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Abstract: Vis-NIR and XRF spectroscopy are widely used in monitoring heavy metals in soil due to
their advantages of being fast, non-destructive, cost-effective, and non-polluting. However, when
used individually, XRF and vis-NIR may not meet the accuracy requirements for Cd determination.
In this study, we focused on the impact area of a non-ferrous metal smelting slag site in Gejiu City,
Yunnan Province, fused the pre-selected vis-NIR and XRF spectra using the Pearson correlation
coefficient (PCC), and identified the characteristic spectra using the competitive adaptive reweighted
sampling (CARS) method. Based on this, a quantitative model for soil Cd concentration was estab-
lished using partial least squares regression (PLSR). The results showed that among the four fusion
spectral quantitative models constructed, the model combining vis-NIR spectral second-order deriva-
tive transformation and XRF spectral first-order derivative transformation (D2(vis-NIR) + D1(XRF))
had the highest coefficient of determination (R2 = 0.9505) and the smallest root mean square error
(RMSE = 0.1174). Compared to the estimation models built using vis-NIR and XRF spectra alone, the
average computational time of the fusion models was reduced by 68.19% and 63.92%, respectively.
This study provides important technical means for real-time and large-scale on-site rapid estimation
of Cd content using multi-source spectral fusion.

Keywords: soil Cd pollution; visible-near infrared; X-ray fluorescence; spectral fusion; competitive
adaptive reweighted sampling

1. Introduction

Heavy metal pollution in soil has become a global environmental issue [1]. In particu-
lar, due to human activities such as mining, industrial waste discharge, and improper use
of pesticides, land degradation continues to worsen [2]. According to a national survey, the
concentration of Cd in soil was 7.0%, which is significantly higher than that of other heavy
metals [3]. Cd could further enter the human body through the food chain, posing a serious
threat to human health [4,5]. Indeed, timely determination of Cd concentrations in soil can
prevent the spread of Cd and provide a reference for the management of Cd pollution in
environmental systems. Traditional methods for determining the concentration of Cd in
soil still primarily rely on geochemical methods [6], but their disadvantages, such as long
analytical cycles, complicated sample preparation, high analytical cost, and impracticality
of on-site monitoring, are not suitable for this study [7]. Therefore, it is necessary to estab-
lish an accurate, stable, and rapid method for the determination of soil Cd concentration
and to complement it with the integration of multi-source spectral data.

The visible-near infrared (vis-NIR) technology possesses advantages such as time-
saving, effectiveness, affordability, and environmental friendliness [8]. Vis-NIR spec-
troscopy has shown its maturity in predicting cadmium-related soil physicochemical
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properties, such as iron oxides and organic matter [9]. Previous studies have indicated that
vis-NIR spectra can indirectly measure the Cd content in soil [10]. The Chinese standard
for risk control of soil pollution on agricultural land stipulates (GB 15618-2018) that the
screening limit for Cd in agricultural soil is 0.3 mg/kg [11]. However, the direct measure-
ment of Cd in soil using vis-NIR spectroscopy is limited by the weak signal of low Cd
concentrations, affecting the monitoring effect [6,12]. Additionally, the combination of vis-
NIR spectroscopy and remote sensing techniques can infer soil heavy metal concentrations
at large spatial scales [13]. Portable X-ray fluorescence (pXRF) has been widely applied
in heavy metal detection because of its advantages of speed, non-destructiveness, low
cost, simultaneous multi-element analysis, and on-site detection [14]. However, the test
results of this instrument are highly uncertain due to the influence of soil physicochemical
properties, detection limits of elements, and detection principles, making it difficult to
predict heavy metal pollution at large spatial scales [15]. Compared to the individual use
of vis-NIR or X-ray fluorescence (XRF), the fusion of XRF and NIR spectra can expand
the coverage of soil properties [16]. Therefore, the integrated application of proximal soil
remote sensing techniques, such as XRF and vis-NIR, for rapid estimation of heavy metal
concentrations in soil has been validated [17,18], which can effectively improve prediction
accuracy, enhance the monitoring efficiency, and reduce the cost [19]. Among numerous
spectral fusion methods, the serial fusion of XRF and vis-NIR spectra has the advantages of
simplicity and strong operability [18]. Furthermore, research has shown that combining
principal component analysis (PCA) with serial fusion methods can further improve model
accuracy [20]. Thus, the utilization of serial XRF and vis-NIR spectra for estimating heavy
metal concentrations is a feasible approach. Compared with other fusion methods, feature
layer crosstalk is more suitable for rapid estimation of soil Cd content in the field.

The difficulty in predicting Cd concentrations using tandem spectroscopy is the ele-
mental Cd does not have distinct characteristic bands in the vis-NIR spectral region [21].
Moreover, China’s low screening limit for Cd in soils further increases the difficulty of
identifying characteristic spectral bands in serial spectra. Tan et al. [22] used competitive
adaptive reweighted sampling (CARS) for selecting characteristic spectral bands and found
that it improved the prediction of arsenic, chromium, lead, and zinc concentrations in
soil compared to traditional models. The study suggested that feature spectrum selection
plays a key role in enhancing the generalization ability of estimation models. The Pearson
correlation coefficient (PCC) has been proven to be statistically based and interpretable
for the selected characteristic bands [23]. However, there is limited research on using PCC
in conjunction with multisource spectral fusion for estimating Cd content in soil, which
can provide technical references for further expanding and optimizing fusion methods.
However, it is difficult to address the interrelationships between independent variables
by using only PCC to select feature spectra [24]. Estimation models for Cd content built
using PCC-selected characteristic spectra may suffer from overfitting, leading to unreliable
results. Therefore, it is necessary to combine PCC with other methods to select characteristic
spectra [25]. Among these methods, CARS primarily selects feature variables based on
the principle of “survival of the fittest”, thus removing irrelevant spectral information and
retaining variables that effectively enhance the model’s adaptability [22,26].

Agricultural land around the impact area of a nonferrous metal processing and smelt-
ing slag site in the city of Gejiu, Yunnan Province, has been affected by the nonferrous metal
smelting process, and its farmland soil is mainly contaminated by heavy metals such as Cd
and Pb [27]. In order to characterize the Cd contamination non-destructively and rapidly in
the affected area’s soil, a model capable of quantitatively monitoring Cd content is needed
to address the limitations of traditional precise analytical monitoring methods in obtaining
on-site and rapid measurements of Cd concentration in the study area’s soil. Therefore, this
study aims to combine XRF and vis-NIR spectra in a serial fusion approach, combined with
PCC analysis, to construct a technical roadmap for spectral preprocessing, feature spectrum
selection, and quantitative estimation using the PCC_CARS_PLSR (Pearson Correlation
Coefficient–Competitive Adaptive Reweighted Sampling–Partial Least Squares Regression)
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multi-method approach. This approach enables the rapid assessment of Cd content in the
soil, a characteristic pollutant in the agricultural land of the non-ferrous metal selection
and smelting slag site in Gejiu City, Yunnan Province. Additionally, Cd2+ poses a threat to
the natural environment and human health due to its tendency to migrate and diffuse in
soil. The detection limit of Cd in XRF spectrometry is lower than that of other heavy metal
elements, and the monitoring accuracy is lower than that of other heavy metal elements. In
this study, the accuracy of single-spectrum models and spectral fusion models predicting
the content of Cd using different transformation methods were compared. This study
provides a technical means for rapid estimation of Cd content in the field by multi-source
spectral fusion, which lays the foundation for the remediation of Cd-contaminated soil.
At the same time, this study also lays a research foundation for future research on dy-
namic, real-time, and large-scale quantitative monitoring of soil Cd pollution based on
hyperspectral remote sensing images.

2. Materials and Methods
2.1. Study Area

The study area is located within a 5–20 km radius of the non-ferrous metal smelt-
ing slag repository in Gejiu City, Honghe Hani, and Yi Autonomous Prefecture, Yunnan
Province, China. It covers an approximate area of 6.52 km2. The average elevation is around
1300 m, with significant elevation differences. The area has a distinct vertical climate and
belongs to a subtropical highland monsoon climate with abundant rainfall. Within the
study area, there are 965,935 m2 of construction land and 2,609,041 m2 of farmland. After
preliminary processing, it was found that the soil pH ranged from 5.32 to 8.80, and the soil
moisture content ranged from 20% to 40%. The wastewater and sludge generated during
non-ferrous metal processing have caused severe heavy metal pollution in the surrounding
environment. Cd is one of the most heavily polluted heavy metals in the study area, posing
a serious threat to crops and human health [28]. The geographical location of the study area
and the geological map are shown in Figures 1 and 2. Most of the study area is underlain
by Quaternary soil deposits, except for small portions of dolomite, siltstone, siliceous rock,
and chert.
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Figure 1. Geographical location of the study area. Figure 1. Geographical location of the study area.
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Figure 2. Geological map.

2.2. Data Collection
2.2.1. Soil Sample Collection

To establish a reliable quantitative estimation model for soil Cd concentration in the
vicinity of the slag repository (HJ/T 166-2004), 58 soil samples were collected using a
random distribution method. The GPS was used to record the locations of the sampling
points. According to the “Technical Specifications for Soil Environmental Monitoring” [29],
metal tools should be avoided during soil sample collection. First, the soil surface was
cleared of mulch, such as tree branches and weeds. Then, five surface samples (0–5 cm)
were taken in a 10 × 10 m area using a diagonal sampling method. The samples were
mixed together, discarding impurities such as stones and plant roots. Finally, about 1 kg of
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mixed soil samples were sealed in polyethylene plastic bags [30]. The soil samples were
dried in the laboratory, then ground and sieved using a 100-mesh nylon sieve (0.150 mm)
to remove larger particles. The soil samples were divided into two parts: one for chemical
analysis and the other for spectral analysis.

2.2.2. Chemical Analysis

The soil samples were digested in a graphite digestion apparatus. First, 0.1 g of the
sample was weighed and placed in a Teflon digestion tank. Then, 5 mL of nitric acid
(ρHNO3 = 1.42 g/mL) was added to the vessel to soak the sample for 0.5 h to remove
organic matter. After that, 2 mL of hydrofluoric acid (ρHF = 1.49 g/mL) and 1 mL of
perchloric acid (ρHClO4 = 1.49 g/mL) were added. Finally, the digestion vessel was placed
in a graphite digestion block and digested at 180 ◦C for 4 h. The total Cd concentration
in the solution was determined using an Inductively Coupled Plasma Mass Spectrometer
(ICP-MS, 800DV, TMO, Waltham, MA, USA) (argon gas source valve pressure reducing
valve at about 550 kPa, circulating water pressure indication between 50 and 310 kPa.).
Glassware and polyethylene bags were soaked in nitric acid for 12 h before use, and
ultrapure water was used to prepare the solutions for analysis [31]. All experimental
samples were digested simultaneously with a Cd concentration reference standard in
the soil. Sample replicates (approximately 20%) and standard reference materials (GSS-
5/GBW07405) [28] were included in each batch of sample digestion and chemical analysis,
maintaining quality assurance, quality control, and blank control. The relative standard
deviations were less than 5%, and the recoveries of Cd from the standard reference materials
were 90–95%, respectively.

2.2.3. Measurement of vis-NIR Spectra Using a Portable Spectrometer

Visible-NIR spectra of soil samples were measured in a darkroom using a PSR-2500
portable spectrometer manufactured by Spectrum Evolution (operating instructions are
available on the Spectral Evolution website (https://spectralevolution.com/products/
software/ (accessed on 4 June 2023))). The soil samples were placed in black containers
with a diameter of 10 cm and a depth of 1.5 cm. Prior to measurement, the instrument
was preheated for at least 30 min with a 100 W halogen lamp set as the sole light source.
Calibration with a white reference panel was performed for optimization. The probe view-
ing angle was kept at 15◦, and the light source incidence angle was 30◦ during acquisition.
The distance between the light source and the center of the soil surface was 50 cm, while
the probe was positioned 15 cm above the soil surface. The container was then divided
into three directions at an angle of 120◦, and five spectra were collected in each direction,
resulting in a total of 15 spectra per soil sample. The arithmetic mean of the collected
spectra was calculated to obtain the final soil reflectance spectra to facilitate subsequent
analysis.

2.2.4. Measurement of XRF Spectra Using an X-ray Fluorescence Spectrometer

The XRF spectra of the soil samples were measured using the Niton XL3t 950 XRF
spectrometer from Thermo Fisher Scientific, Waltham, MA, USA. After passing through a
200-mesh nylon sieve (0.074 mm), the soil samples were placed in sample cups. The surface
of each sample was leveled and covered with a layer of polyester film. Then, the sample
cup was placed on the instrument’s test stand, and scanning was conducted for 80 seconds
per sample. Three scans were performed for each sample, and the average spectrum of the
three scans was taken as the result. After removing the low-energy values at the edges, each
spectrum retained 3522 data points ranging from 0.39 keV to 53.205 keV. The spectrometer
was connected to the computer via a data cable, and the spectral data were exported to the
computer using the NDT program, the manual for which is available on the Thermo Fisher
Scientific website (https://www.thermofisher.cn/order/catalog/product/10131166?SID=
srch-srp-10131166 (accessed on 5 June 2023)).

https://spectralevolution.com/products/software/
https://spectralevolution.com/products/software/
https://www.thermofisher.cn/order/catalog/product/10131166?SID=srch-srp-10131166
https://www.thermofisher.cn/order/catalog/product/10131166?SID=srch-srp-10131166
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2.3. Data Analysis

In this study, data preprocessing, feature band selection, construction of single-
spectrum models, construction of spectral fusion models, and model accuracy evaluation
were implemented using the Python 3.10 programming language in PyCharm Community
Edition 2022.1.2 software. The specific processing workflow is illustrated in Figure S1.

2.3.1. Spectral Pre-Processing Methods

Spectral preprocessing aimed to standardize the format of XRF and vis-NIR spectral
data and reduce errors caused by system noise. The spectral data were exported to Mi-
crosoft Excel in batches and subjected to wavelet transform (WT) and Savitzky–Golay (SG)
smoothing preprocessing. WT applied scaling and translation operations to gradually
refine the signal (function) at multiple scales, ultimately achieving automatic focus on
the details of the spectral profile [32]. SG smoothing was employed for denoising the
spectral curve, and used a second-order polynomial with a window size of 12 for smooth-
ing. Spectral transformations enhanced the spectral signal and increased the correlation
between spectral wavelengths and Cd content [33,34]. The raw spectra (RS) were subjected
to several transformations, including mean centering transformation (CT), standard normal
variate transformation (SNV), multiplicative scatter correction (MSC), first-order derivative
transformation (D1), second-order derivative transformation (D2), detrending transforma-
tion (DT), continuum removal (CR), and reciprocal logarithm transformation (CL). Due
to the presence of zero values in XRF spectra, the CL transformation cannot be applied
as the denominator. The transformed results of XRF and vis-NIR spectra are shown in
Figures S2 and S3, respectively. Finally, the spectral data were subjected to standardization
processing.

2.3.2. Feature Spectral Selection

The feature spectral selection process consisted of preliminary screening using the
PCC method and subsequent screening using the CARS method.

(1) The correlation analysis was conducted using the PCC method [23]. The correlation
coefficients between the Cd concentrations in soil and the spectral bands of both types
of spectra were calculated, and the absolute values of the correlation coefficients were
obtained. The equation for calculating the correlation coefficient is as follows:

r(X,Y) = cov(X,Y)/
√

var(X)
√

var(Y) (1)

where r(X,Y) is the correlation coefficient between the two variables X and Y; cov(X,Y) is the
covariance of the two variables; var(X), var(Y) are the variance of the variables.

After conducting multiple experiments, it was found that selecting 200 highly corre-
lated spectral bands from the vis-NIR spectra and 600 highly correlated spectral bands
from the XRF spectra ensured model quality and reduced model computation time.

(2) CARS utilized adaptive sampling to retain spectral bands with relatively large
absolute coefficients in the PLSR model [35]. Then, a Monte Carlo cross-validation method
was employed to model each subset of wavelength variables, and the optimal subset was
selected as the feature spectral band set based on the root mean square error of cross-
validation (RMSECV).

2.3.3. Estimation Model

The Kennard–Stone (KS) algorithm [36] was used to calculate the Euclidean distance
of the dataset. The samples corresponding to the maximum and minimum distances were
selected as the training set. This process was repeated until the training set reached the
specified quantity (80% for training, 20% for validation). Among the 58 soil samples, 46
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were selected for the training set, and 12 were selected for the validation set. The formula
for calculating the Euclidean distance is as follows:

dx(p, q) =
√

∑J
j=1

[
xp(j)− xq(j)

]2 p, q ∈ [1, N] (2)

where J is the total number of bands; N is the total number of samples; xp(j) and xq(j) are
date values at p and q on the j band.

A prediction model was developed using the PLSR method. PLSR is a novel multivari-
ate statistical analysis method that combines the advantages of PCA and linear regression
modeling and is more effective in distinguishing between spectral information and noise.
Compared with traditional linear models, the most important feature of PLSR is its utiliza-
tion of data dimensionality reduction and comprehensive information selection techniques.
PLSR can model independent variables with multiple correlations, which can improve
model accuracy when using spectroscopic techniques to build predictive models for soil
Cd content [37].

2.3.4. Accuracy and Efficiency Evaluation

The accuracy of the estimation model was evaluated using R2 (coefficient of determi-
nation) and RMSE (root mean square error). A higher R2 value indicated better model fit,
with values closer to 1 indicating higher accuracy. A smaller RMSE value indicated a better
predictive ability for the model. However, it should be noted that the CARS method for
feature spectrum selection exhibits randomness [38]. This was reflected when the RMSE of
the validation set was greater than that of the training set, indicating that the predictive
model had obtained a local solution. In such cases, it is necessary to repeat the variable
selection and modeling process until the RMSE of the validation set becomes smaller than
that of the training set [39]. The formulas for calculating R2 and RMSE are as follows:

R2 = ∑n
i=1(ŷi − yi)

2/∑n
i=1(yi − yi)

2 (3)

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (4)

where y is the mean value of the sample observations; ŷ is the predicted value of the sample;
n is the number of samples to be verified.

Due to the relatively slow execution speed of CARS, real-time updating of soil heavy
metal Cd concentration is required for rapid on-site estimation. Therefore, the algorithm
execution time was considered the efficiency evaluation criterion for different spectral
transformation methods in the prediction model evaluation, aiming to distinguish the
characteristics of different models in the inversion of Cd concentration.

2.3.5. Building a Spectral Fusion Model

First, we conducted a statistical analysis to assess the accuracy and efficiency of the
individual spectral models. The models were evaluated based on their R2, RMSE, and
computation time on the validation set. The number of models selected varied depending
on the different transformation methods applied to the XRF and vis-NIR spectra. Next,
the selected models corresponding to the XRF and vis-NIR spectra were concatenated,
resulting in a fused spectrum (FS). The FS spectrum contained a total number of spectral
bands equal to the sum of the bands in the vis-NIR and XRF spectra. Subsequently, the FS
spectrum underwent another round of spectral preprocessing to enhance its quality and
minimize potential noise or artifacts. Following that, the PCC_CARS_PLSR method was
employed to establish a predictive model for estimating the soil heavy metal Cd content
using the fused spectrum. In this modeling process, 600 variables were selected through
PCC screening to ensure the inclusion of relevant spectral information contributing to
accurate predictions. Finally, the accuracy and efficiency of the FS model were evaluated.
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This evaluation involved assessing the accuracy of the model using R2 and evaluating its
efficiency by measuring the required training and prediction time. Through this compre-
hensive evaluation, we gained insights into the predictive accuracy and computational
efficiency of the FS model in estimating soil heavy metal Cd content.

3. Results
3.1. Descriptive Statistical Analysis
3.1.1. Descriptive Statistical Analysis of Soil Cd Concentration

Descriptive analysis was carried out based on the results of laboratory ICP-MS accurate
quantitative analysis tests of Cd content in soil samples from the study area (Table 1).
The results of the statistical analysis showed that the mean value of soil Cd was higher
than its corresponding median value, indicating a positively skewed mode of normal
distribution of Cd in soil. The Cd pollution in the study area was serious, with the average
Cd concentration exceeding the background level in Yunnan Province by 30 times, 66 times
higher than the risk screening value and 13 times higher than the risk control value in the
Chinese Soil Environmental Quality Risk Control Standard for Agricultural Land (GB15618-
2018) [11], which poses a serious threat to human health. The standard deviation of soil
Cd was 16.3516, indicating significant differences in Cd concentration among different
directions in the non-ferrous metal smelting slag depot. The Cd element was influenced
by topography, wind direction, and water sources continuously flowing into surrounding
areas. The coefficient of variation for Cd concentrations in the study area was 82.25%,
suggesting a significant influence of anthropogenic factors on Cd concentrations.

Table 1. Descriptive information of soil samples (unit: mg/kg).

Element Mean Median Standard Deviation Minimum Maximum Coefficient
of Variation

Background Value of
Soil in Yunnan Province

Cd 19.8806 12.7938 16.3516 2.9005 69.4155 82.25% 0.66

3.1.2. Descriptive Analysis of Spectral Curves

Using the spectral preprocessing method in 2.3.1, eight (RS, CT, SNV, MSC, D1, D2,
DT, and CR) and nine (RS, CT, SNV, MSC, D1, D2, DT, CR, and CL) spectral transfor-
mations were applied to the XRF and vis-NIR spectra, respectively, to obtain seventeen
post-transformation spectra, as shown in Table S1, Figures S2 and S3.

The transformed XRF and vis-NIR spectra exhibited significant differences in value
ranges. The vis-NIR spectra had a maximum value of 56.48 and a minimum value of−29.15,
whereas the XRF spectra had a maximum value of 859.00 and a minimum value of −137.46.
This substantial difference in value ranges posed a challenge in directly concatenating
the two spectra, as it would increase the difficulty in identifying fused spectral features.
However, this disparity can be mitigated through spectral normalization techniques, which
can eliminate such differences and facilitate feature selection using both PCC and CARS.
The wavelength range for the XRF spectra was 0.39 to 53.205, while the vis-NIR spectra
ranged from 350 to 2500. The number of spectral bands in the XRF and vis-NIR spectra was
3522 and 768, respectively. Hence, during PCC-based feature selection, it was advisable to
increase the number of iterations for XRF spectrum selection to retain a greater amount
of spectral information and ensure the interpretability of the data. The non-overlapping
spectral ranges of the two types of spectra do not impact the uniqueness of the model
variables.

3.2. Feature Spectrum Selection
3.2.1. Preliminary Feature Spectrum Selection Based on PCC

The PCC analysis between the spectral data and Cd concentration is depicted in
Figure S4. It was observed that the correlation between the transformed vis-NIR spectra
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and Cd concentration was enhanced. The highest correlation coefficient with Cd concen-
tration was 0.47 for the D2 transformation. For the XRF spectra, most transformations
improved their correlation with Cd, with the CR transformation showing the highest corre-
lation coefficient of 0.51. The D1, D2, and CR transformations for both spectra exhibited
correlation coefficients above 0.4, providing fundamental data for the establishment of a
Cd concentration estimation model. However, relying solely on PCC for feature spectrum
selection faces challenges in addressing inter-variable correlations. Building a Cd concentra-
tion estimation model based solely on PCC-selected feature spectra is prone to overfitting,
resulting in unreliable Cd concentration estimations. Therefore, it was necessary to combine
PCC with other methods for feature spectrum selection.

3.2.2. Feature Spectrum Selection Based on CARS Algorithm

The CARS algorithm primarily operates on the principle of “survival of the fittest”
to select the feature variables with stronger adaptability, thereby eliminating irrelevant
spectral information and retaining variables that can effectively improve the model’s
adaptability. Building upon the feature spectra obtained from the correlation analysis
between soil Cd concentration and spectral values based on PCC, the CARS algorithm
was applied to filter these feature spectra further. The number of iterations in the CARS
algorithm was a crucial factor influencing the quality of the feature spectra. By setting the
Monte Carlo sampling to 100 iterations, the relationship between the number of iterations
and RMSECV is depicted in Figure S5. As the number of iterations increased, RMSECV
exhibited fluctuating changes, with the curve initially decreasing, reaching a minimum
point, and then rising again. The minimum RMSECV was achieved when the number of
iterations was 79. Considering the combined impact of iteration count and computational
time, setting the iteration count to 100 for the feature spectrum selection based on the CARS
algorithm was deemed suitable.

3.3. Evaluation of Estimation Model Accuracy and Efficiency
3.3.1. Evaluation of Single-Spectrum Estimation Models

From Table 2, it can be observed that vis-NIR exhibited lower accuracy in estimating
Cd concentration. The Cd concentration estimation models established using nine spectral
transformation methods had an average R2 of 0.3529 and an average RMSE of 0.5388. By
examining Figures 3 and S6, it is evident that most of the transformation models have large
intercepts and small slopes, resulting in predicted values that are lower than the actual
measurements. Among them, the trend lines of the D2 transformation model outperformed
other models (R2 = 0.6849, RMSE = 0.2690). Therefore, the D2 transformation model was
selected as the optimal estimation model for soil Cd content in the vis-NIR range.

Table 2. Accuracy and efficiency statistics of 17 Cd concentration estimation models.

Spectral Type Transformation RMSE R2 Time (s)

vis-NIR

RS 0.7459 0.4054 18
CT 0.4914 0.1123 339

SNV 0.5288 0.2971 60
MSC 0.5141 0.4402 30
D1 0.5065 0.3128 34
D2 0.2690 0.6849 110
DT 0.5703 0.1405 51
CR 0.5334 0.4781 14
CL 0.6894 0.064 37
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Table 2. Cont.

Spectral Type Transformation RMSE R2 Time (s)

XRF

RS 0.3321 0.1082 71
CT 0.4116 0.2628 59

SNV 0.3018 0.7495 44
MSC 0.4531 0.3841 71
D1 0.1143 0.9079 113
D2 0.1048 0.8868 164
DT 0.3088 0.3772 16
CR 0.1588 0.7442 68
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The additional information in Table 2 indicates that XRF achieved better results in
Cd concentration estimation. The excitation spectra of XRF can easily identify heavy
metal elements in the soil. By examining Figures 4 and S7, it can be observed that the Cd
estimation models based on XRF data had a higher number of spectral bands compared to
the vis-NIR estimation models (Figures 3 and S6). The closer the scatter points of the XRF
estimation models were to the 1:1 line, the higher the degree of fit of the Cd concentration
estimation model. Among them, the scatter plots of the Cd concentration estimation models
based on the SNV, D1, D2, and CR transformations exhibited smaller deviations from the
1:1 line compared to the other four methods (CT, MSC, DT, and CL), indicating better fit
and higher estimation accuracy, with R2 values of 0.7495, 0.9079, 0.8868, and 0.7442, and
RMSE values of 0.3018, 0.1143, 0.1048, and 0.1588, respectively. Therefore, the SNV, D1, D2,
and CR methods can be considered advantageous spectral transformation approaches for
XRF spectra, providing a basis for further spectral fusion studies.
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3.3.2. Evaluation of Spectral Fusion Models

Compared to the single-spectrum models, the fusion models exhibited higher accu-
racy. Table 3 presents the accuracy and computational time information of four fusion
models: the concatenation of the D2 transformation of vis-NIR and the D1 transformation
of XRF (D2(vis-NIR) + D1(XRF)); the concatenation of the D2 transformation of vis-NIR
and the D2 transformation of XRF (D2(vis-NIR) + D2(XRF)); the concatenation of the D2
transformation of vis-NIR and the SNV transformation of XRF (D2(vis-NIR) + SNV(XRF));
and the concatenation of the D2 transformation of vis-NIR and the CR transformation
of XRF (D2(vis-NIR) + CR(XRF)). Their R2 values were 0.9505, 0.8832, 0.8974, and 0.9096,
respectively, while the RMSE was 0.1174, 0.1486, 0.1904, and 0.1309, respectively. It is worth
noting that although the fusion models had more spectral bands, their computational time
was shorter compared to the single-spectrum models.

Table 3. Accuracy and efficiency statistics of four Cd concentration estimation models.

Spectral Type Transformation RMSE R2 Time (s)

FS

D2(vis-NIR) + D1(XRF) 0.1174 0.9505 65
D2(vis-NIR) + D2(XRF) 0.1486 0.8832 34

D2(vis-NIR) + SNV(XRF) 0.1904 0.8974 18
D2(vis-NIR) + CR(XRF) 0.1309 0.9096 23

The scatter plot in Figure 5 exhibits a linear distribution, indicating a good level of
prediction. While the computational time of the fusion model D2(vis-NIR) + D1(XRF)
was slightly longer, this fusion model demonstrates a linear and evenly distributed scatter
plot, showcasing better prediction accuracy and stability. Moreover, it exhibited the least
deviation from the 1:1 line, the highest degree of fit, and the best estimation model accu-
racy. Therefore, the D2(vis-NIR) + D1(XRF) fusion model can be regarded as the optimal
estimation model for soil Cd content.
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Furthermore, Table 4 provides a comprehensive efficiency evaluation of the domi-
nant transformation models for different spectral types, with mean estimates within the
confidence interval (p < 0.05). Therefore, considering the average RMSE, average R2, and
average computational time, the ranking of estimation accuracy and efficiency for soil Cd
concentration is as follows: the FS model was superior to the XRF model, and the XRF
model was superior to the vis-NIR model. Taking D2(vis-NIR) as the reference, the average
R2 of XRF improved by 20.03%, while the average R2 of the FS model improved by 32.90%.
The average computational time of XRF decreased by 11.82%, while the average computa-
tional time of the FS model decreased by 68.19%. Compared with XRF spectroscopy, the
average R2 of FS was improved by 10.72%; the average operation time of FS was reduced by
63.92%. Overall, the FS model significantly improved the accuracy of the model, reduced
algorithm runtime, and exhibited better stability.

Table 4. Evaluation table of the combined efficiency of the three models.

Spectral Type Transformation Mean RMSE Mean R2 Mean Time (s)

vis-NIR D2 0.5334 0.6849 110
XRF D1, D2, SNV, CR 0.1699 0.8221 97

FS

D2(vis-NIR) + D1(XRF),
D2(vis-NIR) + D2(XRF),

D2(vis-NIR) + SNV(XRF),
D2(vis-NIR) + CR(XRF)

0.1468 0.9102 35

4. Discussion

Accurately establishing a model to estimate soil Cd concentrations is highly challeng-
ing in practical research. Currently, the primary method for monitoring soil Cd concentra-
tions involves field technicians using specialized instruments to obtain Cd concentrations
at certain sampling points, followed by spatial interpolation techniques to estimate Cd con-
centrations in specific areas. With the development of sensor devices, it is now possible to
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measure an increasing amount of soil information non-destructively in the field. The devel-
opment of machine learning has made it possible to analyze complex variable relationships
using computers, providing more options for estimating soil Cd concentrations [18,21].
However, there are still numerous issues to be discussed regarding the estimation of Cd
concentrations using spectroscopic techniques. Our discussion focuses on the following
aspects.

First, as Cd is typically present in the form of compounds in soil, vis-NIR spectroscopy
can indirectly estimate the concentration of Cd in soil by utilizing other substances that
adsorb Cd, such as organic matter, carbonate minerals, clay minerals, and manganese
iron oxides. For instance, Xia et al. [40] analyzed the correlation between eight soil heavy
metals and organic matter and established a PLSR model for heavy metals. However,
when the soil environment undergoes change, this method still requires on-site sampling
to determine the concentrations of intermediate substances for quantitative inversion of
heavy metal concentrations [41]. This effect prompted a better understanding of how to
obtain information about in situ soil. In this regard, the XRF/NIR spectroscopy coupling
technique proposed by Professor Horta expands the coverage of soil properties, improves
measurement accuracy, and does not damage the original soil or generate hazardous
laboratory wastewater [16]. Li et al. [18] combined XRF, NIR, and MIR spectroscopy and
applied PCA to establish a model for estimating soil heavy metals. They found that the
prediction model for Cd concentrations achieved an R2 value as high as 0.98. In our study,
a quantitative estimation model for soil Cd concentration was established by combining the
serially linked vis-NIR and XRF spectra through the PCC_CARS_PLSR process. Through
comprehensive comparison in Figure 6, it was found that the fusion model exhibited higher
accuracy and shorter computation time, with the highest R2 of 0.9896 achieved by the
D2(vis-NIR) + D1(XRF) estimation model, indicating its greater potential for practical
monitoring of soil Cd content.
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Furthermore, soil spectral preprocessing was an effective approach to enhancing the
accuracy of soil heavy metal estimation models. Spectral preprocessing typically involves
spectral denoising and spectral transformation [42]. In our study, we utilized WT and
spectral smoothing for spectral denoising. WT refined the received spectra from the sensor,
reducing system noise. On the other hand, spectral smoothing employed a filtering win-
dow to minimize baseline drift in the spectral curves. Spectral transformation techniques
enhanced spectral information, improving the correlation between spectra and soil Cd
elements and providing additional valuable spectral information for feature spectrum
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selection [43]. Hou et al. [44] achieved a high-accuracy estimation model by applying SG
smoothing in combination with MSC and CL for preprocessing reflectance spectra. There-
fore, employing a combination of multiple spectral preprocessing methods can provide
more effective feature spectral information for high-accuracy estimation models. In our re-
search, we combined the WT spectral denoising method with nine spectral transformations
(CT, SNV, MSC, D1, D2, DT, CR, and CL). After spectral smoothing, a spectral variable
matrix was obtained, and the accuracy of estimation models constructed using different
preprocessing methods for individual spectra was evaluated. This evaluation served as
a basis for selecting the optimal fusion method. Among the nine preprocessing methods
applied to the vis-NIR spectra, the WT combined D2 preprocessing method yielded the
highest accuracy with an R2 of 0.6849. Similarly, among the eight preprocessing methods
applied to the XRF spectra, the WT combined D1 preprocessing method yielded the highest
accuracy with an R2 of 0.9079. When compared with the optimal preprocessing methods
for vis-NIR and XRF spectra in Gholizadeh et al. [45], our selected preprocessing methods
demonstrated superior accuracy and stability.

In addition, spectral fusion can be categorized into three stages: data-level fusion;
feature-level fusion; and decision-level fusion [16]. Data-level fusion, although straight-
forward, was limited by the effectiveness of data dimensionality reduction and feature
spectral selection on the accuracy of heavy metal estimation models [46]. Feature-level
fusion includes feature concatenation and feature operation [21]. Pozza et al. [20] combined
PCA to concatenate the vis-NIR and XRF spectra, establishing a soil Pb concentration
estimation model with a Lin’s Concordance Correlation Coefficient (LCCC) of 0.95. Feature
concatenation involves directly concatenating the selected feature spectra into a fused
spectrum. Feature operation involved operations such as summation, equal-weight su-
perposition, and outer-product analysis (OPA) on the vis-NIR and XRF feature spectra to
obtain the fused spectrum [47]. Feature operation requires the dimensionality reduction in
both the vis-NIR and XRF spectra to a unified number of spectral bands. Decision-level
fusion typically employs Granger–Ramanathan averaging (GRA) to model the estimation
results of individual spectral models. Xu et al. [46] used spectral resampling combined
with OPA and GRA to estimate soil Cd concentration, resulting in LCCC values of 0.82 and
0.73, respectively.

We concatenated the vis-NIR and XRF spectra that underwent preliminary screening
using PCC. Moreover, we employed CARS to identify the characteristic spectra, leading
to the establishment of a quantitative estimation model for soil Cd concentration based
on PLSR. This fusion of spectra can be categorized as feature-level fusion. Additionally,
based on Table 2, various preprocessing techniques were applied to the individual spectra
in this study. We used PCC_CARS integration to select the feature spectra, constructing
a single-spectrum estimation model. Furthermore, on this basis, we selected the optimal
fusion method for vis-NIR and XRF feature spectra, resulting in the final establishment
of the fused spectral estimation model. This spectral fusion can also be categorized as
decision-level fusion. Therefore, the fused spectral estimation model in this study is the
outcome of multi-level fusion, with an average R2 of above 0.94 for Cd concentration
prediction in the validation set (Figure 6), which is similar to the accuracies of the soil Cd
content estimation models developed by Xu et al. [46], Li et al. [18], and Wang et al. [21]
The use of other spectral fusion strategies indicated that this multilayer fusion approach
was a higher-order fusion strategy with higher accuracy.

In summary, this study fused the PCC-filtered vis-NIR and XRF spectra and employed
the CARS method to identify characteristic spectra, resulting in the establishment of a
quantitative estimation model for soil Cd concentration based on PLSR. The model demon-
strated good prediction accuracy and stability. These findings provide theoretical guidance
for non-destructive and rapid monitoring of soil Cd and enrich the methods for spectral
techniques in monitoring soil Cd concentration. Moreover, they offer a technical approach
for the on-site rapid estimation of soil Cd content based on multisource spectral fusion
and lay the foundation for future research on dynamic, real-time, and large-scale quantita-
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tive monitoring of soil heavy metal pollution using high-resolution hyperspectral remote
sensing images.

5. Conclusions

In conclusion, the feature spectra were screened based on PCC-CARS coupling, and
a soil Cd content estimation model with a higher integrated efficiency was developed
using PLSR with the strategy of feature layer cascading and decision layer fusion. The
comprehensive efficiency (accuracy and computational time) of the estimation models
based on different spectral types was ranked as follows: fusion spectral model > XRF
spectral model > vis-NIR spectral model. Among them, the D2(vis-NIR) + D1(XRF) fusion
model exhibited the highest coefficient of determination and the smallest root mean square
error. Importantly, compared with other spectral fusion methods, the concatenated spectral
approach was characterized by simplicity and strong operability, which makes it more
suitable for dynamic, real-time, and quantitative monitoring of soil heavy metal pollution.
Future work should further focus on constructing models that can be used for on-site rapid
and accurate estimation of soil Cd content, providing technical references for subsequent
research on dynamic, real-time, and large-scale quantitative monitoring of soil heavy metal
pollution based on high-resolution hyperspectral remote sensing images. This is of great
significance for the dynamic monitoring of soil pollution and agricultural product safety,
as well as the safe utilization of arable land.
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//www.mdpi.com/article/10.3390/pr11092714/s1, Figure S1: Flow chart of modeling process.
Figure S2: 9 transformations of vis-NIR spectra. Figure S3: XRF spectra with 8 transformations.
Figure S4: Correlation coefficients between Cd concentration and spectral values. Figure S5: Relation-
ship between Iterations and RMSECV. Figure S6: PLSR model for different transformation methods of
vis-NIR. Figure S7: PLSR model with different transformation methods of XRF. Figure S8: Combined
spectra of the two spectra. Table S1: Descriptive information of the spectral curves.
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