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Abstract: The paper presents two effective methods for discovering process models in the form
of partial differential equations based on an evolutionary algorithm and an algorithm for the best
subset selection. The methods are designed to work with sparse and noisy data and implement
various numerical differentiation techniques, including piecewise local approximation using mul-
tidimensional polynomial functions, neural network approximation, and an additional algorithm
for selecting differentiation steps. To verify the algorithms, the experiment is carried out on pulsed
heating of a viscous liquid (glycerol) by a submerged horizontal cylindrical heat source. Temperature
measurements are taken only at six points, which makes the data very sparse. The noise level ranges
from 0.2 to 1% of the observed maximum temperature. The algorithms can successfully restore the
structure of the heat transfer equation in cylindrical coordinates and determine the thermal diffusivity
coefficient with an error of 2.5–20%, depending on the algorithm type and heating mode. Additional
synthetic setups are employed to analyze the dependence of accuracy on the noise level. Results also
demonstrate the algorithms’ ability to identify underlying processes such as convective motion.

Keywords: discovering partial differential equations; data-driven models; inverse problems; genetic
evolutionary algorithm; best subset selection; heat transfer equation; submerged horizontal cylindrical
heat source; viscous liquid convection

1. Introduction

Methods for solving inverse problems of physics make it possible to determine the
parameters of a mathematical model based on observed data [1–5]. Usually, the model has
the form of a known differential equation (DE). However, in some cases, the equation is
unknown and needs to be discovered. Reconstruction of the model as a differential equation
is valuable. Such a model allows for a comprehensive study of the object, including the
identification of qualitative properties, the analysis of quantitative characteristics, and an
understanding of the influence of parameters on the behavior of the object. Examples of
DE discovery for practical applications include modelling ocean wave height [6], local
temperature variations in meteorology [7], cell migration and proliferation [8], electric arc
motion in alternative current plasma torches [9], and proppant transport [10]. There is
also a discussion of the possibility of the potential discovery of new physical laws through
data-driven model generation [11].

The development of algorithms for generating models in the form of partial differen-
tial equations (PDEs) is highly significant for studying heat and mass transfer processes.
Analyzing the reconstructed equation structure of thermal processes provides insights
into internal processes that are not directly observable during experiments, such as phase
transitions and chemical reactions [12–14]. By reconstructing the convective term with
the appropriate weight in the heat transfer equation, it becomes possible to identify con-
vective processes in the studied object. This information enables an understanding of
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qualitative changes in the thermal process, such as the transition from predominantly
thermal conductivity to developed convection during non-stationary heating of viscous
liquids [15–19]. The presence of a term with a second-time derivative can indicate the
occurrence of high-speed, high-temperature processes [20–22]. Moreover, the generated
thermal process model allows for the estimation of medium parameters, which may be
temperature-dependent.

The characteristics of actual experimental data, particularly in heat and mass transfer
problems, are as follows:

(1) Experimental data inherently contains noise.
(2) Studying the spatial distribution of a parameter (e.g., temperature) requires the place-

ment of sensors, the numbers of which are typically limited. Moreover, a sensor can
generate measurements at a high frequency, resulting in a large volume of data. As a
result, experimental data have low spatial resolution and high temporal resolution.

(3) A common way to introduce noise in synthetic data is through a multiplicative
method, where the relative errors of all measurements are the same. In this case, each
evaluation contains an equal amount of information, and all data contribute to model
reconstruction. However, in actual experiments, noise is often additive and can reach
several hundred percent for low signal levels.

The physically correct noise posits a challenge as it cannot be easily filtered out
using simple methods. In the heat transfer field, various generative design techniques
have been employed to address forward problems, including physics-informed neural
network (PINN) utilization [23,24]. Additionally, researchers have explored pure inverse
problems [25,26] and generative design with the ridge regression method [27]. It has been
consistently reported that a distinct approach is necessary to effectively handle the noise
present in the data, ranging from specific differentiation methods [27] to specific for heat
transfer problems PINN architectures [23].

Despite the achievements in reconstructing equations from noisy synthetic data, they
need to be verified by actual data. Recently, various approaches have been proposed
for model reconstruction, differing in the presence and size of a candidate library of
potential terms and the use of genetic algorithms and neural networks [8,10,28–33] and
their combination [34]. Algorithm development focuses on handling sparse and noisy data.
The dependence of the reconstruction results on the dataset size and noise level has been
investigated, predominantly using synthetic data for testing.

The following aspects need to be considered when working with actual data in the
field of heat and mass transfer:

(i) Arbitrary geometry, including cylindrical/spherical shapes. Most studies on equation
reconstruction, such as the Burgers equation or convection–diffusion equation, have
focused on one-dimensional planar setups.

(ii) The possibility of simultaneously having first and second derivatives concerning time
in the equation. Existing works only consider one of the time derivatives a priori.

(iii) The number of grid points can be smaller than expected for standard machine learning
algorithms (e.g., only five spatial points are available for measurements due to the
hardware restrictions).

The goal of this work is to verify model generation algorithms for reconstructing a
thermal process model from noisy and sparse data obtained from an actual experiment.
To achieve this, an experiment involving non-stationary heating of the medium using a
submerged heat source was conducted. The algorithms tested include a genetic algorithm
proposed in [32] and an algorithm that utilizes a predefined template and static selection
criteria [35].

In addition, the algorithms were further improved to address the challenges related to
heat and mass transfer problems, particularly those associated with data sparsity and noise.
Compared to the previous version of the genetic algorithm [32], several modifications were
made. First, the process of adding new blocks has been improved to work within the polar
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coordinates system and with the convection velocity as a variable coefficient. The second
group of changes concerned noise experimental differentiation, which will be described
in detail in the following sections. These modifications allow us to handle aspects (i)–(iii)
described above.

The method is based on the predefined template and is similar to the established sparse
regression and optimization methods [29,30] with the additional use of the best subset
selection (BSS) procedure and the Bayesian information criterion (BIC) [36]. The advantage
of this method is the simplicity of implementation. The method allows us to assume the
numerical differentiation of the available data and the formation of an appropriate array
with the calculated values of derivatives and functions. Further data processing takes
place using the free access integrated suite of software facilities R, which includes the BSS
procedure [37]. The new modification of the BSS algorithm presented in this paper differs
from that previously proposed by the authors in [35] and includes additional functionality
for working with noisy data. The modification introduces a preprocessing step, which
applies numerical differentiation depending on the noise level in the data.

When the equation structure is known in advance, established coefficient search meth-
ods in standard packages (e.g., Ansys) can be utilized. A supplementary methodological
aspect of this research involves comparing the results of the model generation algorithms
with the coefficient recovery results achieved using one of the optimization algorithms in
the Ansys package.

The present work is organized as follows. Section 2 provides a description of two
generative model design algorithms developed by the authors. Section 3 presents the
synthetic and experimental data used to verify the algorithms and describes the full-scale
experiment. Section 4 discusses the results of the developed algorithms with sparse and
noisy data, and Section 5 contains the discussion. In the final section, the main conclusions
of the work are formulated.

2. Algorithms

The first output of the model discovery algorithm should be a correctly generated
equation structure, including partial derivatives necessary to describe the process. For
the heat exchange process, the set of building blocks in the thermal model is limited. The
classical equation of heat transfer [20,38] considers the first derivative of temperature in
time and the second derivative of temperature in spatial coordinates. In general, there is a
need to consider the second derivative of temperature in time for the correct description of
high-intensity non-stationary processes, thermal processes in objects with strong internal
heterogeneity, or in small-sized objects [20,22]. In the case of a moving medium, the thermal
conductivity equation is expanded by adding convective terms containing the first derived
temperature by spatial coordinates. In the presence of energy release within the object,
an additional term, which determines the power of internal heat sources, also appears in
the equation.

The second important output of the algorithm is the correct recovery of the coefficients
of PDE derivatives that characterize the thermophysical properties of the medium [20,39,40].

The paper develops two algorithms for generating a model of the thermal process
in the form of a PDE based on data on spatial–temporal temperature distributions in
the media: (i) an evolutionary optimization algorithm that allows us to discover a priori
equation from noisy experimental data [32] and (ii) an algorithm using the procedure for
the best subset selection [36,41,42].

To assess the effectiveness of the proposed approaches in terms of recovering the
coefficients of the equation, a comparison with the standard algorithms of the Ansys
package is carried out.

2.1. Evolutionary Optimization Algorithm

To restore the equation, the evolutionary optimization algorithm of equation discovery
(EPDE) was used. As an input, the algorithm takes only the observation data. It is assumed
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that the data are the unknown discrete function defined on a set of independent variables
X = (x1, . . . , xD) including the spatial–temporal case X = (t; x1, . . . , xD−1). The equation
model within the algorithm has the Form (1)

M(C, P, x) =
L

∑
i=1

ci · ai(Pi, x). (1)

Here, C = {c1, . . . , cL} are the constants (term amplitudes), x is a data grid, functions

ai(Pi, x) =
Ntokens

∏
j=1

f j

(
p(i)1 , p(i)2 , . . . , x

)
are the products of the tokens f j ∈ F taken from the

selected token families F (see explanation below), Pi =
{

p(i)1 , p(i)2 , . . .
}

—parameters set for
the term ai, and P—parameters multi-index. It is assumed that a number of parameters
(and chromosome size) are changed during the evolutionary optimization, but the maximal
number of terms is constrained by the hyperparameter L, and the number of tokens is
constrained by the hyperparameter Ntokens. However, the actual number of terms and
tokens could be lower, i.e., i ≤ L and j ≤ Ntokens. In most cases, only the data grid points x
are considered. However, we note that the data and computational grids could differ.

Equation Form (1) is chosen as more suitable for an evolutionary search. However,
we note that most of the differential equations in physics may be expanded to this form.
There are some existing algorithms based on neural networks to find equations in a more
compact form [43]. However, they require a priori knowledge of the equation form. The
terms for such algorithms may be defined by the algorithms described in this section.

The terms’ building blocks—tokens—are parametrized functions and operator families.
Usually, only differential operators Fdi f f =

{
∂∑ pi u

∂x1
p1 ...∂xn pn

}
are considered. It should be

noted that differentials may be either analytical (if available) or computed numerically.
Additionally, the inverse coordinate function Finv = 1

xi
and other parametrized discrete

fields Ff unc = v(p1, . . . , pk) are added. The resulting token set is the union of selected
families F = ∪

j
Fj, where j is the placeholder for the token family name.

Before the algorithm launch, every token family is evaluated on a computational grid.
Simple functions are computed directly, whereas differential operators require a numerical
differentiation of the data. Two different differentiation methods are used in the algorithm
to handle the potential noise in data. First is the piecewise local approximation of the
data with multidimensional polynomial functions. For that, the adjacent points within a
given proximity range are taken, and a polynomial function of a given order is fitted for
each point. After that, the differential in each point is computed by the differentiation of a
corresponding polynomial function. The second differentiation algorithm uses the neural
network approximation for a whole discretization grid. The differentials are obtained by
numerical differentiation of a given fitted neural network.

After the tokens are computed, an evolutionary algorithm is used to find the optimal
equation structure. Cross-over and mutation operators are applied to the model during the
evolutionary optimization to achieve a better fitness function value. The fitness function by
itself is the discrepancy measure between a randomly selected term (target) and the rest
of the model. To compute the discrepancy the numerical parameters are obtained using
sparse regression that is done with LASSO algorithm. Mathematically it could be expressed
as (2).

copt = argmin
c

∣∣∣∣∣
∣∣∣∣∣atarget −

target−1

∑
j=1

cjaj

∣∣∣∣∣
∣∣∣∣∣
2

+ λ‖C‖1, C = {c1, . . . , cNterms}. (2)

The terms with the coefficients ci that are lower than a pre-defined threshold value
ci < cthreshold are filtered out as insignificant to avoid overfitting. λ is a LASSO hyper
parameter.
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The cross-over operator is the term exchange between two models. The terms for
cross-over are chosen randomly and the models are chosen with a tournament selection.
First, it randomly selects k models from the population and then chooses the model with
the best fit from this set with probability p, second best model with probability, and so on.
The cross-over operator is schematically shown in Figure 1. We note that for illustrative
purposes, we show model equations that contain only differential tokens with constant
coefficients and do not represent any real process.
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The mutation operator has two modes—term mutation and token mutation. In both
cases, the existing term or token is replaced with randomly chosen one. The mutation
operators are schematically shown in Figure 2.
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The model starts with the assumption that there are three token families (the model
may not necessarily contain all of them) and that the resulting model provides less discrep-
ancy for the given data. It should be noted that the differentials are computed numerically.
Thus, in the discrepancy measure, the numerical error is introduced, and the heat equation
may not be the optimal for this case.
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2.2. Best Subset Selection Algorithm

The BSS (best subset selection) algorithm is widely used in machine learning meth-
ods [36,44]. It assumes the existence of a linear dependency between the response variable
M and a set of predictors f1, . . . , fp:

M = β0 +
p

∑
j=1

β j f j. (3)

To select the optimal subset of predictors from the 2p possible combinations, the
following steps are performed in the algorithm: (i) it is assumed that the model M0 does not
include any predictors, (ii) all models that contain exactly k ≤ p predictors are constructed,
(iii) the optimal model Mk with minimal residual sum of squares (RSS) is selected using the
least squares method, (iv) the resulting model is chosen among M0, . . . , Mp with statistical
criteria such as Mallows CP, BIC, or adjusted determination coefficient.

The developed version of the best subset selection algorithm for the generative model
design method implements several stages of restoring the unknown structure of the equa-
tion from the available data [35,41,42].

In contrast to the evolutionary optimization algorithm, the complete set of all possible
tokens of the desired PDE is recorded:

MBSS = c0 +
NG

∑
j=1

cj f j(x) +
NQ

∑
k=1

Qk. (4)

Here, f j ∈ F =

{
∂u
∂x1

, . . . , ∂q1 u
∂x

q1
1

, . . . , ∂u
∂xD

, . . . , ∂qD u
∂xqD

D

}
, NG =

D
∑

n=1
qn, qn is the maximum

order of the derivative with respect to the independent variable xn ∈ X = {x1, x2, . . . , xD},
u—dependent variable (e.g., temperature increase), cj—constants, D—number of inde-
pendent variables, Qk(x)—sources, and NQ—the number of source terms. For simplicity,
below, it is considered that NQ = 0. In general, derivatives in F can be multiplied by
known functions.

It is assumed that the solution u is known in the nodes of the space-time grid of
dimension D. For the application of statistical learning methods, the discretized finite
difference or finite element variant of the Expression (4) can be written similar to (3) as:

−Y
1
=

c0

c1
E +

NG

∑
j=2

cj

c1
Y

j
. (5)

Here, E is a vector of ones. The components of the vectors Yj contain finite difference
or finite element patterns of the elements f j ∈ F of the Equation (4) corresponding to
the internal nodes of the grid, for which the values of the desired variable u are known.
The size n of vectors depends on the number of space and time grid nodes and the order
of approximation of derivatives for the finite difference method or on the degree of the
interpolation polynomial for the finite element method. The coefficients cj (j > 1) are
unknown and are to be determined.

Further implementation of the generative model design algorithm involves two stages.
(i) Vectors Yj are computed from the initial data (e.g., spatiotemporal temperature dis-
tributions). (ii) The procedure for the selection of the best subset of variables [36,44],
described at the beginning of the section, is applied to (5), which makes it possible to weed
out insignificant terms and determine the necessary coefficients. Number of variables
(predictors) p = NG − 1. The procedure involves enumeration of 2p possible layouts (5)
including zero models without predictors, with one term (pe = 1), two terms (pe = 2),
etc. (up to p terms/elements). For each fixed number of terms pe, we are iterated over
the possible variants of the elements, and the optimal model is selected based on the
calculation of the smallest sum of squared residues (RSS). In the present paper, a single
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optimal model is selected using the BIC information criterion [36,44,45]. The value of the
criterion corresponding to the optimal structure should have a minimum value:

BIC = n ln
RSS

n
+ k ln n, (6)

Here, k = p + 2.
In this paper, statistical analysis is performed using the integrated suite of software

facilities R [37].

2.3. Adaptive Single-Objective Optimization

The ability of the proposed method to recover the thermophysical parameters of the
medium was compared to the Adaptive Single-Objective Optimization (ASO) method
implemented in the Direct Optimization module of the Ansys 18.2 software package.

ASO is a based on Adaptive Nonlinear Programming by Quadratic Lagrangian (A-
NLPQL) algorithm in a Direct Optimization system [46–48].

A-NLPQL optimization method combines a Latin Hypercube Sampling (LHS) Design
of Experiments, a Kriging response surface, and the NLPQL optimization algorithm. This
gradient algorithm is based on a response surface that provides a global, optimized, and re-
fined result. Adaptive-NLPQL Single-Objective optimization supports multiple constraints
and only continuous parameters. The purpose is to carefully automatically refine and
reduce the domain to provide the global maxima. A-NLPQL consists of the following steps:

1. LHS Sampling: Latin Hypercube Sampling is used for the Kriging construction. The
new LHS generated after the domain reduction retains all the existing design points
between the new boundaries.

2. Kriging Generation: A response surface is created for each output, based on the
current LHS and, therefore, on the current domain boundaries.

3. NLPQL Algorithm: NLPQL is run on the current Kriging response surface to find the
potential candidates. Multiple NLPQL processes run at the same time, starting from
different starting points and thus providing different candidates.

The NLPQL algorithm is primarily based on the sequential quadratic programming
(SQP) method. It generates a sequence of quadratic submodels that must be solved in
successively. The optimization problem must be smooth and differentiable within a domain
limited by minimum and maximum values of parameters. The NLPQ solves the following
constrained nonlinear programming problem by generating a sequence of iterates wi:

min f (wi)
gj(wi) = 0 j = 1, . . . , me

gj(wi) ≥ 0 j = me + 1, . . . , m.
(7)

Here, wi is the n-dimensional parameter vector, f (wi) is the problem function (current
Kriging response surface), gj(wi) are the constraints of the problem, and m is the total
number of constraints. The Lagrange function that serves as an important tool in nonlinear
programming is

L(wi) = f (wi)−
m

∑
j=1

αjgj(wi), (8)

where α = (α1, . . . , αm)
T is the Lagrange multiplier vector.

The algorithm starts with a quadratic approximation of the Lagrange function and the
linearization of the constraint. Taking wi as the i-th estimate for the optimal solution and Bi
as a symmetric matrix that approximates the Hessian of the Lagrange function, we obtain
the quadratic programming subproblem:

min
(

1
2

dT Bid +∇ f (wi)
Td
)

, (9)
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subject to:
∇gj(wi)

Td + gj(wi) = 0 j = 1, . . . , me

∇gj(wi)
Td + gj(wi) ≥ 0 j = me + 1, . . . , m.

(10)

The next iteration is given as follows:

wi+1 = wi + αidi, (11)

where di is the optimal solution and α is the step length parameter, which is chosen to satisfy
the Armijo–Goldstein condition. Line search is implemented by creating a merit function
to measure the convergence of the algorithm. The convergence criteria are the norm of the
gradients of the Lagrange function, as well as the absolute values of the equality/inequality
constraints, which are considered as the difference between the objective function and the
Lagrange function.

4. Candidate Point Validation: All obtained candidates are either validated or not,
based on the Kriging error predictor. The candidate point is checked to see if further
refinement of the Kriging surface changes the validation of this point. A candidate is
considered acceptable if, according to this error prediction, there are no points that
cast doubt on it. If the quality of the candidate is questioned, the domain bounds are
reduced; otherwise, the candidate is considered a verification point.

5. Convergence and Stop Criteria: The optimization converges when the found candi-
dates are stable. However, there are three stopping criteria that can stop the algorithm:
the maximum number of estimates, the maximum number of domain reductions, and
the convergence tolerance.

3. Data

Verification of the developed model generation algorithms is an important part of
the study. The work processes both synthetically generated data and data obtained by the
authors in special experiments.

Synthetic data were obtained by numerically solving the classical heat-conduction
problem of non-stationary one-dimensional heating of the media [20,38,49] by a submerged
heat source. The synthetic data were used to analyze the effect of the noise level on the
structure of the equation being recovered and the value of the coefficients, including the
thermal diffusivity of the medium.

Experimental data were obtained for the problem of a non-stationary process of
heating glycerol with a constantan wire located inside it, heated resistively for a given
time interval. The study of glycerol heating is compelling for biomedical applications
since glycerol can be used as a liquid biophantom that simulates blood. In the experiment,
pulsed modes of glycerol heating are considered with both a negligible and a developed
convection. Changing the heat transfer mode is an additional test for the model recovery.

3.1. Synthetic Data

Synthetic data are obtained for the axisymmetric problem of heating a medium by
a combined heat source. A constantan wire heated by the release of Joule heat is consid-
ered a heat source. The data were obtained by numerically solving the heat conduction
equation [20,50]

cρ

(
∂T
∂t

+ v · ∇T
)
= ∇ · (λ∇T) + QV (12)

In Equation (12), t is the time, T is the temperature, ρ, c, λ are the density, heat capacity
and thermal conductivity coefficient of the material, and QV is the volumetric heat sources.
When generating synthetic data, it is assumed that there is no convective motion of the
medium (v = 0). The thermophysical parameters of the wire and the environment are
assumed to be constant.
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The Equation (12) with v = 0 is solved in a one-dimensional formulation in a cylindri-
cal coordinate system, in the center of which there is an infinitely long wire of radius RW,
which heats the surrounding environment:

∂T
∂t

=
at

r
∂

∂r

(
r

∂T
∂r

)
+

QV
cρ

= at
∂2T
∂r2 +

at

r
∂T
∂r

+
QV
cρ

(13)

where r is the radial coordinate, and at = λ/(cρ) is the coefficient of thermal diffusivity.
Inside the wire r < RW for the time interval 0 < t < t0, there is a heat release corresponding
to the volumetric power of the heat source QV . At time t0, the source is turned off, QV = 0.
The point r = 0 corresponds to the position of the axis of symmetry. At the remote boundary,
a constant temperature T = T0 = 298 K is set. Initial temperature of liquid and wire is
T = T0.

Two cases of the environment parameters are considered. For the first case, the
parameters of the medium corresponded to agar-agar; for the second case, the parameters
of the medium corresponded to the parameters of glycerol C3H8O3 at 25 ◦C. Properties
of materials used in calculations are from [51–54]. The thermal diffusivity coefficient is
at =0.152 mm2/s for agar-agar and at = 0.0926 mm2/s for glycerol.

The solution of (13) is performed by the finite difference method (FDM) and with the
use of the Crank–Nicholson scheme [20].

Figure 3 shows the spatial temperature distributions for several time points for glycerol.
Figure 4 shows synthetic and experimental data on the evolution of temperature at different
distances from the axis for glycerol. Synthetic data in the figures are presented without
considering the presence of noise. According to the numerical data, the temperature
variation in the medium is not large and is less than 10–15 degrees.
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3.2. Experimental Setup and Data

Figure 5 shows the experimental setup for measuring the temperature field.
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Figure 5. Experimental setup. 1—container with installed thermocouple, 2—wire, 3—conversion
board, 4—positioning system.

Type K thermocouple with 0.08 mm thick wire and junction’s diameter of 0.3 mm is
used. The thermocouple signal is converted to a digital code with a Texas Instruments
24-bit ADC ADS1220. This ADC contains a built-in amplifier, an on-chip temperature
sensor, a voltage reference, and a multiplexer. The thermocouple is connected directly to
the ADC. The equalization of the crystal temperature and the cold junction temperature
occurs due to the special arrangement of copper pads on adjacent layers of the printed
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circuit board. A microcontroller is also installed on the board, which interacts with the
ADC via the serial SPI interface and transmits data via the USB interface to the computer,
where the cold junction is compensated by calculation. The data are logged every 2 ms.

Two setup configurations were used in experiments: with a movable wire and a fixed
thermocouple (Figure 6a) and with a fixed wire and a movable thermocouple (Figure 6b). A
constantan wire with a length of 46 mm and a diameter of 0.10 mm was used, the resistance
at room temperature is 2.7 ohms. The wire was energized by a power supply through a
mechanical switch. For synchronization, the voltage on the wire was applied to the second
channel of the ADC through optical isolation.
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3—thermocouple, 4—conversion board, 5—power supply, 6—PC.

The container was filled with glycerol REXANT 09-3722 (99.5%). In the experiment, the
heating time of the constantan wire was 30 s; afterwards, the current source was turned off.
There were two cases in which the voltage drop across the wire was 0.6 V (the volumetric
energy release is QV = 0.38 W/mm3) and 1.32 V (QV = 1.83 W/mm3). Thermocouple was
placed at 0.6, 1.1, 1.6, 2.1, 2.6, and 3.1 mm from the axis of the wire along vertical line.

For glycerol, the Prandtl number at 25 ◦C Pr = 7613 [49], the Grasgoff and Rayleigh
numbers for the first case of wire heating Gr ~5.3× 10−8 and Ra ~4.0× 10−4, for the second
case Gr ~2.5 × 10−7 and Ra ~1.9 × 10−3. The values of these characteristic parameters
make it possible to estimate the Nusselt number NuD for the case of stationary energy
supply to the wire, defined as the ratio of convective heat flux to thermal conductivity heat
flux [55–58]. According to [55], for the first heating case, the Nusselt number is minimal
and is NuD ~0.45, for the second case NuD ~0.54. These numbers indicate a relatively small
contribution of convection to the heat transfer process. However, it should be emphasized
that the above estimates are valid only for a stationary heat source. For the non-stationary
case, there is a delay of onset of convection, that has an order of 1–3 s for water [17,59],
and for glycerol under heating conditions close to the first variant, the delay is tenths of a
second [17].

Therefore, for the non-stationary case in our consideration, experimental verification
of the effect of the possible movement of glycerol on the heat transfer process is necessary.

Figure 7 shows temperature increase for both cases with thermocouple positioned
1.1 mm above and below the wire.

The ratio of the maximum temperatures for these thermocouple positions is low for
0.6 V (0.38 W/mm3) case and high (up to 1.8 times) for 1.32 V (1.83 W/mm3) case. This
means that in general the convection takes place in both cases, but in the first case, it is small.
This statement is in accordance with [17], where for similar parameters of a non-stationary
process, glycerol convection was not observed over a long time interval. Below, the case
QV = 0.38 W/mm3 will be referred as “diffusion” case, and the case QV = 1.83 W/mm3 as
“convection” case.
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the wire.

In case of stationary heating, the convection leads to liquid motion, and the problem
should be considered in 2D formulation. For the “diffusive” case, the convection is weak
or absent, and the process is close to one-dimension heat propagation by heat diffusion.
However, even for the presence of the convection for considered vertical line, the derivation
∂T
∂ϕ (ϕ is the angular coordinate) is zero due to the symmetry factor, and the derivation ∂T2

∂ϕ2

is negligible for the moderate heating regime in comparison with ∂2T
∂r2 . The main difference

from the pure “diffusive” case (13) for a vertical line above the wire is the appearance of
a term with velocity of the liquid on the left side of Equation (12). In addition to the idea
of minimizing the data to recover the equation, this is why the experimental data were
measured along a single vertical line.

Experimental data have a serially uncorrelated noise. Figure 8 shows its probability
distribution calculated on 15,000 samples that is very close to the normal distribution with
standard deviation of 0.024 K. Due to this reason, an additive white Gaussian noise is used
in our simulations of synthetic data.
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4. Results
4.1. Evolutionary Optimization Algorithm

A series of experiments were carried out to assess the performance of the proposed
algorithm. Firstly, the algorithm was tested for the ability to handle the noise in the
synthetic data. Basically, it could be reduced to the ability of the numerical differentiation
algorithm to handle the experimental data. Secondly, the ability of the algorithm to handle
the experimental data was checked as well. Lastly, the ability of the algorithm to separate
“diffusion” and “convection” cases was tested.

For each experiment, the same token families F =
{

Fdi f f =
{(

∂p1+p2 u
∂rp1 ∂tp2

)p3
}
∪Finv =

{
1

rp4

}}
for two-dimensional discrete grid X = (r, t) were used, u = T − T0. For token families, the
order and power of time and spatial derivatives as 0 ≤ p1 + p2 ≤ 2 and p3 ≤ 2, respectively,
are restricted, i.e., only first and second-order equations can be discovered. Additionally,
inverse terms only for spatial coordinate r with order restriction 0 ≤ p4 ≤ 2 are employed.

Other restrictions are the number of tokens in term Ntokens ≤ 2 and the number of
terms as L ≤ 5. Any combinations of tokens are allowed as soon as they comply with all
the restrictions, as an example u ∂u

∂t , 1
r

(
∂3u

∂r∂t2

)
, u2 are valid tokens.

The local approximation with polynomials is used for token precomputing. For every
discrete grid point x = (r, t) ∈ X symmetrically, Npoints is taken in each variable direction or

(Npoints)
d in case of mixed partial derivative involving d variables. For a given set of points

X f it =
{

x1, . . . , x, . . . , xNpoints

}
and data values Yf it =

{
u(x1), . . . , u(xNpoints)

}
polynomial

P(x) of degree Dpoly with coefficients, θ is fitted by means of usual least square method as
shown in (14).

θ∗ = min
θ
||P(X f it; θ)−Yf it||2 (14)

In (14), polynomial computed set is a vector of polynomial values that are computed
at every point xi ∈ X f it, i.e., P(X f it; θ) =

{
P(x1; θ), . . . , P

(
xNpoints ; θ

)}
. The derivatives are

taken correspondingly for every discrete grid point as ∂p1+p2 Px
∂rp1 ∂tp2

∣∣∣
x=x

.
For the calculations with artificially induced noise, filtered synthetic data (13) are taken,

and a Gaussian noise with distribution N(0, σ) is applied, where σ = η ·max(u). That
means that the noise is applied as a ratio of an input field maximal value is applied.

The distribution of coefficients for ten consequent runs for corresponding noise ratios is
shown in Table 1. Agar–agar parameters were used for simulations (at = 0.152 mm2/s). Every
value in table has the form x±∆x, where x is the mean value estimation computed over the
ten runs and ∆x is the 95% confidence interval computed using the corresponding normal
distribution quantile. All equations were renormalized such that ∂u

∂t coefficient is equal to
minus one. The structure that was recovered after ten runs is:

c1
∂2u
∂r2 + c2

1
r

∂u
∂r

+ c3 −
∂u
∂t

= 0 (15)

Table 1. Coefficients of Equation (15) for various noise levels.

Noise Level η, % c1, mm2/s c2, mm2/s c3, K/s

0 0.154 ± 0.000 0.150 ± 0.000 0.000
0.1 0.153 ± 0.000 0.151 ± 0.000 0.000
0.3 0.14 ± 0.03 0.14 ± 0.03 0.002 ± 0.005
0.5 0.15 ± 0.2 0.15 ± 0.05 0.05 ± 0.03
0.7 0.13 ± 0.04 0.14 ± 0.07 0.10 ± 0.05
1.0 0.11 ± 0.07 0.13 ± 0.3 0.3 ± 0.1

It should be noted that spurious terms appear during the discovery procedure starting
from 0.3% noise test and they are cancelled out as insignificant.
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Calculations with a noise level above 1% result in an incorrect optimal equation
structure. Thus, the maximum noise level is about 1%, which is considered sufficient for
experimental data for the current application.

The experimental data were obtained for points along one vertical line above the
wire. Due to the “one-dimensional” character of the data, the tokens do not contain an
angular coordinate.

For calculations with experimental data, the filtered data are taken. The best filtering
results were obtained with a fitting neural network to approximate the experimental
data. For the process corresponding to the “diffusion” case, the resulting equation has
the expected structure of the heat equation in cylindrical coordinates (15) with all the
necessary assumptions, matching the studied problem statement. The calculated values of
the coefficients are shown in Table 2.

Table 2. Coefficients of Equation (15) for experimental data.

QV, W/mm3 c1 × 102, mm2/s c2 × 102, mm2/s c3, K/s

0.38 9.42 ± 0.04 9.40 ± 0.11 0.00 ± 0.01
1.83 9.4 ± 0.3 9.51 ± 0.27 N(u)

To find the equation for the “convection” case, the algorithm with the same parameters
is employed. The convection velocity field can be taken into account as a separate token.
Instead of this, there is an attempt to see how the algorithm approximated the velocity field
without a separate velocity token. It is expected that there will not be a stable structure
that determines the velocity field. However, the unstable remainder could thereafter be
approximated with separate parametric function.

Differential tokens were obtained by approximating data with neural network training
and following automated differentiation. That means that the interpolating polynomial is
replaced with the fully connected dense neural network NN(x) that is fitted using all grid
point set X as input and observation values u (namely, Figure 4) as output.

In Table 2, various “noise” representations of the convection velocity field N(u) are
shown; for example, N(u) = 7.2× 10−7u2 + 3.30× 10−7.

The calculated values of the heat diffusion coefficient are very close to the known
parameters of glycerol (at = 0.0926 mm2/s) for both cases. The presence of the term N[u]
distinguishes modes with and without convection.

4.2. Best Subset Selection Algorithm

Four tokens were considered in the BSS algorithm as parts of the model. In addition
to the terms included in the “classical” equation of thermal conductivity, written in a cylin-
drical coordinate system, ∂u

∂t , ∂2u
∂r2 , 1

r
∂u
∂r , another term ∂2u

∂t2 was added. This term is important
when considering high-energy, fast-flowing thermal processes, as well as processes in
small-sized objects. According to (4), the template of the equation now is

MBSS = c0 + c1
∂u
∂t

+ c2
∂2u
∂t2 + c3

∂2u
∂r2 + c4

1
r

∂u
∂r

= 0. (16)

The coefficients c0 = 0 and c1 = −1. The coefficient at the second time derivative
c2 can be identified with the relaxation time τr of the heat flux: c2 = −τr. The coefficient
c3 = at (at is the thermal diffusivity). c4 is related to the cylindrical geometry of the
problem. In the case of natural convection according to (12), the coefficient c4 is also related
to the convection motion with the velocity vr. Thus, the form of the equation under study
represents a wide range of thermal processes while having a substantially smaller working
token count than the evolutionary optimization approach. It should be noted that in the
present paper, coefficients in (16) are supposed to be constants.

The following algorithm steps correspond to the one described in Section 2.2. In
the case of the noiseless initial data, the vectors Yj, which contain finite-different (FD)
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templates of corresponding terms in (16), are calculated by given synthetic or experimental
distributions of temperature u on a spatial regular grid with step τs and temporal grid with
step τt. The FD approximation of ∂2u

∂t2 contains three-time layers and has the second order
accuracy O(τ2), and the FD approximation of ∂u

∂t is the central difference corresponded
to O(τ2). The FD approximations with second order O(h2) are also employed for space
derivatives in (16).

In the case of noisy data, the direct application of the algorithm is not successful due
to errors in the numerical differentiation procedure. In the paper, the BSS algorithm is
modified to work with noisy data. In contrast to data filtering procedure, described in the
previous section, the proposed regularization approach is based on the choice of the step of
numerical differentiation, considering the noise level [30] when calculating the components
of the vectors Yj.

The time/space steps for numerical differentiation can be estimated according to [4]:

τreg,1 ≈
2σE
ε1

, τreg,2 ≈
(

4σE
ε2

)1/2
. (17)

Here, ε1 and ε2 are the absolute errors of the first and second derivatives of temperature
over time/space, σE is the absolute error of temperature measurement. More accurate
data are required when larger values of τreg should be used. It is assumed that the steps
of numerical differentiation should be greater than τreg,1 and τreg,2 but much less than the
characteristic process time/length.

The analysis of the effect of the noise level on the efficiency of the algorithm was
carried out for synthetic data on the heating of agar-agar (at = 0.152 mm2/s) generated with
the time step of 2 ms and the space step of 10 um (Table 3). In the case of the noisy data at
the stage of model reconstruction, the step of numerical differentiation in the calculation of
finite-difference patterns of the first and the second derivatives in time is τreg,t = 4 s and in
space τreg,s = 0.5 mm. The last value corresponds to the distance between the measurement
points in the experiment. The structure of the model is restored correctly when the noise
level is less than 1.5%. The accuracy of the recovery coefficients decreases with an increasing
noise level and for an amplitude of 0.5% is at the level of 12%.

Table 3. Coefficients of Equation (16) for various noise levels.

Noise Level, % c3, mm2/s c4, mm2/s c0 × 104, K/s

0 0.152 ± 0.000 0.149 ± 0.000 (−3.74 ± 0.00) × 10−2

0.1 0.153 ± 0.001 0.1556 ± 0.0018 4.36 ± 1.3
0.5 0.133 ± 0.005 0.13 ± 0.08 −5 ± 4
1.0 0.10 ± 0.05 0.09 ± 0.01 −13 ± 9
1.5 0.074 ± 0.009 0.054 ± 0.013 −12 ± 9

The numerical estimation of the first and the second derivatives of temperature with
respect to time for the experimental data under consideration shows that to achieve a rela-
tive error of 10% with an error in the data σE = σ = 0.024 K (corresponding to approximately
1% noise level), the value of the time step of numerical differentiation must be τreg,t ≈ 1 s
or more. This value is significantly higher than the temperature measurement step in the
experiment, equal to 2 ms.

The results of applying the BSS algorithm to experimental data with different granu-
larity of numerical differentiation in time and space τreg,s = 0.5 mm are shown in Table 4.
For the time granularity less than 0.2 s, the structure of the equation was not restored cor-
rectly, a term ∂2u

∂t2 appears and a term 1
r

∂u
∂r are absent. With decreased time granularity, the

structure of the equation was restored correctly. For τreg,t > 0.2 s, the recovered values of the
coefficients c3 and c4 changed slightly. For a step of 5 s, the recovery error of the coefficient
c3 with the token ∂2u

∂r2 , which is associated with the thermal diffusivity coefficient of glycerol
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(at = 0.0926 mm2/s), turns out to be about 20% for the “diffusion” case and 12% for the
case of “convection”. For the “diffusion” case, the discrepancy between the coefficients c3
and c4 is about 50%. Even while taking the error in determination of c4 into account, such a
high discrepancy may indicate the presence of a weak convection of glycerol, even in the
case of low power supplied to the wire. Regarding the case of “convection”, the c4 term is
significantly reduced due to the presence of the medium velocity or is not restored at all.
Thus, a significant difference between the coefficients can be used as an indicator of the
presence of convection with pulsed heating of a viscous liquid.

Table 4. Coefficients of Equation (16) for experimental data and various τreg,t.

QV, W/mm3 τreg,t, s c3 × 102, mm2/s c4 × 102, mm2/s c0 × 103, K/s

0.38 0.2 7.131 4.608 −2.095
0.38 1 6.832 4.374 −2.190
0.38 2 7.000 4.502 2.312
0.38 5 7.261 4.809 −1.863
1.83 0.2 8.818 1.354 −40.29
1.83 1 8.813 1.425 −39.90
1.83 2 8.074 - −44.59
1.83 5 7.951 - −44.14

4.3. Adaptive Single-Objective Optimization

To evaluate the efficiency of restoring the equation coefficients for the generated model
using the proposed approaches, the inverse problem of heat conduction was solved by one
of the classical methods (see Section 2.3).

The unknowns in the heat conduction equation are supposed to be the heat flux at the
boundary of the wire q and the coefficient of thermal conductivity λ. Other parameters of
the material are supposed to be known. The initial data for the coefficient problem are the
measured values of the temperature at different distances from the wire (see Section 3.2).

The coefficient problem was solved for the constructed error functional to be min-
imized: U = min

m,n
∑
k

∣∣∣unum(qm, λn, rk, ti)− uexp(rk, ti)
∣∣∣, where uexp(rk, ti) is the measured

temperature increase (u = T − T0) at a distance rk from the wire at the time ti and
unum(qm, λn, rk, ti)—temperature increase, calculated from the values of q and λ according
to the optimization algorithm at the same point at the same time. The algorithm requires
the following settings (Table 5): the initial ranges (qmin, qmax) and (λmin, λmax), the initial
number of pairs (q, λ) (Number of Initial Samples, NIS), the maximum number of steps
(Maximum Number of Evaluations, MNE), and the error of the solution (Convergence
Tolerance, CT).

Table 5. Algorithm settings.

qmin, W/m2 qmax, W/m2 λmin, W/(m × K) λmax, W/(m × K) NIS MNE CT

5000 15,000 0.1 0.5 6 20 10−6

The convergence of the algorithm took place for both parameters—the heat flux at the
boundary of the wire q and the coefficient of thermal conductivity λ. The error has been
reduced to 0.12 K. In this case, the calculated values of the thermal conductivity coefficient
λ = 0.34 W/(m·K) and the heat flux q = 10,800 W/m2 (QV = 0.43 W/mm3). Accordingly,
the coefficient of thermal diffusivity at = λ/(cpρ) = 0.115 mm2/s, and the difference from
the reference value (0.0926 mm2/s) was about 20%. The further increase in MNE or/and
CT does not change the result.

It should be noted that the used classical method does not restore the equation struc-
ture. The structure should be known a priori.
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5. Discussion

Inverse problem algorithms in heat transfer are used to recover thermophysical param-
eters, boundary conditions, temperature distributions, and internal heat source power from
available data. Traditional algorithms assume the knowledge of the equation’s structure,
but the emerging approach aims to simultaneously discover the equation’s structure and
coefficients through generative design methods. Recovering the equation’s structure is
crucial for understanding processes, including hidden accompanying processes. However,
noise poses a challenge to these algorithms.

Noise effects can be estimated through testing on synthetic data, but hidden processes
can only be detected with real experimental data. The experiments on non-stationary
heating of a viscous liquid using a merged heat source (wire) to test generative design
algorithms have been carried out within the present work. The experimental peculiari-
ties include:

(1) Temperature measurements in the viscous liquid (glycerol) were conducted in pulse
mode. The maximum temperature observed at the nearest measurement point to
the wire was approximately 2.5 ◦C for the first mode and around 7.5 ◦C for the
second mode. The measurement error exhibited additive Gaussian noise with a
standard deviation of 0.024 ◦C. Thus, the noise level was approximately 1% relative
to the maximum temperature for the first case and 0.2% for the second case. The
error measurement relative to the maximum observed value is more illustrative than
related to the mean value used in the most papers.

(2) The spatial data are highly sparse. The main measurements were only taken at six
points located vertically above the wire.

(3) For the second heating mode, characterized by higher power, the conducted measure-
ments clearly indicate the presence of convective motion in the medium.

The paper presents two approaches for recovering the model, a partial differential
equation, from noisy data. Compared to the previously published works (see the Intro-
duction section), the algorithms presented in this study enable the simultaneous recovery
of both the first and the second temporal derivatives. Additionally, to accommodate the
available experimental data, the algorithms have been adapted to work in a cylindrical
coordinate system.

The first approach uses an evolutionary algorithm to generate the model efficiently,
incorporating data smoothing and filtering with neural networks. The proposed approach
demonstrates high efficiency, accurately restoring the thermal process model structure
for noise levels up to 1% of the measured value’s amplitude. The coefficient error is
within 30%, decreasing with decreasing noise levels. When applied to experimental data,
the algorithm correctly restores the heat transfer equation’s structure and determines the
thermal diffusivity coefficient with an error of 3%. In comparison, the standard adaptive
single-objective optimization algorithm has a coefficient error of 20%. The algorithm can
also indicate additional processes not directly measured in the experiment, as seen in the
transition to developed convection.

The second algorithm is less universal and requires knowledge of the potential struc-
ture of the differential equation with the maximum number of terms. The best subset
selection procedure reduces the initial terms to match the specific process, while an ad-
ditional original algorithm based on choosing appropriate temporal and spatial steps
mitigates the noise influence. For synthetic data, this algorithm’s efficiency is comparable
to the evolutionary algorithm. In processing experimental data, the algorithm can correctly
restore the model structure, but the error in determining the thermal diffusivity coefficient
is within 20%, worse than the evolutionary algorithm. It should be emphasized that the
above-mentioned error is achieved with very sparse data (6 spatial points and 16 temporal
layers with a numerical differentiation step of 5 s). The optimal subset selection algorithm
can also indicate accompanying processes.

Both algorithms predict convective motion in glycerol for significant wire heating
power, consistent with observations. The evolutionary optimization algorithm introduces
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additional terms in the model structure, while the best subset selection algorithm reduces
the restored coefficient value for the first spatial derivative. For weak heating, the exper-
imental data do not provide a definitive conclusion about the onset of convection, with
the evolutionary algorithm predicting its absence and the best subset selection algorithm
suggesting weak convection. Further testing on various experimental data is necessary to
indicate low-intensity processes accurately.

6. Conclusions

The aim of the study is to adapt methods of partial differential equation discovery to
work with real experimental data. The results obtained may be summarized as:

(1) two algorithms for processing sparse and noisy data are proposed, based on (i) data
filtering and subsequent interpolation in the entire domain using a neural network,
and (ii) selection of space and time steps within the procedure of data numerical
differentiation;

(2) the algorithms are implemented in two methods for recovering equations based on
(i) a genetic algorithm with evolutionary optimization and (ii) the best subset selection
procedure that showcases the capabilities of established sparse regression methods;

(3) to verify the methods, an experiment was carried out on pulsed heating of a viscous
liquid by a submerged heat source; natural noisy data on temperature changes at only
six spatial points were obtained;

(4) for the first time, on the same experimental data, the efficiency of the genetic algorithm,
the best subset selection procedure, and the standard adaptive single-objective opti-
mization algorithm of the Ansys package have been compared. The genetic algorithm
and BSS procedure made it possible to correctly restore the structure of the equation
in the polar coordinate system and to determine the thermal diffusivity coefficient
for a noise level of up to 1% of the amplitude temperature value. The ASO algorithm,
firstly, assumes prior knowledge of equation structure, and secondly, the accuracy of
reconstructing the thermal diffusivity turns out to be slightly worse in relation to the
results of applying the genetic algorithm;

(5) for the first time, the possibility of indicating the process of convection of a viscous
liquid using methods for reconstructing an equation in the form of a PDE was analyzed
for highly sparse temperature data obtained for points along only one straight line.
The proposed approach can be used to determine the onset of convection when
studying the natural convection of liquids;

(6) the capacity of methods for the discovery of equations containing higher-order time
derivatives has been extended.

The use of methods based on genetic algorithms, sparse regression methods, the
BSS procedure with statistical criteria is a new trend for studying real heat transfer prob-
lems. The obtained data on the effectiveness of their application on experimental data
are extremely important for understanding the possibilities and limitations of the consid-
ered methods.
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