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Abstract: Solutions for enhancing parameter identification effects for multivariate equation-error
systems in random interference and parameter coupling conditions are considered in this paper.
For the purpose of avoiding the impact of colored noises on parameter identification precision, an
appropriate filter is utilized to process the autoregressive moving average noise. Then, the filtered
system is transformed into a number of sub-identification models based on system output dimensions.
Founded on negative gradient search, a new multivariate filtering algorithm employing a partial
coupling approach is proposed, and a conventional gradient algorithm is derived for comparison.
Parameter identification for multivariate equation-error systems has a high estimation accuracy and
an efficient calculation speed with the application of the partial coupling approach and the data
filtering method. Two simulations are performed to reveal the proposed method’s effectiveness.

Keywords: gradient search; multivariate system; partial coupling; data filtering; parameter identification

1. Introduction

The foundation of industrial automatic production and intelligent control is a precise
model of the production processes [1]. With the expansion of production scale, multivari-
ate systems have been widely used in production processes [2–4]. Parameter estimation
for multivariate systems has taken a considerable role in system identification and has
attracted much attention from researchers in recent decades. Multivariate systems are
more difficult to identify than scalar systems because they have more unknown param-
eters, are accompanied by more complex random interferences, and the parameters of
some channels are coupled [5–7]. Good identification results are often not achieved if the
identification approaches for scalar systems are applied to multivariate systems without
modification. Some improved methods for the identification of multivariate systems have
been researched recently [8–10]. For instance, Mari et al. combined the Schur restabilization
technique and a covariance fitting algorithm to propose a parameter estimation method for
finite dimensional multivariate linear stochastic systems [11]. Luo and Manikas proposed
an iterative method and a nonlinear optimization algorithm for suppressing the mutual
target interference in the multitarget parameter estimation [12]. Zhang et al. identified the
parameters of multivariate uncertain regression model with a maximum likelihood identifi-
cation algorithm [13]. Oigard et al. researched an expectation maximization algorithm for
heavy-tailed processes with a multivariate normal inverse Gaussian distribution, which
has fast and accurate parameter identification effectiveness [14].

Although the identification methods for multivariate systems are gradually enriched,
researchers have been devoted to finding methods with faster identification efficiency and
higher identification accuracy for multivariate systems. In terms of improving estimation
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efficiency, in addition to the decomposition identification method, the coupling identifica-
tion approach also can effectively reduce the amount of identification computation [15–17].
The basis of the coupling identification approach is the transformation of multivariate
systems into some identification subsystems, then coupling the identification results of each
subsystem to make their results correlated [18–20]. There are some studies on coupling
identification methods for multivariate systems. Ding researched parameter identification
issues for non-uniformly sampled systems and proposed a partially coupled algorithm
based upon the stochastic gradient method. A simulation in the paper revealed that the
new algorithm requires less calculation than the standard stochastic gradient algorithm [21].
Zhou designed a nonlinear partially coupled parameter identification algorithm for multi-
variate radial basis function-based hybrid models inspired by the coupling concept which
reduces the amount of calculation by dealing with the associated items brought by model
decomposition [22]. Huang et al. provided a coupled probability representation regarding
model coupling in feature-based image source identification which improved the iden-
tification accuracy significantly [23]. Wang solved parameter identification problems of
nonlinear multivariate systems and developed a coupled gradient method by introducing
the coupling idea, which can realize subsystem-coupled computation [24].

The data filtering approach in parameter estimation is the improvement of the parame-
ter identification precision by modifying the structure of system interference noises through
an appropriate filter without changing the system’s input–output relationship [25–27]. The
data filtering approach has been applied to scalar system identification in some studies.
Ji and Jiang utilized a data filter to process collected data to deal with the disturbance of
colored noise on identification precision for generalized time-varying systems [28]. Imani
studied a maximum-likelihood parameter identification method for partially observed
Boolean dynamical systems by using a Boolean Kalman filter [29]. Zhang developed a filter-
ing hierarchical maximum likelihood iterative algorithm for nonlinear systems by applying
the data filtering approach and multi-innovation identification method, which obtains
highly precise parameter estimates and tracks time-varying parameters well [30]. Chen
et al. proposed a multi-step-length gradient iterative algorithm for ARX models with the
application of a modified Kalman filter. The Kalman filter was designed to enhance unmea-
surable output estimates, which improved parameter identification accuracy [31]. Li and
Liu addressed parameter identification problems in bilinear systems and presented iterative
methods with high estimation accuracies by utilizing the particle filtering approach [32].

The least squares estimation algorithm, gradient estimation algorithm, least mean
square estimation algorithm, and stochastic approximation estimation algorithm are all
classical identification methods in the field of system identification. The least squares
method is a basic parameter estimation method which can be used for dynamic system
identification as well as for static system parameter fitting [33,34]. The gradient identifica-
tion method is a search for parameter estimates along the direction of the negative gradient
of the criterion functions [35–37]. Compared with the least squares method, the gradient
identification algorithm has less computational complexity because it does not involve
the covariance matrix. By extending the gradient identification algorithm and combining
it with other methods, estimation algorithms with high identification performances can
be obtained. Zhang and Ding proposed an optimal adaptive filtering algorithm for filter
design by combining the data filtering approach with the gradient method [38]. Roman et
al. derived a gradient descent method for identifying parameters of a linear wave equation
from experimental boundary data [39]. Chen et al. identified parameters of time-delay
rational state–space systems and presented two improved gradient descent algorithms by
utilizing an intelligent search method and a momentum method, which had faster conver-
gence speeds and higher computational efficiencies [40]. Kulikova researched adaptive
filtering methods based on the gradient algorithm for identifying unknown parameters of
pairwise linear Gaussian systems [41].

The data filtering approach can improve the parameter identification precision for
multivariate systems by transforming colored noises with complex structures into white
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noises with simple structures [42–44]. At the same time, the coupling identification method
can effectively speed up identification and the gradient identification approach can quickly
search for the optimal estimates [45–47]. Therefore, motivated by the significant advantages
of these three methods, this paper combines the data filtering approach and the coupling
identification method based upon gradient search to recognize parameters of multivariate
equation-error systems. The introduction of the data filtering approach overcomes the
influence of colored noise on identification precision. The use of the coupling identification
method reduces the computation of the identification algorithm. The main highlights of
this paper are summarized as follows.

(1) A filter is used to transform the autoregressive moving average noise of multivariate
pseudo-linear systems into white noise by applying the data filtering approach. The
filtered system is converted into a number of subsystem identification models based
upon system the output dimensions according to the coupling identification method.

(2) A filtering-based multivariate gradient algorithm employing the partial coupling
concept for multivariate pseudo-linear systems is proposed. Additionally, a con-
ventional multivariate gradient algorithm is derived for comparison. The proposed
algorithm has higher identification precision and faster computational efficiency than
the conventional algorithm.

The structure of this paper is as follows. The multivariate pseudo-linear system
is presented and the system identification obstacles are analyzed in Section 2. A new
gradient algorithm based upon the coupling identification approach and the data filtering
method is proposed in Section 3. Section 4 derives a conventional multivariate gradient
algorithm. Convergence of the proposed method is discussed in Section 5. In Section 6,
two simulations are performed to reveal the effectiveness of the proposed methods. Finally,
Section 7 provides some conclusions of this paper.

2. Problem Description

At the beginning, we provide some notation to make the paper concise and clear. Im is
an identity matrix of size m×m. 1m×n denotes a matrix of size m× n whose elements are 1.
The norm of a matrix A is defined by ‖A‖2 := tr[AAT], and the superscript T represents
the matrix/vector transpose. The symbol ⊗ stands for the Kronecker product, such as
X := [xij] ∈ Rm×n, Y := [yij] ∈ Rp×q, X ⊗ Y = [xijY ] ∈ R(mp)×(nq); generally, X ⊗ Y 6=
Y ⊗ X. col[B] denotes a vector consisting of all columns of matrix B arranged in order, that
is, B := [b1,b2,· · · ,bn] ∈ Rm×n, bi ∈ Rm (i = 1, 2, · · · , n), col[B] := [bT

1,bT
2,· · · ,bT

n]
T ∈ Rmn.

Ĥ(k) is the estimate of H at time k.
According to the type of colored noise, the multivariate pseudo-linear system can be

divided into different types. In this paper, we consider systems where the noise is of the
autoregressive moving average type. The system is widely present in industrial processes
and its structure is described as

y(k) = Φ(k)θ+
D(z)
c(z)

v(k), (1)

where y(k) := [y1(k), y2(k), · · · , ym(k)]T ∈ Rm is the system output vector which can be
measured, Φ(k) ∈ Rm×n is the system information matrix which is formed from system
input–output data, θ ∈ Rn is the system parameter vector which is unknown and to be
identified, v(k) := [v1(k),v2(k),· · · ,vm(k)]T ∈ Rm is a white noise process with zero mean,
c(z) ∈ R is a polynomial in the unit backward shift operator [z−1y(k) = y(k− 1)], and
D(z) ∈ Rm×m is a polynomial matrices:

c(z) := 1 + c1z−1 + c2z−2 + · · ·+ cnc z−nc , ci ∈ R,

D(z) := Im + D1z−1 + D2z−2 + · · ·+ Dnd z−nd , Di ∈ Rm×m.
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Define the noise model as,

w(k) :=
D(z)
c(z)

v(k) ∈ Rm. (2)

In general, suppose that orders m, n, nc, and nd of the system are known, and y(k) = 0,
Φ(k) = 0 and v(k) = 0 for k 6 0.

Define the parameter vector η, the parameter matrix κ, the information vector ψ(k),
and the information matrix Ψ(k) as

η := [θT, c1, c2, · · · , cnc ]
T ∈ Rn+nc , (3)

κT := [D1, D2, · · · , Dnd ] ∈ Rm×mnd , (4)

ψ(k) := [vT(k− 1), vT(k− 2), · · · , vT(k− nd)]
T ∈ Rmnd , (5)

Ψ(k) := [Φ(k),−w(k− 1),−w(k− 2), · · · ,−w(k− nc)] ∈ Rm×(n+nc). (6)

Based on Equation (2), we obtain

w(k) = [1− c(z)]w(k) + [D(z)− Im]v(k) + v(k)

= (−c1z−1 − c2z−2 − · · · − cnc z−nc)w(k)

+(D1z−1 + D2z−2 + · · ·+ Dnd z−nd)v(k) + v(k)

= −
nc

∑
i=1

ciw(k− i) +
nd

∑
j=1

Djv(k− j) + v(k). (7)

The identification model of the system in (1) is represented as

y(k) = Φ(k)θ+ w(k) (8)

= Φ(k)θ−
nc

∑
i=1

ciw(k− i) +
nd

∑
j=1

Djv(k− j) + v(k)

= Ψ(k)η+ κTψ(k) + v(k). (9)

Uniting the information matrix Ψ(k) with the information vector ψ(k), and the pa-
rameter vector η with the parameter matrix κ, the new information matrix Ω(k) and new
parameter vector ϑ are

Ω(k) := [Ψ(k), ψT(k)⊗ Im] ∈ Rm×n0 , n0 := n + nc + m2nd, (10)

ϑ :=
[

η
col[κ]

]
∈ Rn0 . (11)

Equation (9) is changed into

y(k) = Ω(k)ϑ + v(k). (12)

The goal is to find effective identification methods to estimate unmeasurable parame-
ters θ, ci, and Di which are in ϑ. The analysis shows that if the identification model in (12) is
performed directly, superfluous calculations will be generated in the unknown parameter
estimation processes because the Kronecker product calculation produces substantial zero
elements to the information matrix Ω(k). With a view to enhance the identification perfor-
mance for the system in (1), it is necessary to explore another efficient identification method.

3. The Filtering-Based Multivariate Partially Coupled Gradient Algorithm

By analyzing System (1), the existence of the noise reduces the parameter identification
precision. For overcoming the adverse effects of disturbances, the data filtering method is
adopted to convert colored noise into white noise. Setting c(z) as the filter for System (1)
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is an appropriate solution of the problem. First of all, multiply both sides of Equation (1)
by c(z):

c(z)y(k) = c(z)Φ(k)θ+ D(z)v(k). (13)

Define the filtered output vector yf(k) and the filtered information matrix Φf(k) as

yf(k) := c(z)y(k) ∈ Rm,

Φf(k) := c(z)Φ(k) ∈ Rm×n.

Then, Equation (13) can be rewritten as

yf(k) = Φf(k)θ+ D(z)v(k)

= Φf(k)θ+ D1v(k− 1) + D2v(k− 2) + · · ·+ Dnd v(k− nd) + v(k)

= Φf(k)θ+ κTψ(k) + v(k). (14)

Let κT
i ∈ R1×mnd be the ith row of the parameter matrix κT, yfi(k) ∈ R be the ith row of

the filtered output vector yf(k), and Φfi(k) ∈ R1×n be the ith row of the filtered information
matrix Φf(k), that is

κT := [D1, D2, · · · , Dnd ] := [κ1, κ2, · · · , κm]
T,

yf(k) := [yf1(k), yf2(k), · · · , yfm(k)]T,

Φf(k) := [ΦT
f1(k), ΦT

f2(k), · · · , ΦT
fm(k)]

T.

Transform Equation (14) into m sub-identification models:
yf1(k)
yf2(k)

...
yfm(k)

 :=


Φf1(k)
Φf2(k)

...
Φfm(k)

θ+


κT

1
κT

2
...

κT
m

ψ(k) +


v1(k)
v2(k)

...
vm(k)

, i = 1, 2, · · · , m. (15)

Equation (14) is described by

yfi(k) = Φfi(k)θ+ κT
i ψ(k) + vi(k), i = 1, 2, · · · , m. (16)

In Equation (16), vectors θ and ψ(k) are common in each subsystem, which is in line
with the characteristics of the partially coupled-type identification model. Next, parameter
estimation algorithm employing partial coupling concept for the identification model in (16)
is derived in detail.

Define a gradient criterion function for the new identification model in (16) as

J1(θ, κi) := ‖yfi(k)−Φfi(k)θ− κT
i ψ(k)‖2, i = 1, 2, · · · , m.

Minimizing J1(θ, κi) based upon the gradient search, the gradient relationships are

θ̂(k) = θ̂(k− 1) +
ΦT

fi(k)
rθ,i(k)

[yfi(k)−Φfi(k)θ̂(k− 1)− κ̂T
i (k− 1)ψ(k)], (17)

rθ,i(k) = rθ,i(k− 1) + ‖Φfi(k)‖2, rθ,i(0) = 1, (18)

κ̂i(k) = κ̂i(k− 1) +
ψ(k)

rκ,i(k)
[yfi(k)−Φfi(k)θ̂(k− 1)− κ̂T

i (k− 1)ψ(k)], (19)

rκ,i(k) = rκ,i(k− 1) + ‖ψ(k)‖2, rκ,i(0) = 1. (20)
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However, estimates θ̂(k) and κ̂i(k) in (17)–(20) cannot be computed because yfi(k),
Φfi(k), and ψ(k) involve the unmeasurable terms ci and v(k). If we define,

ϕy(k) := [y(k− 1), y(k− 2), · · · , y(k− nc)] ∈ Rm×nc , (21)

τ := [c1, c2, · · · , cnc ]
T ∈ Rnc . (22)

Then, yf(k) and Φf(k) are represented by

yf(k) = c(z)y(k)

= y(k) + c1y(k− 1) + c2y(k− 2) + · · ·+ cnc y(k− nc)

= y(k) +ϕy(k)τ, (23)

Φf(k) = c(z)Φ(k)

= Φ(k) + c1Φ(k− 1) + c2Φ(k− 2) + · · ·+ cnc Φ(k− nc). (24)

However, yf(k) and Φf(k) still cannot be calculated because ci is unknown. The
auxiliary model identification method [48] is a classical method which can solve some
system identification problems with unmeasured variables. The essential thought behind
this is to replace the unknown variable with the output of an auxiliary model. The problem
is that parameter estimation cannot be calculated in the algorithm, which can be solved by
replacing the unknown variable with its estimate when its value cannot be obtained. Here,
utilizing the auxiliary model identification method, according to Equation (22), replacing ci
with estimates ĉi(k), the estimate τ̂(k) is formed by

τ̂(k) = [ĉ1(k), ĉ2(k), · · · , ĉnc(k)]
T.

After that, replacing unknown parameters ci and τ with estimates ĉi(k) and τ̂(k)
in (23) and (24), estimates ŷf(k) and Φ̂f(k) are calculated by

ŷf(k) = y(k) +ϕy(k)τ̂(k)

= [ŷf1(k), ŷf2(k), · · · , ŷfm(k)]T, (25)

Φ̂f(k) = Φ(k) + ĉ1(k)Φ(k− 1) + ĉ2(k)Φ(k− 2) + · · ·+ ĉnc(k)Φ(k− nc)

= [Φ̂
T

f1(k), Φ̂
T

f2(k), · · · , Φ̂
T

fm(k)]
T. (26)

Meanwhile, according to Equation (5), the estimate ψ̂(k) is formed by

ψ̂(k) = [v̂T(k− 1), v̂T(k− 2), · · · , v̂T(k− nd)]
T. (27)

Define the noise information matrix:

χ(k) := [w(k− 1), w(k− 2), · · · , w(k− nc)] ∈ Rm×nc . (28)

Equation (7) can be written as

w(k) = −
nc

∑
i=1

ciw(k− i) +
nd

∑
j=1

Djv(k− j) + v(k)

= χ(k)τ + κTψ(k) + v(k).

Define an intermediate vector wn(k) := w(k)− κTψ(k) ∈ Rm. Thus, the noise model
is rewritten as

wn(k) := χ(k)τ + v(k). (29)
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In order to obtain the value of estimate τ̂(k), define another gradient criterion function
for the noise model in Equation (29) as

J2(τ) := ‖wn(k)− χ(k)τ‖2.

Minimizing J2(τ) based upon the gradient search, the gradient relationship is

τ̂(k) = τ̂(k− 1) +
χT(k)
rτ(k)

[wn(k)− χ(k)τ̂(k− 1)], (30)

rτ(k) = rτ(k− 1) + ‖χ(k)‖2, rτ(0) = 1. (31)

Obviously, the parameter vector estimate τ̂(k) cannot be calculated because wn(k) and
χ(k) are unknown. Replacing them with estimates ŵn(k) and χ̂(k) can solve this problem.
We have

χ̂(k) = [ŵ(k− 1), ŵ(k− 2), · · · , ŵ(k− nc)], (32)

ŵn(k) = ŵ(k− 1)− κ̂T(k− 1)ψ̂(k). (33)

According to Equation (8), substitute the estimate θ̂(k) for the unmeasurable term θ.
Then, the estimate ŵ(k) is calculated by

ŵ(k) = y(k)−Φ(k)θ̂(k). (34)

Similarly, according to Equation (14), replacing unmeasurable terms Φf(k), θ, and κ
with their estimates Φ̂f(k), θ̂(k), and κ̂(k), the estimate v̂(k) is calculated by

v̂(k) = ŷf(k)− Φ̂f(k)θ̂(k)− κ̂T(k)ψ̂(k). (35)

There are superfluous estimates in algorithm (17)–(20) because θ is repeatedly com-
puted m times. To reduce the excess computation, θ̂i is used instead of θ̂ in (17) and (19).
Meanwhile, substitute estimates Φ̂

T

fi(k), ŷfi(k) and ψ̂(k) for unknown terms ΦT
fi(k), yfi(k),

and ψ(k); then, the new algorithm is

θ̂i(k) = θ̂i(k− 1) +
Φ̂

T

fi(k)
rθ,i(k)

[ŷfi(k)− Φ̂fi(k)θ̂i(k− 1)− κ̂T
i (k− 1)ψ̂(k)], (36)

rθ,i(k) = rθ,i(k− 1) + ‖Φ̂fi(k)‖2, rθ,i(0) = 1, (37)

κ̂i(k) = κ̂i(k− 1) +
ψ̂(k)

rκ,i(k)
[ŷfi(k)− Φ̂fi(k)θ̂i(k− 1)− κ̂T

i (k− 1)ψ̂(k)], (38)

rκ,i(k) = rκ,i(k− 1) + ‖ψ̂(k)‖2, rκ,i(0) = 1. (39)

In recursive algorithms, the estimated values of parameters tend to true values in-
finitely with the data length increasing. As is well known, the estimate θ̂i−1(k) of the
(i − 1)th subsystem at time k is closer to the true value θ than the estimate θ̂i(k − 1) of
the ith subsystem at time k− 1. Accordingly, in Algorithm (36)–(39), substitute θ̂i−1(k) for
θ̂i(k− 1) on the right-hand side of Equation (36), and substitute θ̂m(k− 1) for θ̂1(k− 1) in
Equation (36) when i = 1. To conclude, the filtering-based multivariate partially coupled
generalized extended stochastic gradient (F-M-PC-GESG) algorithm is as follows.
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θ̂1(k) = θ̂m(k− 1) +
Φ̂

T

f1(k)
rθ,1(k)

[ŷf1(k)− Φ̂f1(k)θ̂m(k− 1)− κ̂T
1(k− 1)ψ̂(k)], (40)

rθ,1(k) = rθ,1(k− 1) + ‖Φ̂f1(k)‖2, rθ,1(0) = 1, (41)

κ̂1(k) = κ̂1(k− 1) +
ψ̂(k)

rκ,1(k)
[ŷf1(k)− Φ̂f1(k)θ̂m(k− 1)− κ̂T

1(k− 1)ψ̂(k)], (42)

rκ,1(k) = rκ,1(k− 1) + ‖ψ̂(k)‖2, rκ,1(0) = 1, (43)

θ̂i(k) = θ̂i−1(k) +
Φ̂

T

fi(k)
rθ,i(k)

[ŷfi(k)− Φ̂fi(k)θ̂i−1(k)− κ̂T
i (k− 1)ψ̂(k)], (44)

rθ,i(k) = rθ,i(k− 1) + ‖Φ̂fi(k)‖2, rθ,i(0) = 1, (45)

κ̂i(k) = κ̂i(k− 1) +
ψ̂(k)

rκ,i(k)
[ŷfi(k)− Φ̂fi(k)θ̂i−1(k)− κ̂T

i (k− 1)ψ̂(k)], (46)

rκ,i(k) = rκ,i(k− 1) + ‖ψ̂(k)‖2, rκ,i(0) = 1, (47)

ŷf(k) = y(k) +ϕy(k)τ̂(k) = [ŷf1(k), ŷf2(k), · · · , ŷfm(k)]T, (48)

Φ̂f(k) = Φ(k) + ĉ1(k)Φ(k− 1) + ĉ2(k)Φ(k− 2) + · · ·+ ĉnc(k)Φ(k− nc)

= [Φ̂
T

f1(k), Φ̂
T

f2(k), · · · , Φ̂
T

fm(k)]
T, (49)

ψ̂(k) = [v̂T(k− 1), v̂T(k− 2), · · · , v̂T(k− nd)]
T, (50)

ϕy(k) = [y(k− 1), y(k− 2), · · · , y(k− nc)], (51)

τ̂(k) = τ̂(k− 1) +
χ̂T(k)
rτ(k)

[ŵn(k)− χ̂(k)τ̂(k− 1)]

= [ĉ1(k), ĉ2(k), · · · , ĉnc(k)]
T, (52)

rτ(k) = rτ(k− 1) + ‖χ̂(k)‖2, rτ(0) = 1, (53)

χ̂(k) = [ŵ(k− 1), ŵ(k− 2), · · · , ŵ(k− nc)], (54)

ŵn(k) = ŵ(k− 1)− κ̂T(k− 1)ψ̂(k), (55)

ŵ(k) = y(k)−Φ(k)θ̂m(k), (56)

v̂(k) = ŷf(k)− Φ̂f(k)θ̂(k)− κ̂T(k)ψ̂(k), (57)

κ̂(k) = [κ̂1(k), κ̂2(k), · · · , κ̂m(k)]. (58)

The calculation steps of the F-M-PC-GESG algorithm in (40)–(58) are presented
as follows.

1. Let k = 1, set the initial values θ̂m(0) = 1n/p0, κ̂(0) = 1mnd×m/p0, τ̂(0) = 1nc /p0,
rθ,i(0) = rκ,i(0) = rτ(0) = 1, i = 1, 2, · · · , m, ŵ(k− j) = 0, v̂(k− j) = 0, j = 0, 1, · · · ,
max[nc, nd], p0 = 106, and set the data length K.

2. Acquire the observation data Φ(k) and y(k). Configure ψ̂(k), ϕy(k) and χ̂(k) using
(50), (51) and (54).

3. Calculate rτ(k) and ŵn(k) utilizing (53) and (55). Update τ̂(k) using (52) and read
ĉi(k) from τ̂(k).

4. Compute ŷf(k) and Φ̂f(k) using (48) and (49). Read ŷfi(k) from ŷf(k) and Φ̂
T

fi(k)
form Φ̂f(k).

5. Compute the step size rθ,1(k) and rκ,1(k) utilizing (41) and (43).
6. Refresh the parameter estimates θ̂1(k) and κ̂1(k) utilizing (40) and (42).
7. Calculate rθ,i(k) and rκ,i(k) utilizing (45) and (47) when i = 2, 3, · · · , m. Refresh the

parameter estimates θ̂i(k) and κ̂i(k) utilizing (44) and (46).
8. Construct κ̂(k) using (58). Calculate v̂(k) and ŵ(k) using (57) and (56).
9. Gain k by 1 if k < K, and then skip to Step 2. If not, obtain the parameter estimates

θ̂(k), κ̂(k), and τ̂(k) and quit.

By analyzing the whole calculation steps, the F-M-PC-GESG algorithm uses the
method of interactive estimation. That is, the value of estimate τ̂(k) can be obtained
first after setting the initial values, and then using the value of estimate τ̂(k) to calculate
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the values of estimates θ̂i(k) and κ̂i(k). The loop continues until the estimates τ̂(k), θ̂i(k)
and κ̂i(k) are stable.

The schematic diagram of the F-M-PC-GESG algorithm in (40)–(58) is given in Figure 1.
It indicates that θ̂i(k) in each subsystem are common whereas κ̂i(k) is separate. Figure 1
clearly shows how the partially coupled identification approach of the F-M-PC-GESG
algorithm operates.

-
θ̂m−1(k) Subsystem m

?

ŷfm(k)

?

κ̂m(k− 1)

?̂κm(k)

θ̂m(k)

�

p p p p p pSubsystem 2

?

ŷf2(k)

?

κ̂2(k− 1)

?̂κ2(k)

-
θ̂2(k)-

θ̂m(k− 1) Subsystem 1

?

ŷf1(k)

?

κ̂1(k− 1)

?̂κ1(k)

-
θ̂1(k)

Figure 1. The schematic diagram of the F-M-PC-GESG algorithm.

4. The Multivariate Generalized Extended Stochastic Gradient Algorithm

The gradient algorithm is a classical identification method which does not generate
covariance matrix in the calculation process and has a significant effect on improving the
computational efficiency. In this section, the direct stochastic gradient method without
improvement is utilized to identify parameters of the multivariate system. Define another
quadratic criterion function for the identification model in (12):

J3(ϑ) := ‖Ω(k)ϑ − y(k)‖2.

Suppose that µ(k) is the step size. Minimizing J3(ϑ) based upon the gradient search,
the gradient relationship is

ϑ̂(k) = ϑ̂(k− 1)− µ(k)grad[J3(ϑ̂(k− 1))]

= ϑ̂(k− 1) + µ(k)ΩT(k)[y(k)−Ω(k)ϑ̂(k− 1)].

Let µ(k) := 1/r(k); then, the relationship is changed into

ϑ̂(k) = ϑ̂(k− 1) +
ΩT(k)
r(k)

[y(k)−Ω(k)ϑ̂(k− 1)], (59)

r(k) = r(k− 1) + ‖Ω(k)‖2. (60)

The obstacle in identification is that ϑ̂(k) cannot be calculated because v(k) and w(k)
in Ω(k) are unmeasurable. Substitute estimates v̂(k) and ŵ(k) for terms v(k) and w(k).
From Equations (8) and (12), estimates v̂(k) and ŵ(k) are calculated by

v̂(k) = y(k)− Ω̂(k)ϑ̂(k), (61)

ŵ(k) = y(k)−Φ(k)θ̂(k). (62)

Considering that Ψ(k) also involves the unmeasurable w(k), define Ψ̂(k) by the esti-
mate ŵ(k):

Ψ̂(k) = [Φ(k),−ŵT(k− 1),−ŵT(k− 2), · · · ,−ŵT(k− nc)]
T. (63)

Similarly, because ψ(k) involves the unmeasurable v(k− i), define ψ̂(k) by the esti-
mate v̂(k− i) as

ψ̂(k) = [v̂T(k− 1), v̂T(k− 2), · · · , v̂T(k− nd)]
T. (64)
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Additionally, because Ω(k) involves the unmeasurable terms ψ(k) and Ψ(k), define
Ω̂(k) by estimates ψ̂(k) and Ψ̂(k):

Ω̂(k) = [Ψ̂(k), ψ̂
T
(k)⊗ Im].

Subsequently, the multivariate generalized extended stochastic gradient (M-GESG)
algorithm is obtained as follows.

ϑ̂(k) = ϑ̂(k− 1) +
Ω̂

T
(k)

r(k)
[y(k)− Ω̂(k)ϑ̂(k− 1)], (65)

r(k) = r(k− 1) + ‖Ω̂(k)‖2, r(0) = 1, (66)

Ω̂(k) = [Ψ̂(k), ψ̂
T
(k)⊗ Im], (67)

Ψ̂(k) = [Φ(k),−ŵT(k− 1),−ŵT(k− 2), · · · ,−ŵT(k− nc)]
T, (68)

ψ̂(k) = [v̂T(k− 1), v̂T(k− 2), · · · , v̂T(k− nd)]
T, (69)

ŵ(k) = y(k)−Φ(k)θ̂(k), (70)

v̂(k) = y(k)− Ω̂(k)ϑ̂(k), (71)

ϑ̂(k) =

[
η̂(k)

col[κ̂(k)]

]
, (72)

η̂(k) = [θ̂
T
(k), ĉ1(k), ĉ2(k), · · · , ĉnc(k)]

T. (73)

The computation procedures of the M-GESG algorithm in (65)–(73) are presented
as follows.

1. Let k = 1, set the initial values ϑ̂(0) = 1n0 /p0, r(0) = 1, ŵ(k− j) = 0, v̂(k− j) = 0,
j = 0, 1, · · · , max[nc, nd], p0 = 106, and set the data length K.

2. Acquire the observation data Φ(k) and y(k). Configure the matrix Ψ̂(k) and vector
ψ̂(k) utilizing (68) and (69).

3. Calculate Ω̂(k) using (67), and calculate r(k) utilizing (66).
4. Refresh the parameter estimate vector ϑ̂(k) utilizing (65). Read θ̂(k) form ϑ̂(k) in (72)

and (73).
5. Calculate v̂(k) and ŵ(k) utilizing (71) and (70).
6. Gain k by 1 if k < K, and then skip to Step 2. If not, acquire the parameter estimate

ϑ̂(k) and quit.

5. Convergence Analysis

The convergence of the F-M-PC-GESG algorithm is analyzed in this section.
Suppose that the σ algebra sequence Fk = σ(v(k), v(k − 1), v(k − 2), . . .) gener-

ated by v(k), and {v(k),Fk} is a Martingale difference sequence on a probability space
{Ω,F , P} [49]. The sequence {v(k)} satisfies

(Q1) E[v(k)|Fk−1] = 0, a.s.,

(Q2) E[‖v(k)‖2|Fk−1] 6 σ2 < ∞, a.s.

Lemma 1. For the systems in (16) and (29) and the F-M-PC-GESG algorithm in (40)–(58), the
following inequalities hold:
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∞

∑
k=1

‖Φ̂fi(k)‖2

r2
θ,i(k)

< ∞, i = 1, 2, · · · , m,

∞

∑
k=1

‖ψ̂(k)‖2

r2
κ,i(k)

< ∞, i = 1, 2, · · · , m,

∞

∑
k=1

‖χ̂(k)‖2

r2
τ(k)

< ∞.

Theorem 1. For the systems in (16) and (29) and the F-M-PC-GESG algorithm in (40)–(58),
suppose that (Q1) and (Q2) hold. There exists the positive constants λ1, λ2, and λ3 independent of
k, and an integer K such that the following persistent excitation condition holds:

(Q3)
K

∑
j=0

Φ̂fi(k + j)Φ̂T

fi(k + j)
rθ,i(k + j)

≥ λ1 I, i = 1, 2, · · · , m,

(Q4)
K

∑
j=0

ψ̂(k + j)ψ̂T
(k + j)

rκ,i(k + j)
≥ λ2 I, i = 1, 2, · · · , m,

(Q5)
K

∑
j=0

χ̂(k + j)χ̂T(k + j)
rτ(k + j)

≥ λ3 I.

Then, the parameter estimation errors ‖θ̂i(k)− θ‖, ‖κ̂(k)− κ‖, and ‖τ̂(k)− τ‖ given
by the F-M-PC-GESG algorithm converge to zero in the mean square sense.

Through the above analysis, we can determine that the proposed algorithm can make
parameter estimation errors of multivariate pseudo-linear systems converge to zero in the
case of random disturbance. In other words, the proposed algorithm not only has the ability
to estimate the unknown parameters accurately, but also has certain stability.

Theorem 1 can be proved in a similar to the way in [50] and is omitted here.

6. Simulations

This part is to demonstrate the superiority of F-M-PC-GESG algorithm in identification
performances by conducting two simulations.

Example 1. Consider the following multivariate equation-error autoregressive moving average
systems,

y(k) = Φ(k)θ+
D(z)
c(z)

v(k),

Φ(k) =

[
u1(k− 2) sin(y1(k− 2)) y1(k− 1) cos(u2(k− 2))
y2(k− 1) cos(u1(k− 1)) u2(k− 1) sin(y2(k− 2))

]
,

θ = [θ1, θ2, θ3, θ4]
T = [0.24,−0.14,−0.60, 0.02]T,

c(z) = 1 + c1z−1 + c2z−2 = 1 + 0.65z−1 − 0.31z−2,

D(z) = I2 +

[
d11 d12
d21 d22

]
z−1 =

[
1 0
0 1

]
+

[
−0.12 0.17
−0.03 −0.24

]
z−1.

The parameter vector to be identified is

ϑ = [θ1, θ2, θ3, θ4, c1, c2, d11, d12, d21, d22]
T

= [0.24,−0.14,−0.60, 0.02, 0.65,−0.31,−0.12, 0.17,−0.03,−0.24]T.
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In this simulation, the input vector u(k) =
[

u1(k)
u2(k)

]
∈ R2 is a random sequence with

zero mean and variance one. The output vector is y(k) =
[

y1(k)
y2(k)

]
∈ R2. The white noise

vector v(k) =

[
v1(k)
v2(k)

]
∈ R2 is with zero mean. σ2

1 and σ2
2 are variances of v1(k) and

v2(k). Taking the noise variances σ2
1 = σ2

2 = 0.202, utilizing the M-GESG algorithm and the
F-M-PC-GESG algorithm to identify system parameters, parameter estimates and their
errors δ := ‖ϑ̂(k) − ϑ‖/‖ϑ‖ are given in Table 1. The parameter identification errors
versus k are given in Figure 2. The parameter estimates θ̂1(k), θ̂2(k), θ̂3(k), θ̂4(k), ĉ1(k),
ĉ2(k), d̂11(k), d̂12(k), d̂21(k), and d̂22(k) versus k of the F-M-PC-GESG algorithm are given
in Figures 3 and 4.

Table 1. Parameter estimates and errors (σ2
1 = σ2

2 = 0.202).

Algorithms k 100 200 500 1000 2000 3000 True Value

M−GESG θ1 0.24221 0.24151 0.24223 0.23292 0.22983 0.22863 0.24000
θ2 0.05203 0.02792 −0.00854 −0.02886 −0.04654 −0.05528 −0.14000
θ3 −0.61451 −0.61142 −0.59979 −0.61122 −0.60372 −0.60521 −0.60000
θ4 −0.00923 0.00479 0.00416 0.01756 0.01947 0.02117 0.02000
c1 0.42969 0.44032 0.44813 0.46623 0.47098 0.47768 0.65000
c2 −0.43009 −0.43931 −0.44511 −0.45792 −0.45798 −0.46094 −0.31000
d11 −0.05862 −0.06323 −0.06660 −0.06933 −0.07090 −0.07281 −0.12000
d12 −0.00128 −0.00411 −0.00552 −0.00673 −0.00676 −0.00691 0.17000
d21 −0.02181 −0.02119 −0.02004 −0.01749 −0.01566 −0.01452 −0.03000
d22 0.00430 0.00556 0.00304 −0.00250 −0.00599 −0.00827 −0.24000

δ (%) 42.79473 41.60834 40.01046 38.71188 37.83113 37.30980

F−M−PC−GESG θ1 0.24743 0.23989 0.24511 0.23901 0.23664 0.23713 0.24000
θ2 −0.10583 −0.11597 −0.12770 −0.13172 −0.13459 −0.13672 −0.14000
θ3 −0.59934 −0.58195 −0.59534 −0.59614 −0.59351 −0.59624 −0.60000
θ4 0.01463 0.02155 0.01422 0.02609 0.02376 0.02292 0.02000
c1 0.65312 0.66910 0.68801 0.70132 0.71257 0.71886 0.65000
c2 −0.34080 −0.32821 −0.31140 −0.29937 −0.28767 −0.28125 −0.31000
d11 −0.16261 −0.17089 −0.15802 −0.14864 −0.13486 −0.13573 −0.12000
d12 0.03206 0.04136 0.04804 0.06647 0.07554 0.07958 0.17000
d21 −0.02175 −0.01882 −0.01885 −0.02282 −0.02068 −0.02177 −0.03000
d22 −0.14040 −0.13357 −0.13861 −0.15208 −0.15712 −0.16094 −0.24000

δ (%) 17.67220 17.44393 16.38489 14.48147 13.95661 13.86945

0 500 1000 1500 2000 2500 3000

      t

0
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Figure 2. Identification errors versus k (σ2
1 = σ2

2 = 0.202).
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Figure 3. Parameter estimates θ̂1(k), θ̂2(k), θ̂3(k), θ̂4(k), ĉ1(k) versus k.
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Figure 4. Parameter estimates ĉ2(k), d̂11(k), d̂12(k), d̂21(k), d̂22(k) versus k.

Example 2. Consider another multivariate equation-error autoregressive moving average system,

Φ(t) =

[
u2

1(k− 1) cos2(u1(k− 2)) u2(k− 1)y1(k− 2)
u3

2(k− 1) sin2(y1(k− 2)) u1(k− 1)y2(k− 2)

y3
1(k− 1) sin2(y2(k− 1))

y2
2(k− 2) cos2(y2(k− 1))

]
,

θ = [θ1, θ2, θ3, θ4, θ5]
T = [0.08,−0.09, 0.02,−0.01,−0.03]T,

c(z) = 1 + c1z−1 = 1 + 0.89z−1,

D(z) = I2 + D1z−1 + D2z−2

=

[
1 0
0 1

]
+

[
0.22 −0.29
−0.03 0.10

]
z−1 +

[
0.04 −0.08
−0.05 0.12

]
z−1.

The parameter vector to be identified is

ϑ = [θ1, θ2, θ3, θ4, θ5, c1, d111, d112, d211, d212, d121, d122, d221, d222]
T

= [0.08,−0.09, 0.02,−0.01,−0.03, 0.89, 0.22,−0.29, 0.04,−0.08,−0.03, 0.10,−0.05, 0.12]T.

The configuration of the simulation in this example is the same as in Example 1. Set
noise variances σ2

1 = 0.502 and σ2
2 = 0.402, and utilize the M-GESG algorithm and the

F-M-PC-GESG algorithm to identify the system parameters. The parameter estimates and
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their errors are given in Table 2. The parameter identification errors versus t are given in
Figure 5.

Table 2. Parameter estimates and errors (σ2
1 = 0.502, σ2

2 = 0.402).

Algorithms k 100 200 500 1000 2000 3000 True Value

M−GESG θ1 0.09112 0.08857 0.06625 0.08761 0.08713 0.08118 0.08000
θ2 −0.10932 −0.10922 −0.11672 −0.11222 −0.11331 −0.11291 −0.09000
θ3 0.10330 0.06629 0.04765 0.03156 0.02940 0.02798 0.02000
θ4 −0.08128 −0.05999 −0.05284 −0.04692 −0.04326 −0.04202 −0.01000
θ5 0.05408 0.04776 0.03644 0.03423 0.02818 0.02637 −0.03000
c1 0.63454 0.64477 0.66918 0.69922 0.71524 0.73325 0.89000

d111 0.16746 0.16823 0.16294 0.15883 0.15732 0.15446 0.22000
d112 −0.11067 −0.10817 −0.10595 −0.10446 −0.10122 −0.10005 −0.29000
d211 −0.07832 −0.08579 −0.09696 −0.10167 −0.10818 −0.11186 0.04000
d212 −0.02125 −0.02080 −0.02172 −0.02349 −0.02480 −0.02649 −0.08000
d121 0.19580 0.19361 0.19552 0.20044 0.19851 0.19854 −0.03000
d122 −0.03530 −0.03103 −0.02681 −0.02341 −0.02217 −0.02248 0.10000
d221 −0.19341 −0.19073 −0.18208 −0.17582 −0.17124 −0.16896 −0.05000
d222 0.30383 0.29812 0.29649 0.29994 0.29897 0.29897 0.12000

δ (%) 51.69208 50.09867 48.69494 47.52852 46.83530 46.27683

F−M−PC−GESG θ1 0.06055 0.08860 0.07901 0.08999 0.08715 0.07885 0.08000
θ2 −0.07339 −0.08860 −0.09644 −0.09032 −0.09163 −0.08886 −0.09000
θ3 0.07020 0.02402 0.01128 0.01168 0.01124 0.00870 0.02000
θ4 −0.00816 0.00063 0.00035 0.00275 0.00146 −0.00635 −0.01000
θ5 0.00114 −0.02136 −0.03064 −0.03338 −0.03768 −0.03383 −0.03000
c1 0.99456 0.98815 0.98077 0.98014 0.97418 0.97488 0.89000

d111 0.16879 0.15751 0.18199 0.19942 0.21985 0.21906 0.22000
d112 −0.27855 −0.29182 −0.30472 −0.29502 −0.29439 −0.29678 −0.29000
d211 0.10959 0.06096 0.05244 0.04869 0.02627 0.02232 0.04000
d212 −0.20205 −0.19511 −0.16709 −0.14945 −0.13756 −0.13392 −0.08000
d121 0.05176 0.05175 0.03801 0.01758 0.01343 0.00674 −0.03000
d122 0.02924 0.06773 0.08395 0.08658 0.09398 0.09718 0.10000
d221 0.02688 0.04268 0.03090 0.02807 0.01438 0.00469 −0.05000
d222 0.14854 0.13947 0.11760 0.11307 0.10907 0.10424 0.12000

δ (%) 23.94783 21.27826 17.32330 15.14836 13.24001 12.48907
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Figure 5. Identification errors versus k (σ2
1 = 0.502, σ2

2 = 0.402).

With Tables 1 and 2 and Figures 2–5, identification performances of proposed algo-
rithms are analyzed as follows.

1. Tables 1 and 2, Figures 2 and 5 indicate that parameter identification errors of the
M-GESG and the F-M-PC-GESG algorithms decrease with increasing data length k.
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This reveals that the proposed algorithms are valid in parameter identification for the
multivariate equation-error autoregressive moving average system.

2. Through Figures 2 and 5, we can see that the F-M-PC-GESG algorithm has superiority
over the M-GESG algorithm in parameter identification precision under the same data
length and noise variances.

3. Figures 3 and 4 show that the F-M-PC-GESG algorithm can rapidly obtain access to
precise parameter estimates.

7. Conclusions

This paper presents methods of how to improve parameter identification effects for
multivariate pseudo-linear systems under conditions of random interference and parameter
coupling, which provides modular solutions for modeling and forecasting of real multi-
variate time series. Taking into account colored noises and high-dimensional unknown
parameters, the original system is filtered by the designed filter and then be transformed
into several subsystem identification models by utilizing the coupling identification ap-
proach. A new filtering-based multivariate gradient algorithm is proposed, which has
higher parameter estimation precision and faster identification efficiency than the conven-
tional multivariate gradient algorithm. Convergence analysis and simulation experiments
confirms that the F-M-PC-GESG algorithm has performance that can obtain access to
unknown parameter estimates precisely and rapidly. Future research directions include ap-
plying proposed methods to parameter identification problems for other linear or nonlinear
models under random interference in various engineering systems.
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