with other
industries, it is difficult to collect data on coal and gas outburst accidents: there are fewer
accident data available. Moreover, it is difficult to find relevant pre-accident parameters
after an accident, and even if there is a record of parameters before the accident, the
record is incomplete. As a result, prediction results tend to be biased towards non-
accident data with more data volumes, and the accuracy of prediction is lower, which
affects the safety of coal mine production. Therefore, filling in missing data, expanding
available datasets and improving data quality cannot be ignored for improvement of the
prediction accuracy of coal and gas outbursts.

Scholars at home and abroad have proposed data interpolation methods to fill
missing values to solve the problem of missing data [21]. The more common filling meth-
ods mainly include regression filling, K-Nearest Neighbor filling (KNN) and random
forest filling (RF). Multiple interpolation with chained equations is a series of iterative
prediction models to fill missing data. Each iteration randomly selects other variables in
the dataset to estimate each specified variable in the dataset, and the iteration is stopped
when convergence is satisfied. There is a certain amount of randomness in the process of
multiple interpolation of chained equations, and as the missing rate rises, it becomes less
and less effective in filling in the missing data. The results obtained from random forest
have randomness, which makes it more sensitive to missing values and more resistant to
interference, higher interpolation accuracy and better robustness. The combination of
random forest and multiple interpolation with chained equations can better improve the
accuracy of filling in missing values. Therefore, the miceforest algorithm is chosen to
fill missing values in the dataset. The filling process is shown in Figure 1. The specific
filling steps are shown below:

• Use the miceforest algorithm to fill missing data of the original dataset m (default
m = 4) times to obtain multiple complete datasets.

• Perform mathematical statistical analyses such as the mean change rate for each
complete dataset, and tabulate the resulting results.

• In accordance with the principle of taking the optimum, select statistical results from
step 2 for integration of the same columns to obtain the final filled complete dataset.
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Figure 1. Diagram of the miceforest filling process.

2.3. Filling Missing Data Values with the Miceforest Algorithm

There were 27 groups of 62 coal and gas salient samples with missing data for some
factors. There were mainly missing data for the three influencing factors of porosity, coal
seam solidity coefficient and initial velocity of gas discharge, and the index of coal seam
solidity coefficient had the most amount of missing data. When the missing data rate
is greater than 15%, data filling is required. The missing rate for this dataset is 24.19%,
which is obviously greater than 15%. If only complete data are used for prediction, model
training will be insufficient due to the small amount of data, which will affect the accuracy
of recognition whether it is prominent. The miceforest algorithm was used to fill in the
missing data, and the datasets before and after filling were used to train and test the
prediction model, respectively, to compare prediction results.

In order to verify the advantages of miceforest filling, K-Nearest Neighbor, regression
filling and random forest were selected to fill missing values and were compared with the
data after miceforest filling. Analysis of the data before and after filling is shown in Table 2.
The results show that the degree of change in the mean and standard deviation of the three
missing data indicators after miceforest filling is relatively low.

Table 2. Analysis before and after filling missing values.

Missing Value Parameter Porosity of Coal Coefficient of
Coal-Bed Solidity

Initial Velocity of
Gas Dissipation

Missing 14 15 11

Mean

Original data 5.70 0.55 9.90
Regression 5.70 0.56 9.93

KNN 5.76 0.54 9.86
RF 5.75 0.53 9.67

miceforest 5.83 0.53 9.66

Standard deviation

Original data 1.68 0.35 4.74
Regression 1.48 0.31 4.32

KNN 1.53 0.31 4.32
RF 1.52 0.31 4.37

miceforest 1.68 0.31 4.37

The root mean square error (RMSE) and the coefficient of determination (R2) were
used to evaluate the overall filling effect. The root mean square error reflects the degree of
deviation between the predicted and actual values. The smaller its value, the better the fit.
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The numerator of the coefficient of determination is the sum of the squares of the difference
between the predicted and real values, and the denominator is the sum of the squares of the
difference between the mean and real values. The closer the value of R2 is to 1, the better
the fit of the model. The missing values in the dataset are filled with 0 and the RMSE and
R2 values of different models are calculated; a comparison of the overall filling effects of
the different models is shown in Table 3. The two indexes filled by the miceforest algorithm
have the best results, which indicates that the algorithm is able to realize compensation
for the missing data to meet the system’s requirements for data reliability and is able to
improve the quality of the data and data accuracy.

Table 3. Comparison of overall filling effect of different methods.

Evaluation Index Regression KNN RF Miceforest

RMSE 2.264 2.227 2.235 2.136
R2 0.584 0.599 0.619 0.651

3. Coal and Gas Outburst Prediction Model
3.1. Kernel Extreme Learning Machine

The extreme learning machine (ELM) is a feed-forward neural network algorithm.
Although the overall structure of the ELM model is relatively simple, and it can be trained
without repeated iterations, which has the advantages of shorter training time and higher
generalization ability, the stability and generalization ability of ELM is drastically reduced
due to the random generation of input weights and thresholds. Therefore, researchers
spend more effort on adjusting weights and thresholds to make the model more accurate.
Therefore, Huang et al. [22] introduced the concept of the kernel function into the ELM
model and proposed the kernel limit learning machine (KELM) model. This does not need
to randomly generate input weights and thresholds, but only needs to be given the kernel
function to train and then obtain classification and recognition results. In order to avoid
local optimality when predicting coal and gas outbursts, it is proposed to optimize the
penalty coefficients and thresholds of KELM with the Harris Hawk optimization algorithm
of Piecewise chaotic mapping (PHHO), so as to further improve the effect of KELM on the
prediction of coal and gas outbursts.

3.2. Harris Hawk Optimization Algorithm

The Harris Hawk optimization algorithm (HHO) [23–25] is a population-based
and gradient-free metaheuristic algorithm proposed by Heidari et al. in 2019. The
algorithm simulates the hunting behavior of a hawk flock to search for an optimal
solution and consists of three phases: a global search phase, a transition phase and a
local development phase.

• Global search phase

The hawks move apart to expand their search range and increase the likelihood of
finding prey. Individuals will perch on any location, and the two selection strategies for
perching locations are as follows:

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)), q < 0.5

(1)

where, r1,r2,r3,r4 and q are all random numbers in the interval [0, 1], Xrand denotes a random
individual position in the current hawk flock, Xrabbit denotes the prey position, UB is the
upper limit of the search range, LB is its lower limit, Xm denotes the average position of all
the individuals in the current hawk flock, Xi(t) denotes the position of each hawk and N
denotes the number of populations, as shown in Equation (2).
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Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)

• Transition phase

The hawks choose different hunting strategies depending on changes in the prey’s
escape energy. At this time, the HHO algorithm will transition from the search phase to the
exploitation phase with the following escape energy formula.

E = 2E0(1−
t
T
) (3)

where E0 denotes that the escape energy is in the initial state and is a random number
in [−1, 1], t denotes the number of current iterations and T denotes the total number
of iterations.

• Local development stage

The hawks adopt different pursuit strategies depending on the escape route of the
prey. The HHO algorithm uses the following four behavioral strategies to simulate the
hawks’ roundup behavior. The probability of the prey escaping is denoted by r, where
r < 0.5 means success and r ≥ 0.5 means failure.

Soft roundup: when r ≥ 0.5 and |E| ≥ 0.5, the prey is energetic and has enough energy
to escape, so the hawks use a soft strategy; the formula is as follows:

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (4)

X(t) = Xrabbit(t)− X(t) (5)

where ∆X(t) denotes the difference between the prey position and the current individual
position at iteration t, and J denotes the random escape intensity of the prey in the escape
process, which is a random number in the range of (0, 2).

Hard roundup: when r ≥ 0.5 but |E| < 0.5, the prey is exhausted and the escape
energy is low, so the hawks adopt a hard strategy; the formula is as follows:

X(t + 1) = Xrabbit(t)− E|∆X(t)| (6)

Gentle roundup with progressive fast dive: when r < 0.5 but |E| ≥ 0.5, the prey is
energetic and has a chance of successful escape, so the hawks adopt a gentle encirclement to
launch a surprise attack. Levy flight (LF) was introduced to simulate the deceptive behavior
and escape routes of prey during escape, and the position update strategy is shown below:

Y = Xrabbit(t)− E|JXrabbit(t)− X(t)| (7)

Z = Y + S× LF(D) (8)

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(9)

where D denotes the dimension of the problem, S denotes a random vector of size 1× D
dimension, F(·) denotes the fitness function and LF(·) denotes the Levy flight function.

Tough roundup with progressive fast dive: when r < 0.5 and |E| < 0.5, the prey does
not have enough escape energy, so an asymptotically fast-dive tough roundup strategy
is used.

Y = Xrabbit(t)− E|JXrabbit(t)− Xm(t)| (10)
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Z = Y + S× LF(D) (11)

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(12)

To summarize, a HHO algorithm flowchart is shown in Figure 2.
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3.3. Piecewise Chaotic Mapping

Piecewise chaotic mapping [26] is a typical representative of chaotic mapping, which
is more ergodic and randomized. In order to improve the population diversity of the HHO
algorithm and enhance the probability of jumping out of a local optimum, Piecewise chaotic
mapping is introduced to optimize the initialized population. The formula of Piecewise
chaotic mapping is as follows:

x(t + 1) =



x(t)
p , 0 ≤ x(t) < p

x(t)−p
0.5−p , p ≤ x(t) < 0.5

1−p−x(t)
0.5−p , 0.5 ≤ x(t) < 1− p
1−x(t)

p , 1− p ≤ x(t) < 1

(13)

3.4. Construction of Coal and Gas Outburst Prediction Model Based on Miceforest–PHHO–KELM

A miceforest–PHHO–KELM model is established, and coal and gas outburst data are
used as a dataset for training and testing experiments; a flowchart is shown in Figure 3.
The specific steps are as follows.

• Establish before- and after-filling datasets of coal and gas outbursts, respectively. The
missing parts of the pre-fill dataset are deleted directly and only the complete parts
are kept. The post-fill dataset is used to fill the missing parts of the data using the
miceforest algorithm to ensure that all data are complete.
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• Initialize all the parameters of the KELM and HHO models. Piecewise chaotic mapping
is used to optimize and initialize the population; the number of populations is set to N
and the number of iterations is set to T.

• Use the train set as the input vector of KELM to train KELM.
• Calculate the fitness value of each solution and evaluate the fitness to select the best

fitness value.
• Update the prey’s escape energy, probability of escape and random escape intensity

according to the HHO algorithm formula.
• Update the search space selected by the hawks to implement the update adjustment to

the individual positions, obtain the new search prey and selection area, and calculate
and evaluate the adaptability of its corresponding deterministic solution.

• Find the optimal position and make a record of its corresponding fitness value, and
change the number of iterations to t + 1.

• Determine whether the maximum number of iterations is reached. If it is satisfied,
obtain the optimal penalty coefficient and threshold value; otherwise, go to step 4.

• Build the PHHO–KELM classification prediction model according to the optimal
parameters of the final output, and import the test set to output the recognition results.

Processes 2023, 11, x FOR PEER REVIEW  8  of  13 
 

 

 Calculate the fitness value of each solution and evaluate the fitness to select the best 

fitness value. 

 Update the prey’s escape energy, probability of escape and random escape intensity 

according to the HHO algorithm formula. 

 Update the search space selected by the hawks to implement the update adjustment 

to the individual positions, obtain the new search prey and selection area, and calcu-

late and evaluate the adaptability of its corresponding deterministic solution. 

 Find the optimal position and make a record of its corresponding fitness value, and 

change the number of iterations to t+1. 

 Determine whether the maximum number of iterations is reached. If it is satisfied, 

obtain the optimal penalty coefficient and threshold value; otherwise, go to step 4. 

 Build the PHHO–KELM classification prediction model according to the optimal pa-

rameters of the final output, and import the test set to output the recognition results. 

Begin

Obtain data sets for 
coal and gas outburst

Initialize parameters, set the HHO 
population and  maximum number of 

iterations

Calculate the individual 
fitness of Harris hawks

Renewal escape 
energy E、escape 
possibility r and 
jump strength J

|E|≥ 1 r≥0.5

|E|≥ 0.5

|E|≥ 0.5

Soft round up

Hard round up

Gentle roundup 
with progressive 

fast dive

Tough roundup 
with progressive 

fast dive

Update the Harris-
hawk position and 

search for prey

Whether the 
termination condition 

is met

Obtaining optimal parameters 
to complete the PHHO-KELM 

modeling

Import test set

Update the individual 
position of the Harris hawks

No

Yes

No

Yes

Yes

Yes

End

Output recognition 
result

Yes

No

Introduce Piecewise 
chaotic mapping

Divide the data set and 
import the training set

No

No

 

Figure 3. Flow chart of coal and gas outburst prediction by miceforest–PHHO–KELM. 

4. Experimental Results and Analysis 

Pre-fill and post-fill datasets for prediction testing were constructed; the division ra-

tio of training set to test set was 8:2. PHHO–KELM model prediction was implemented in 

MATLABR2021b. The PHHO population size was set to 30, the maximum number of iter-

ations was 100 and the radial basis ‘RBF_kernel’ was used as the activation function. After 

reading the dataset filled by the miceforest algorithm into the PHHO–KELM model for 

training, a fitness change curve was obtained, as shown in Figure 4. From the figure, it can 

be  seen  that  the  PHHO–KELM model  converges  faster  than  PSO–KELM  and HHO–

KELM. 

Figure 3. Flow chart of coal and gas outburst prediction by miceforest–PHHO–KELM.



Processes 2023, 11, 2722 9 of 12

4. Experimental Results and Analysis

Pre-fill and post-fill datasets for prediction testing were constructed; the division ratio
of training set to test set was 8:2. PHHO–KELM model prediction was implemented in
MATLABR2021b. The PHHO population size was set to 30, the maximum number of
iterations was 100 and the radial basis ‘RBF_kernel’ was used as the activation function.
After reading the dataset filled by the miceforest algorithm into the PHHO–KELM model for
training, a fitness change curve was obtained, as shown in Figure 4. From the figure, it can
be seen that the PHHO–KELM model converges faster than PSO–KELM and HHO–KELM.
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In order to verify the superiority of PHHO–KELM, the prediction results of SVM,
KELM, PSO–KELM, HHO–KELM and PHHO–KELM models in the dataset before and after
filling were compared. The SVM parameters were kernal = ‘rbf’, c = 1.0 and gamma = 0.2;
the KELM activation function was ‘RBF_kernel’. Test set prediction results for different
models after miceforest filling are shown in Figure 5.

As can be seen from Figure 3, the test set prediction of PHHO–KELM was the best,
with an accuracy rate of 25/26. The accuracy of SVM was 21/26, and the prediction of
KELM was better than that of SVM, with an accuracy of 22/26. The accuracy rate also
improved after optimization by PSO and HHO, but the accuracy of KELM optimized by
PHHO was the most improved. A comparison of the prediction results of different models
before and after filling is shown in Table 4.

Table 4. Comparison of prediction results of different models.

Model SVM KELM PSO–KELM HHO–KELM PHHO–KELM

Pre-fill

Salient sample prediction accuracy/% 62.86 65.71 74.29 85.71 88.57
Non-salient sample prediction accuracy/% 91.55 92.96 94.37 95.77 97.18

Overall prediction accuracy/% 82.08 83.96 87.74 92.45 94.34
Kappa coefficient 0.5732 0.6180 0.7124 0.8268 0.8702

Post-fill

Salient sample prediction accuracy/% 83.87 85.48 88.71 93.55 96.77
Non-salient sample prediction accuracy/% 92.96 94.37 97.18 98.59 100

Overall prediction accuracy/% 88.72 90.23 93.23 96.24 98.50
Kappa coefficient 0.7722 0.8027 0.8633 0.9242 0.9698
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Before filling, there were 35 sets of salient samples and 71 sets of non-salient samples,
and the number of non-salient samples was significantly larger than the number of salient
samples. As can be seen from Table 4, in the prediction of salient sample accuracy, KELM
improved from 65.71% before filling to 85.48%, and PHHO–KELM improved from 88.57%
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to 96.77%. Miceforest filling improved the salient accuracy by at least 8.2%. The prediction
accuracies for the non-salient samples were all higher, above 90.00%, and the gap in non-
salient accuracies between the models changed even less in relative terms, improving by
1.41–2.82%. The prediction results of the pre-filled dataset are clearly inclined to non-salient
samples with a large sample size, which made the overall prediction accuracy higher. For
overall prediction accuracy, KELM improved from 83.96% to 90.23% and PHHO–KELM
improved from 94.34% to 98.50%. Miceforest filling improved the overall accuracy by
3.79–6.64%. The Kappa coefficient of each model after miceforest filling was also higher
than that before filling.

The prediction effect of KELM was better than SVM; the salient sample and overall
accuracies of KELM after filling were 85.48% and 90.23%, which were higher than those of
SVM (83.87% and 88.72%); and the Kappa coefficient of KELM was 0.0305 higher than that of
SVM. Compared with other models, the PHHO–KELM model had the best prediction effect.
After filling, the salient sample and overall prediction accuracies of the PHHO–KELM
model were 96.77% and 98.50%, respectively, with a Kappa coefficient of 0.9698.

It can be seen that the accuracy and Kappa coefficient of each model improved after
miceforest filling. Miceforest filling was better, which greatly improved the accuracy of the
protruding samples of each model. The prediction effect of KELM was better than that of
SVM, and PHHO significantly improved the prediction performance of KELM. The salient
sample accuracy of miceforest–PHHO–KELM was 96.77%, the overall accuracy was 98.50%
and the Kappa coefficient was 0.9698. The miceforest–PHHO–KELM model gives a better
prediction of coal and gas outbursts and has better prediction accuracy and generalization
ability for coal and gas outburst prediction.

5. Conclusions

• The miceforest method was proposed to fill in missing data values, and gave optimal
results in terms of RMSE and R2 evaluation compared to KNN, regression and RF.
After miceforest filling, the accuracy of non-salient samples was improved to a certain
extent, and the accuracy of salient samples and the overall accuracy were significantly
higher than for the pre-filling dataset in each model. Miceforest filling improved the
salient sample accuracy and overall accuracy by at least 8.2% and 3.79%, so it was an
effective algorithm to fill in the missing values of the samples.

• Comparing the prediction effect of KELM and SVM, results showed that the salient
sample accuracy, overall accuracy and Kappa coefficient of KELM before and after
filling were significantly better than SVM, so the prediction effect of KELM was better
than that of SVM.

• After miceforest filling, the optimal coal and gas outburst prediction miceforest–
PHHO–KELM model was established by selecting PHHO to optimize the penalty
coefficient and kernel function parameters of KELM. Compared with other models,
miceforest–PHHO–KELM had higher prediction accuracy and precision, and its salient
sample prediction accuracy, overall prediction accuracy and Kappa coefficient were
96.77%, 98.50% and 0.9698, respectively. These results verified that PHHO can effec-
tively improve the prediction performance of KELM, and the miceforest–PHHO–KELM
model had better prediction accuracy and recognition rate in the prediction of coal
and gas outbursts.
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