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Abstract: The heat and moisture transfer process in deformable porous media commonly exists in
material drying, solid waste treatment, bioengineering, and so on. The transfer process is accompa-
nied by deformation of the solid skeleton and pore interface structure, which limits the transfer rate
and affects quality. Microwave and ultrasound are the main representatives of reinforcement technol-
ogy. However, as the moisture decreases, the energy utilization efficiency of microwaves decreases
significantly. Based on the experimental and theoretical methods, the enhancement mechanism of
ultrasound on the process is studied, which provides guidance for the wide application of ultrasonic
enhancement. With the increase in ultrasound power, the pore area and the moisture effective
diffusion coefficient gradually increase. A macroscope mathematical model for ultrasonic-coupled
thermal-hydro-mechanical modeling is developed, and the results show that ultrasound increases the
temperature gradient within material, resulting in higher moisture transmission rates with an ordered
direction, and the alternating expansion and compression process results in smaller macroscopic
deformations. Subsequently, the drying kinetic characteristics of typical deformable porous media
such as municipal sludge, porous fibers, and activated alumina particles are investigated. The process
parameters of the ultrasonic assisted drying system are optimized using the response surface method
and artificial neural network model.

Keywords: deformable porous media; heat and moisture transfer; irregular shrinkage deformation;
microwave; ultrasound

1. Introduction

During the “14th Five-Year Plan” period, China has embarked on a new journey
to comprehensively build a socialist modernized country, with clean and low-carbon
development as the leading direction of energy development, promoting green production
and consumption of energy. In developed countries, the energy consumption for drying
processes accounts for approximately 10–25% of the total national energy consumption,
and the average energy utilization rate of the drying industry in the world is generally
low [1]. Drying is still a high-energy-consuming operation. Improving drying efficiency
and ensuring product quality requires strengthening the heat and mass transfer processes
of deformable porous media, which is an important scientific problem currently faced by
the engineering thermophysics discipline.

Natural or industrial raw materials are mostly porous media materials, which are
a combination of liquid, gas, and solid phases. The solid phase material forms the basic
shape of the porous media, which is the solid skeleton. The skeleton is connected to form
void space and cavities, which are the pores. Among them, gas and liquid phases serve as
filling media for the skeleton, and they jointly occupy the pore space. Due to the complex
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structure of porous media, as shown in Figure 1, energy and mass transfer inside it is
very complicated.
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Figure 1. Three typical porous structures: (a) porous open cell foam; (b) fiber layer in PEM fuel cell;
(c) typical cross section in gradient material.

There are many types of porous materials, which can be divided into two categories
according to their water absorption characteristics: non-hygroscopic and hygroscopic
porous materials [2,3]. For the study of the drying process in non-hygroscopic porous
media, the focus is on investigating the laws of various transport phenomena inside the
porous media. Most of these studies investigate the relationship between macro-parameters
(such as thermal conductivity, porosity, etc.) and permeability, and establish models based
on Darcy’s law to further analyze and explain some practical phenomena of heat and
mass transfer. Significant progress has been made in these aspects of research. Different
from non-hygroscopic porous media, hygroscopic porous media will undergo obvious
structural shrinkage during the drying process. For hygroscopic porous materials, the heat
and mass transfer processes inside the porous media are highly non-uniform, nonlinear,
and non-equilibrium. Under the conditions of surface tension and thermal stress, the heat
and mass transfer within deformable biological porous media can cause deformation of
the solid skeleton and pore interface structure. Therefore, on the basis of studying the
internal heat and mass transfer, the structural deformation of hygroscopic porous media
during drying will also have an important impact on the heat and mass transfer process,
making it difficult to accurately describe its transmission mechanism theoretically and
propose effective ways to improve process transmission efficiency. Thermal air drying,
microwave drying, and vacuum freeze-drying technology for porous materials are typical
representatives. People have developed a series of active or passive enhanced mass transfer
technologies to enhance material transfer speed inside porous media and improve relevant
production process efficiency.

Currently, a series of active or passive enhanced mass transfer technologies have been
studied to enhance the rate of substance transfer in porous media. Significant progress has
also been made in the study of heat and mass transfer mechanisms: the heat and moisture
transfer of deformable porous media can cause deformation of the solid skeleton and pore
structure, with the outer part that loses water first shrinking more than the inner part that
loses less water; at the same time, deformation of the organizational structure leads to a
decrease in the convective mass transfer coefficient between the surface and hot air as well
as the effective diffusion coefficient of moisture inside material.

With the continuous development of external technologies such as electromagnetic
fields, ultrasonic fields, and microwaves, people have begun to combine external field-
assisted technologies with mass transfer processes, attempting to use the unique mechanical
effects, electrochemical effects, and thermal effects of various external fields to enhance
mass transfer processes within porous media. The addition of microwave and ultrasonic
fields in traditional convective drying processes can enhance the moisture transfer processes
within media, which has been proven by many experiments. Therefore, external field-
assisted technologies such as microwaves and ultrasonic waves have shown important
application prospects in drying, enhanced heat transfer, wastewater treatment, and other
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areas, attracting widespread attention from the scientific and engineering communities at
home and abroad.

2. Study on Heat and Mass Transfer and Shrinkage Deformation Mechanism in
Porous Media
2.1. Study on Heat and Mass Transfer Mechanism in Porous Media

Porous media heat and mass transfer phenomena are widely present in human indus-
trial, agricultural, and natural environments. Exploring the mechanisms of heat and mass
transfer processes within porous media is of great significance in improving material dry-
ing efficiency, analyzing soil thermal and humid environments, developing energy-saving
building maintenance materials, and other interdisciplinary fields [4]. Over the past cen-
tury, researchers both domestically and abroad have developed theoretical models such as
energy theory, steam diffusion theory, capillary flow theory, and evaporation-condensation
theory to describe the thermal and humid migration process within porous media [5].

In terms of research abroad: Huang [6] analyzed the water transport process in porous
media under the effect of temperature gradient and established the mass conservation
equation for each component inside the porous medium. Nasrallah and Perre [7] simulated
and analyzed the heat and mass transfer process of porous media during convective
drying based on volume-averaging theory, applied Darcy’s law in the extended form of
multiphase flow in porous media, considered the capillary force effect of liquid phase
and diffusion behavior of steam, respectively, and established the mass conservation
equation and energy conservation equation for the liquid phase, steam phase, and mixed
gas phase in porous media. Liesen and Pedersen [8] proposed a mathematical model for
the influence of heat and moisture transfer on energy within building structures, used the
wet transfer function method to solve the moisture transfer process inside porous media,
and solved the wet-heat transfer model using the state-space law of modern control theory.
Zambra et al. [9] proposed a non-saturated porous medium heat and mass transfer model,
used finite volume method to calculate the heat and mass transfer process of composting
under self-heating and oxidation conditions, and analyzed the influence of internal moisture
content on temperature and oxygen concentration inside composting.

In terms of domestic research, Wang Buxuan et al. proposed a method in 1987 for
determining the thermal and moisture migration characteristics of moist porous media
under the third type boundary conditions, which does not require measurement of the
transient humidity field and can simultaneously determine the thermophysical properties—
thermal conductivity, mass diffusivity, and thermal-mass diffusivity [10]. He Yaling and
Xie Tao summarized the development of the calculation model for the equivalent thermal
conductivity of nano-porous materials in recent years, providing theoretical guidance for
accurately establishing heat transfer calculation models of aerogels and other nano-porous
materials, as well as predicting and optimizing the performance of nano-porous insulation
materials [11]. Sun Zhen et al. developed a porous capillary evaporation/boiling heat
transfer model, which can effectively predict the heat transfer efficiency of capillaries in
a heat pipe [12]. Xu Zhiguo et al. studied the pool boiling heat transfer performance of
gradient pore density porous foam and analyzed the factors affecting the thermal conduc-
tivity efficiency of gradient pore density foam metal [13]. Li Beibei et al. simulated double
diffusion natural convection phenomena in a uniformly filled porous medium cavity using
the thermal Lattice–Boltzmann method [14]. Ouyang Li and Liu Wei [15] studied the heat
transfer and flow characteristics of porous thermal storage walls in greenhouses, analyzing
the relationship between the heat transfer efficiency between the solid skeleton and the
air of the porous thermal storage wall, air inlet velocity, porosity and permeability of
the porous material, and thermal conductivity of the solid skeleton. Han Jida et al. [16]
introduced the concept of minimum gradient to describe the quantitative behavior of
capillary water movement lag in porous media, establishing a system theory for heat and
mass transfer in unsaturated moist porous media based on capillary hysteresis effect. Yu
Boming et al. [17] combined theoretical solutions for transient temperature and humidity
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distribution in moist porous media with measured temperature and humidity values at
certain points in the medium to propose a parameter estimation method for determining
thermal-hydraulic migration characteristics of moist porous media. Xiong Jianyin and
Zhang Yiping et al. [18] proposed a dual-scale computational model for porous building
materials that can couple micro- and macro-pore migration processes of volatile organic
compounds (VOCs). Gu Wei et al. [19] used a Maxwell–Stefan model to simulate diffusion
process of mixed gases in porous media, providing new research tools for characteriz-
ing multi-component gas mixing diffusion in pore scale studies. He Xinting and Wang
Moran [20] used the Lattice–Boltzmann method to simulate the diffusion process of gas
in the pores of reconstructed porous structures, and analyzed the relationship between
the equivalent diffusion coefficient in microporous media and structural characteristics.
Wang Huilin et al. [21] established a mathematical model for the thermal-humidity-force
bidirectional coupling of heat and mass transfer processes inside moist porous media under
convective drying conditions, and studied the heat and mass transfer mechanism as well
as the stress–strain distribution rules of biological porous media during hot air drying.

2.2. Study on Shrinkage Deformation in Heat and Mass Transfer of Porous Media

Researchers at home and abroad have conducted extensive experimental research on
water transport and shrinkage deformation within deformable porous media. Tsuruta et al.
studied the deformation of materials during microwave vacuum drying [22]. Luis A.
Segura et al. investigated the relationship between moisture content, capillary pressure,
and microstructural changes during heat and moisture transfer in apple slices, and analyzed
that the capillary pressure within micro-pores is the main cause of irregular shrinkage
deformation [23]. B. Ortiz et al. used digital image processing technology to analyze the
shrinkage deformation phenomenon of potato slices during heat and moisture transfer [24].
Yuan Yuejin et al. conducted experimental research on the shrinkage deformation of porous
media in hot air drying processes using fruits and vegetables as objects, and analyzed the
mechanism of shrinkage deformation during heat and mass transfer [25]. The experimental
results showed that during material handling and drying processes, the deformable porous
skeleton undergoes deformation or even continuous movement under external forces,
and changes in the solid-phase skeleton structure will inevitably affect the internal fluid
transport process.

In order to further explore the bi-directional coupling relationship between water
transport and deformation in the heat and mass transfer process of deformable porous
media, Yuan Yuejin et al. constructed a pore network model and a mathematical model
of heat and mass transfer and stress–strain at the micro-pore scale to study the coupling
mechanism of water transport and shrinkage deformation [26]. Mohammadreza et al.
used a thermal-hygro-mechanical coupling model to study heat and mass transfer in
soil under transient and quasi-steady-state conditions, showing that pore structure and
thermal parameters have significant effects on fluid flow [27]. Ben et al. established a
thermal-hygro-mechanical coupling model based on Terzaghi’s effective stress theory to
study the drying kinetics and energy-saving effects of deformable porous media under
different working conditions [28]. Wang Huilin et al. studied the heat and mass transfer
mechanism of biological porous media during hot air drying, as well as the distribution
law of internal stress–strain, establishing a mathematical model for bi-directional coupling
of heat-humidity stress in the heat and mass transfer process of moist porous media under
convective drying conditions [21]. The analysis results showed that irregular shrinkage
deformation caused by thermal stress and humidity stress generated by temperature
gradient and humidity gradient during heat and moisture transfer process in porous
media greatly reduces the quality of dried materials. In order to improve this irregular
deformation, an external force field needs to be introduced.
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3. Research on Microwave Enhanced Heat and Mass Transfer in Porous Media

In terms of mass transfer enhancement in porous media, the application of the
microwave-enhanced drying of porous materials is the main area both domestically and
internationally. A large amount of research has been conducted on the characteristics of
combined hot air–microwave drying, drying kinetics, and optimal drying processes.

Jianfang Yu et al. systematically studied the variation and distribution of moisture
content, temperature, and water vapor pressure inside wood during microwave drying
process, and analyzed the influence of microwave action on heat and mass transfer laws
in wood [29]. Zhan Yong Li et al. experimented with vegetables as the research object
to study the effects of shape and size, cavity size, waveguide position, and material type
on material temperature distribution, and analyzed the law of microwave energy absorp-
tion [30]. Xukun Zhang et al. conducted experiments on lotus seeds for hot air and
microwave temperature control as well as their combined drying, studying the characteris-
tics and kinetics of hot air and microwave temperature-controlled drying of lotus seeds as
well as the process for combined hot air–microwave temperature-controlled drying [31].
Cheng Jun et al. have revealed the unique drying and moisture diffusion mechanism
of microwave-assisted drying of lignite. They studied the influence of factors such as
microwave power, coal particle size, initial quality of coal, initial moisture content of coal,
and the height-to-diameter ratio of coal stack on the dehydration kinetics of microwave
heating, and proposed to use inorganic ions to improve the dielectric properties of lignite
to promote efficient microwave-assisted dehydration [32]. Zhao Jun et al. characterized
substrate materials and extracts from micro-nanoscale using scanning electron microscopy,
mercury porosimeter, specific surface area analyzer, membrane ultrafiltration, atomic force
microscope, and high-performance liquid chromatography. They conducted an in-depth
study on the relationship between substrate material microstructure and macroscopic per-
formance, processing technology, and product quality. They also investigated the impact of
microwaves on material flow and mass transfer [33]. Binqi Rao et al. attempted to apply
microwave fields to pretreat municipal sludge for ultra-high pressure filtration dehydration.
The experiment showed that microwave pretreatment was beneficial to sludge dewatering
and reduced the moisture content of sludge to 28% after treatment [34,35]. Ayea et al. found
through experimental research that microwave–hot air drying increased the drying rate
by 37% and reduced the shrinkage deformation rate by 54% compared with hot air drying
during the drying process of eggplant, and also improved the rehydration rate [36]. A.
Mousa and others studied the effect of microwave radiation on the physical properties and
morphological structure of olive shells, and found that microwave heating was faster, more
uniform, and easier to penetrate into internal particles [37].

In order to reveal the influence of microwaves on heat transfer in porous media during
the transmission process, domestic and foreign researchers have also conducted a lot of
theoretical research.

Liang Shan et al. conducted a deep analysis of the absorption mechanism of mi-
crowaves on dielectric media, established a thermodynamic model for the microwave
drying process of water-containing porous media, designed a temperature optimization con-
trol strategy, and effectively ensured the drying quality of lignite [38]. Chen Meiqian et al.
revealed the coupling transmission mechanism and physical structure formation and evo-
lution mechanism of multiple loss mechanisms in mineral porous media under microwave
fields from two aspects: dielectric loss mechanism and dielectric/magnetic loss mechanism.
They also established a dynamic model describing the thermal-hygro coupled transport
characteristics inside porous media under microwave field, further revealing the essence
of internal transfer processes in mineral porous media under a microwave field [39]. Vi-
neet et al. studied the effect of microwave fields on temperature distribution, moisture
distribution, and volume change during the expansion process of deformable porous media
based on thermodynamic model [40]. Khomgris Chaiyo developed a two-dimensional
model for heat and mass transfer and pressure distribution in an unsaturated porous flu-
idized bed and studied the effects of vacuum pressure and microwave parameters on fluid
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movement in porous media during microwave–vacuum drying [41]. Santiphong Klaybor-
worn et al. numerically studied the heating process of a double-layered porous medium
under microwave field, and analyzed the influence of material thermodynamic properties
and dielectric characteristics on heat transfer [42]. Huacheng Zhu et al. established a
thermodynamic model by coupling electromagnetic fields and multiphase porous media
transport models to investigate the effects of shape, size, and characteristic parameters
of spherical samples on microwave drying process. The accuracy of the model was veri-
fied through experiments, and internal temperature, humidity, and pressure distribution
within the sample were analyzed [43,44]. Kumar and Karim established a multiphase
transport model for the microwave convective drying process, systematically studied tem-
perature distribution, humidity distribution, and pressure distribution in porous media,
and found that considering shrinkage deformation and pore evolution in the model was
more consistent with the experimental results based on the simulation results [45–47].

In recent years, researchers both domestically and abroad have conducted extensive
research on the mass transfer within porous materials enhanced by microwave irradiation,
and have achieved many valuable results. It has been found that due to its rapidity, high
efficiency, timeliness, and selectivity, microwave irradiation can effectively promote the
transfer of internal components. Additionally, the deformation and evolution of physical
properties and structural morphology caused by microwave irradiation in porous media
also have important effects on component transport.

4. Study on Ultrasonic Enhanced Heat and Mass Transfer in Porous Media

Ultrasound, as a new form of energy, can produce mechanical effects, sponge ef-
fects, and cavitation effects when propagating in a medium. During the propagation of
ultrasound, due to the mechanical effect, the medium particles will alternate between
compression and extension, forming pressure changes inside the medium and generating
large particle accelerations. In the process of cavitation, when cavitation bubbles collapse
instantaneously, they release concentrated sound field energy in a very short time and
small space, forming a high temperature above 5000 K and a high-pressure environment
of 5 × 107 Pa while producing significant impact force and generating a large number of
microbubbles [48]. Based on these effects, ultrasound has been developed and applied
to different degrees in extraction, sterilization, drying, filtration, and cleaning. The ul-
trasound field can enhance the heat and moisture transfer process in porous media and
have shown important application prospects in areas such as wastewater treatment, food
drying, dehumidification regeneration, solid waste treatment, and the development of new
acoustically active materials, which have attracted widespread attention from the scientific
and engineering communities at home and abroad.

4.1. Study on Ultrasound Enhancement of Moisture Transport in Porous Media

In terms of mass transfer enhancement in porous media, both domestic and foreign
research mainly focus on the application of ultrasonic-enhanced drying of porous materials.
Experimental studies have demonstrated that ultrasonic waves are an effective technique
to enhance mass transfer in porous media. Moy and DiMarco [49] applied ultrasound as a
form of energy to freeze-drying systems and conducted experimental research. Nomura
Murakami [50] studied the effect of ultrasonic vibration on natural convection heat transfer,
and found that when the distance between the ultrasonic transducer and the heat transfer
surface was 15 mm, the enhancement of natural convection heat transfer by cavitation
reached up to three times, and the best enhancement effect was achieved when the ul-
trasonic transducer was located below the heat transfer surface. Santacatalina et al. [51]
applied ultrasound-assisted technology to freeze-drying carrots, and found that under
the same conditions, the drying rate could be increased by 73%. Fuente-Blanco et al. [52]
conducted experimental research on the ultrasonic drying of cylindrical carrots, using a
high-power rectangular aluminum plate transducer in their experimental system. The
results showed that ultrasound power had a significant impact on the carrot dehydration
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process, and higher ultrasound power led to higher dehydration rates for samples within
the same time frame. García-Pérez and colleagues [53–55] conducted a series of experiments
and theoretical studies on ultrasound-assisted convective drying processes for food. The
results showed that increasing the ultrasound power, drying air velocity, and temperature
can accelerate the drying process. Ultrasound had a more significant effect on materials
with high porosity, and a theoretical model was developed to fit the relationship between
different parameters (ultrasound power, air velocity, temperature) and the mass transfer
coefficient and heat transfer coefficient during the drying process. Cárcel et al. [56–58]
studied the effects of high-intensity ultrasound on pork marination and apple mass transfer
in sugar solutions through experimental research. Three treatment methods were com-
pared: static (STAT), agitation (AG), and ultrasound. The results showed that different
intensities of ultrasound have varying effects on mass transfer processes, and only when the
ultrasound intensity reaches a specific value can mass transfer be enhanced. Subsequently,
they also studied the drying process of carrots and found that as the sample’s quality
load density increases, the promoting effect of ultrasound on drying rate is weakened.
Schössler et al. [59] combined ultrasonic transducers with a drying sieve and successfully
applied it to the drying process of foods such as apples and red peppers, significantly
improving the drying rate. They compared the effects of continuous and intermittent
ultrasound on the results, indicating that as the net ultrasound action time shortened, the
improvement effect on the drying rate weakened, but showed a nonlinear relationship. Tao
and Sun [60] systematically summarized the current application status of ultrasonic waves
in the food industry and pointed out the main influencing factors and future development
directions of ultrasonic-assisted intensified food drying processes. Feng et al. [61,62] con-
ducted experimental studies on the dewatering performance of activated sludge under
ultrasonic action. The results showed that when the ultrasonic energy consumption was
800 kJ/kgTS, the sludge achieved optimal dewatering performance, with EPS concentra-
tions ranging from 400 to 500 mg/L and floc particle diameter distributions ranging from
80 to 90 µm, while when the ultrasonic energy consumption exceeded 4400 kJ/kgTS, the
dewatering performance of sludge was severely deteriorated. Chen et al. [63] studied
the drying process of cake-like sludge materials, analyzed the changes in material pore
structure caused by cracks formed due to shrinkage during the drying process, and the
influence of pore structure on the moisture migration mechanism inside the sludge. Zhao
Fang et al. [64,65] studied the drying process of sludge and food under ultrasonic assistance,
and found that ultrasonic treatment effectively accelerated the moisture migration rate of
sludge in their preliminary study. Moreover, they pointed out that the higher the sound
energy density, the more obvious the enhancing effect of ultrasonic waves on sludge drying.
Kim et al. [66] investigated the application effects of emulsification technology, ultrasound,
and microwave radiation in sludge drying and dehydration processes. They compared
and analyzed their dehydration abilities and energy consumption, and pointed out some
problems with ultrasonic technology in sludge dewatering applications. Tyagi et al. [67]
summarized various applications of ultrasound in sludge dissolution, harmful pollutant
degradation, chemical substance extraction, etc., elaborating on various mechanisms of
ultrasound’s action on sludge treatment, and pointed out future development directions
for ultrasound-based sludge treatment technologies. Chen Zhenqian et al. [68–71] built an
experimental platform for ultrasound-assisted hot air drying, and conducted a series of
comparative experiments on typical deformable porous media such as municipal sludge,
porous fibers, and activated alumina particles; the schematic diagram of the experimental
system is shown in Figure 2. The drying kinetics under different operating conditions
were studied, and the process parameters of the ultrasound-assisted drying system were
optimized through response surface methodology and artificial neural network models.
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Figure 2. System diagram for ultrasound-assisted air drying of porous media.

For porous fiber adopted in experiments, as the ultrasound power increases, the
moisture diffusion coefficient increases. When the ultrasound frequency is 20 KHz and the
power is 500 w, the drying time decreases by 13% and, relatively, saves energy.

The above research mainly studied the enhancement effect and influencing factors of
ultrasound on mass transfer efficiency through experimental methods, and preliminarily
explained the reason for the enhancement of mass transfer efficiency by ultrasound. In
order to quantitatively analyze the effect of ultrasound on mass transfer efficiency in porous
media, some theoretical models have also been proposed to describe the heat and moisture
migration process inside porous media.

Santacatalina et al. [72] established a drying kinetics model for apple enhanced by
ultrasound, assuming that the process was determined solely by diffusion (D model) when
external resistance was not considered, and was jointly determined by convection and
diffusion (D+C model) when external resistance was considered. The fitting of experimental
results to the theoretical model showed that considering external resistance was more
appropriate. Jose et al. [73] fitted the experimental results of the ultrasonic-assisted drying
of fruits and vegetables to the theoretical model, showing that the D+C model had better
fitting results, and the enhancement effect of ultrasound was mainly achieved through
influencing external resistance. Ye Yao et al. [74,75] fitted the experimental results of the
ultrasound-assisted silica gel desiccant regeneration process to different theoretical models,
and the schematic diagram of the experimental system is shown in Figure 3. The results
showed that Gaussian and Weibull’s proposed theoretical models were more suitable for
this drying process. Subsequently, a theoretical model coupling acoustic field with heat
and moisture transfer processes was established to simulate the dehydration regeneration
process of ultrasonic-assisted silica gel desiccant, and the accuracy of this theoretical model
was verified through experiments. Equations relevant to the heat and mass transfer of a
silica gel-packed bed during the regeneration process can be summarized as below:

(1− ε)ρsCs
∂ts

∂τ
= HmSb(ta − ts)−HadsKmSb(w

∗
s −wa) +

acηTI0

(1− ε)V (1)

−(1− ε)ρs
∂qs
∂τ

= KmSb(w
∗
s −wa) (2)

ρaCp,aua(x)
∂ta

∂x
= HmSb(ts − ta) + KmSbcp,v(w∗s −wa)(ts − ta) (3)
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ρaua(x)
(
−∂wa

∂x

)
= (1− ε)ρs

∂qs
∂τ

(4)
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Figure 3. Schematic diagram of solid desiccant regeneration test system based on ultrasound.

Equations (1)–(4) correspond to the energy and moisture conservation of the solid and
gas media in the bed, respectively.

Chen Zhenqian et al. [76,77] established a mathematical model for thermo-hydro-
mechanical coupling in deformable porous media under ultrasound at the macroscopic
scale, further revealing the strengthening mechanism under ultrasound. The wave equation
based on the Biot theory is expressed by basing the displacement u and pressure change pf
in porous media:

−ω2

(
ρav −

ρ2
f

ρc(ω)

)
u−∇

(
σd(u)− αB p f I

)
=

ρ f

ρc(ω)
∇p f (5)

−ω2

M
p f +∇

[
− 1

ρc(ω)

(
∇p f −ω2ρ f u

)]
= ω2αBε (6)

The frequency of ultrasound mainly affects the distribution trend of displacement,
while the intensity significantly affects the sound pressure and displacement size in porous
media, and the pressure value and displacement size are approximately proportional to
the intensity.

The model for heat and mass transfer in fibrous porous media can be described
as follows:

∂X
∂t

+∇(Xul) = De f f ,l∇2X + δm,l De f f ,l∇2T (7)

ul = −
Kl
µ
(∇pu − ρl g) (8)

(ρc)e f f
∂T
∂t

+ ερlCpl∇(Tul) = λe f f∇2T + Cplξq,l De f f ,l∇2X + qm (9)

The numerical simulation results showed that the presence of ultrasound increases the
temperature gradient inside the porous media, and the transfer rate of moisture increases
in an ordered direction. Alternating expansion and compression made the macroscopic
deformation of porous media smaller.

Ma Qiang et al. [78,79] used the immersed boundary lattice Boltzmann method to
study in depth the heat and mass transfer process in deformable porous media on the pore
scale, elucidating the coupling relationship between heat and mass transfer processes and
the deformation of porous skeleton.
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4.2. The Analysis of Ultrasound-Enhanced Mass Transfer Mechanisms in Porous Media

Many studies have been conducted on the effect of ultrasound on pore structure in
porous media. Fernandes et al. [80–82] conducted a series of studies on ultrasound-assisted
drying processes for tropical fruits such as watermelon and papaya. The study showed
that when dehydration was less than 30 min, the diffusion rate of water decreased due
to sugar condensation. After one hour, the diffusion rate of water increased due to cell
damage and increased diffusion resistance. Ultrasound pretreatment can form microchan-
nels in tissues, thereby increasing the diffusion rate of water. Hottot et al. [83] studied the
freeze-drying process of mannitol and found that after applying ultrasound to the pro-
cess, nucleation sites can be increased without affecting the original sample structure and
crystallinity, thus accelerating the drying process and avoiding annealing treatment after
freezing. He et al. [84] pre-treated poplar wood and found that the mechanical effect caused
by ultrasound can form new microchannels in the internal structure of wood, which is
conducive to water transfer, accelerates the drying process, and with increasing ultrasound
power and prolonged action time, poplar wood has a higher drying rate. Chu et al. [85]
conducted experimental research on the physical, chemical, and biological properties of
activated sludge under the action of ultrasound with a frequency of 20 kHz and different
sound powers. The study showed that when the ultrasonic sound energy density was
greater than 0.22 W/mL, the floc particle size decreased significantly. After 20 min of
ultrasonic treatment at a sound energy density of 0.44 W/mL, the floc particle diameter
decreased to less than 3 µm. A further extension of time did not result in significant
changes in particle size. Jiang et al. [86] studied the dehydration effect of ultrasound
during Fenton oxidation treatment of sludge, and demonstrated, through comparative
experiments, that when Fenton oxidation and ultrasound were applied simultaneously,
the oxidant consumption and reaction time were both significantly reduced. Moreover,
the microstructure of sludge treated with ultrasound appeared finer and looser. Chen
Zhenqian et al. [69,87] constructed a visualization experimental platform to study the
variation law of pore structure in deformable porous media under ultrasonic pretreatment
(the experiment schematic is shown in Figure 4) and then analyzed the topological charac-
teristics evolution law of pore structure using fractal theory, and explored the influence
of ultrasound on mass transfer characteristics in deformable porous media. The results
showed that, as shown in Figure 5, ultrasound can increase the pore area of porous media
and the wet diffusion coefficient increases gradually with increasing ultrasonic power.
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Figure 5. (a) The average pore size under different ultrasound pretreatment power and treatment time;
(b) the porosity in the surface under different ultrasound pretreatment power and treatment time.

The sponge effect is one of the reasons for the enhanced heat and mass transfer by
ultrasound. Gallego-Juárez et al. [88] compared ultrasound-assisted hot air drying with
traditional drying methods for vegetables and found that ultrasound can increase the
drying rate, reduce the final moisture content, and better preserve the original quality of
the vegetables. Direct contact between ultrasound and materials was also more effective
than indirect contact. They proposed that ultrasound can accelerate drying because, under
high-intensity ultrasound, materials produce a sponge effect that leads to a series of rapid
compression and expansion, thereby increasing the transport speed of water in both the
original channels of tissue structure and new channels formed under ultrasound. Zhao
Fang et al. [89,90] conducted experimental studies on the ultrasonic pre-drying treatment
of apple slices and carrot slices, and found that ultrasound can effectively enhance the
drying process. The influence of ultrasound on the internal moisture diffusion coefficient
of samples gradually increased with increasing ultrasonic intensity. In addition to cav-
itation effects, this phenomenon should also be attributed to the repeated compression
and stretching of a material’s internal structure by ultrasound, resulting in a sponge effect.
This structure reduced the surface adhesion force of water, facilitating water migration.
Garcia et al. [91] studied the experimental process of the ultrasound-assisted drying of
orange peel. The study showed that due to the sponge effect of ultrasound, the degradation
of reflectivity in orange peel tissue was more significant compared with when ultrasound
was not applied, which led to an acceleration in the water transfer rate and greatly short-
ened the drying time. Mulet et al. [92] summarized the effect of ultrasound on solid–liquid
and solid–gas mass transfer processes from the perspective of internal and external mass
transfer resistances. The sponge effect was an important mechanism that cannot be ignored
for ultrasound to promote mass transfer processes.

The cavitation effect is another main reason for the enhanced heat and mass transfer
by ultrasound. Mason et al. [93] discussed the application of ultrasound in food technology.
The mechanical and chemical effects of cavitation result in low-frequency ultrasound being
widely used for sterilization, extraction, freezing, filtration, emulsification, etc., effectively
reducing processing time and improving efficiency. Sun et al. [94,95] studied the heat and
moisture transfer mechanism during food freezing using power ultrasound, considering the
effects of different factors such as ultrasonic power, operation time, and sample structure
on freezing rate. The study showed that the cavitation effect of ultrasound can promote
nucleation and ice crystal growth while generating microfluidic flow to enhance heat and
moisture transfer, thus effectively improving freezing rate and preventing cell damage
and loss of nutrients. Soria et al. [96] summarized the role and mechanism of ultrasound
in the field of food drying, pointing out that cavitation effect in the liquid phase is the
main mechanism for ultrasound to promote the mass transfer process. Teihm et al. [97,98]
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found that when the frequency of ultrasonic action was low, larger cavitation bubbles were
generated in sludge, which would collapse and produce strong shear force. The short-term
treatment of sludge could destroy the structure of sludge flocculent without damaging cells.
However, long-term treatment would destroy microbial cell walls and release organic mat-
ter, thereby improving the anaerobic digestion performance of sludge. When the frequency
of ultrasonic action was high, the radius of cavitation bubbles decreased and the cavitation
effect weakened, resulting in less significant effects on sludge by ultrasonic treatment.

From the current research status, it can be seen that, in recent years, domestic and
foreign researchers have conducted a lot of research on the mass transfer of porous media
enhanced by ultrasound. They have achieved many valuable results and found that ultra-
sound can promote the evolution of pore structures and form micro-pore channels during
the drying pretreatment stage of porous media, which promotes internal component trans-
fer. During mass transfer, the sponge effect and cavitation effect formed by the mechanical
and acoustic effects of ultrasound also have important influences on component transport.

5. Conclusions

The heat and mass transfer process of deformable porous media includes the transfer
of energy, mass, and momentum inside the porous media and the exchange of heat and
mass between the material surface and the external environment. Through the research of
many scholars at home and abroad in recent years, we can draw the following conclusions:

(1) Convective drying of deformable porous media is accompanied by complex heat-
moisture-force transfer processes. The thermal and mass transfer during the drying
process leads to the deformation and shrinkage of the porous media due to the
reduction in moisture content. This physical deformation partially restricts the heat
and mass transfer processes. In addition, deformation-induced shrinkage, surface
hardening, etc., can damage the quality of materials and greatly reduce the quality of
dried materials. To improve this irregular deformation, an external force field needs
to be introduced.

(2) Microwave heating has high efficiency and low energy consumption due to its di-
rectionality of and mass transfer, which is beneficial for strengthening the heat and
transfer processes of deformable porous media. At the same time, due to the timely
and uniform control of microwave heating, it may have some improvement on irregu-
lar deformation during the heat and moisture transfer process of deformable porous
media. As moisture decreases inside the medium during microwave drying, dielectric
loss value decreases and microwave energy utilization decreases.

(3) The research on the enhancement mechanism of ultrasound on the thermal and mois-
ture transfer process in deformable porous media has important guiding significance
for the development of the reinforcement technology, which has been investigated
by experiment and theory methods. First, a visualized experimental platform was
established to study the laws of the pore structure of the porous media under the
action of ultrasound pretreatment and the evolution of the topology characteristics
of the pore structure was analyzed by using the fractal theory. The results show
that, ultrasound can increase the pore area of the porosity medium, and the effective
diffusion coefficient of the wet division gradually increases with the ultrasonic power.
Then, a macro-scale ultrasonic-heat-wet-force mathematical model was established,
which further revealed the enhanced mechanism under the action of ultrasound. The
numerical simulation results indicate that the presence of ultrasound increases the
internal temperature gradient of the porous medium. The wet division transmission
rate increases and the direction is orderly. The alternate expansion compression makes
the macro variation of the porous medium smaller. After that, an ultrasound assisted
hot air drying experimental platform was established, which conducted a series of
comparison experiments for typical deformable porous media such as municipal
sludge, porous fibers, and active aluminum particles. The process parameters of the
ultrasonic auxiliary drying system are optimized through the response facial method
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and artificial neural network model. However, due to the complexity of the pore
structures inside porous media, especially when characteristic dimensions are often in
the micro-nano scale range, macroscopic theories cannot accurately describe heat and
mass transfer processes. Therefore, under ultrasound, the coupling relationship be-
tween heat and moisture migration processes and non-steady shrinkage deformation
still requires further microscopic analysis at this time.
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