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Abstract: Biomaterials are mostly any natural and synthetic materials which are compatible from
a biological point of view with the human body. Biomaterials are widely used to sustain, increase,
reestablish or substitute the biological function of any injured tissue and organ from the human body.
Additionally, biomaterials are uninterruptedly in contact with the human body, i.e., tissue, blood
and biological fluids. For this reason, an essential feature of biomaterials is their biocompatibility.
Consequently, this review summarizes the classification of different types of biomaterials based on
their origin, as natural and synthetic ones. Moreover, the advanced applications in pharmaceutical
and medical domains are highlighted based on the specific mechanical and physical properties of
biomaterials, concerning their use. The high-priority challenges in the field of biomaterials are also
discussed, especially those regarding the transfer and implementation of valuable scientific results in
medical practice.

Keywords: biomaterials; biocompatibility; biomedical; biodegradability; tissue engineering; biopolymers;
bioceramics

1. Introduction

Maintaining the quality of life through good health is required, and it is absolutely
necessary worldwide. Currently, the permanent and growing interest in the study and
advanced development of biomaterials is focused on medical or healthcare applications
due to the requirements in the domain of drug administration, tissue engineering, medical
device industry, permanent or temporary implants. As the need for high-accuracy and
individualized treatments continues to grow, research pursues both the improvement of
biomaterials in classic applications and the obtaining of new effective bioactive materials
for multiple advanced applications, regenerative medicine or other health dysfunctions,
including theranostic biomaterials (diagnosis, monitoring capabilities and combined ther-
apy) [1–9].

In current medicine, biomaterials have an important role, both in stimulating healing
and for regeneration of the initial biological or functional activity. Biomaterials can exist
in natural or synthetic form. They are exploited in multiple applications in the medical
field due to their biocompatibility. In this regard, biocompatibility can be defined as “the
study and the knowledge of interactions between living and non-living materials” [10]
and biomaterials as “any materials projected to interface with biological systems from
the human body to evaluate, support, treat, enhance, augment, restore or replace any
damaged tissue, organ, or function of the body” (definition proposed by the European
Society for Biomaterials Consensus Conference II) [11]. Because of the fact that biomaterials
are in direct contact with the human body fluids and tissues, they must accomplish several
features such as stability, biocompatibility and safety.

Historical sources indicate the first use of biomaterials in antiquity [12]. In ancient
Egypt, it was practiced since 3000 BC by using animal tendons as sutures, coconut shells to
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repair injured skulls, wood and ivory as false teeth [13]. Likewise, in Greece and India since
the 1st century BC, doctors performed plastic surgeries on wounded soldiers practicing the
use of biomaterials [14]. The first more elaborate applications of natural biomaterials are
dated in the modern period, with the first surgical operation used to replace the hip with
ivory performed in Germany, in 1891 [15].

Starting with the 19th century, bone plates began to be integrated into successful
operations, with the role to stabilize bone fractures and to speed up their healing. In 1951,
the first allograft taken from a deceased person was successfully implanted, and in 1954,
a synthetic arterial substitute was used for the first time to treat 10 patients. In 1958, the
Dacron vascular prosthesis was obtained as a viable alternative to harvested human grafts,
which presented certain complications after implantation [16,17].

The first artificial heart valves start from the early 1950s, when a methacrylate ball was
implanted in the descending aorta by Charles Hufnagel. In 1960, the mitral valves were
replaced using a flexible polyurethane mitral prosthesis with a Teflon chorda tendineae
attachment, by Nina Braunwald. The last step in valves’ evolution is represented by the
progress in advanced valve alternatives called regenerative or tissue-engineered valves [18].

The history of biomaterial applications is presented in Figure 1 (adapted from refer-
ence [19]).
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Figure 1. The evolution of materials as biomaterials from prehistory to recent time (adapted from
reference [19]).

To exemplify the continuous growth in the publications on and the increasing research
attention to this topic, a graphical representation showing the annual number of publi-
cations on biomaterials used for biomedical applications from 2003 to 2023 (Figure 2a) is
included, which was obtained using the Scopus database [20]. The diagram highlights a
significant growth in the publication numbers in the analysed 20 years. The search was
performed using “biomaterials for biomedical” in all fields, “biomedical” in keywords and
limited only to articles and reviews. In addition, a representation regarding the publications
evaluated by subject area is shown in Figure 2b.

In this context, the present review aims to scrutinize the most recent technologies
related to advanced biomedical applications of multifunctional natural and synthetic
biomaterials and their classification based on their source. The purpose and the objective
of the present work is to emphasize the design and functions of a new generation of
biomaterials inspired by natural ones and capable of being critical mechanisms in various
sides of modern civilization.
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2. Biomaterials from Natural Sources

Presently, an increased interest has been focused on the development of biomaterials
obtained from natural sources due to their several advantages such as biocompatibility, ease
of production, renewability, low cost, availability, nonimmunogenicity [21]. Biomaterials
derived from natural sources can be grouped in four main categories: protein-based materi-
als, polysaccharide-based materials, glycosaminoglycan-based materials and extracellular
matrix materials (Figure 3).
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Figure 3. Classification of biomaterials obtained from natural sources.

Generally, biomaterials derived from natural sources are used (i) to restore or to replace
a damaged tissue or organ, (ii) to promote the tissue regeneration, (iii) as a drug delivery
system, (iv) to develop bone scaffolds.

2.1. Protein-Based Materials

Recently, a growing interest has been observed in the development of protein-based
biomaterials due to the limited fossil source and also to their versatile characteristics such
as high mechanical performance, biocompatibility and biodegradability [22–24].

2.1.1. Collagen

Collagen is the main protein from the whole animal body protein content (25–35%),
with a significant role in providing support for tissues and cells and in sustaining structural
and biological integrity of the extracellular matrix. Collagen is found in the skin, tendons,
ligaments, cartilage, bones, corneas, blood vessels, intervertebral discs, gut and teeth [25].
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Well-suited to build structures for tissue engineering, collagen is a biomaterial often used
in biomedical applications based on its biocompatible, biodegradable and noncytotoxic
properties [26,27]. Collagen can be processed and used in a variety of forms: (i) collagen-
based films or membranes (2D) which are used especially for healing skin wounds and
tissue regeneration (cornea, bones) due to good biocompatibility and biodegradability [28];
(ii) in different forms of scaffolds (3D), as pure collagen structures [29,30] or with synthetic
polymers [31]. A schematic representation of collagen at different length scales and of
different structures is shown in Figure 4 [32].
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from reference [32]).

Collagen-based sponges are used in intraoperative surgery (in neurology) [33] as
scaffolds in bone tissue engineering [34], as haemostatic dressings [35] or as an alternative
biomaterial for the healing of cutaneous wounds with antibacterial properties [36]. Collagen
blended with other biomaterials is used in reconstructive surgery [37] and as a haemostatic
dressing for fast blood absorption [38].

2.1.2. Gelatine

Gelatine is a natural polymer derived from the hydrolysis of collagen, being a bio-
compatible, biodegradable, elastic and nontoxic material. In the field of tissue engineering,
gelatine is often used in several systems, such as drug delivery systems, injectable hy-
drogels, scaffolds or wound dressing films. A mixture of demineralized bone matrix and
gelatine together with absorbable gelatine sponges has been tested in bone tissue engi-
neering to maintain haemostasis in multiple surgeries [39]. Gelatine has a disadvantage in
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terms of thermostability. Depending on the temperature, it can pass relatively easily from
the solid state to the gel [40]. At the same time, one of its advantages is the ability to absorb
water, useful in tissue regeneration, as in the case of formulations such as nanocomposite
hydrogels for treating wounds [41] or injectable hydrogels to favour bone regeneration [42].

2.1.3. Silk

Silk, a fibrous biomaterial obtained from protein fibroin from silkworm cocoons or
spider silk blends, is a biocompatible and biodegradable natural polymer frequently used
for applications in regenerative medicine and tissue engineering [43]. The mixture with
different natural or synthetic polymers or fibrous materials is used to improve its biodegrad-
ability, biocompatibility and to adjust the mechanical properties, by obtaining functional
biomaterials in the form of hydrogels [44], thin films or coatings [45], nanoparticles [46],
fibres, 3D printed structures [47] or in the form of composite scaffolds [48] for the medi-
cal field.

2.1.4. Fibrin

Recently, biomaterials or their composites were often used for tissue engineering,
due to their bioavailability and low price. Fibrin is one of the most promising natural
biomaterials for articular cartilage repair [49]. Fibrin polymers and composites are often
used as transport vehicles for bioactive molecules to induce regeneration and promote
wound healing or as delivery carriers for multiple cell lines (Figure 5) [50].
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2.1.5. Keratin

Due to their intrinsic biological properties and excellent biocompatibility, keratin-based
biomaterials have shown increased interest recently and are widely used for biomedical
applications such as tissue engineering, drug delivery, wound healing [51]. The main
sources of keratin extractives are wool, horns, hair, nails and feathers. Keratin is a structured
protein with a high cysteine content (7–15%). The main methods used to extract and



Processes 2023, 11, 2696 6 of 31

solubilize keratin are reduction, oxidation, alkaline extraction, microwave irradiation,
steam explosion and by means of ionic liquids [52]. Keratin-based formulations are used
as (i) hydrogels for diabetic wound dressing material, regeneration of pupal tissue, in
substrates for cellular attachment and proliferation; as (ii) films for reconstruction of ocular
surface, drug delivery and as (iii) fibres for tissue engineering [51].

2.1.6. Ovomucin

Ovomucin is a glycoprotein carbohydrate (representing between 2 and 4% of total
egg albumin) with high molecular weight, composed of a carbohydrate-rich β-subunit
(50–57%, a molecular weight of about 400 kDa) and a carbohydrate-poor α-subunit with
approximately 11–15% of carbohydrates [53]. Ovomucin possesses antibacterial, antitumor,
antiviral, antioxidant activities and immune properties with multiple applications in in-
testinal injury treatment of gastrointestinal tract after dietary intake or as biocompatible
porous hydrogel for additional development as an implant material for bone or tissue
engineering [54,55].

2.1.7. Elastin

Obtained by extraction from different biological sources, elastin, a hydrophobic amino
acid with a high degree of intermolecular cross-linking, is used as a dressing to speed up
the healing of chronic wounds or for large surfaces [56]. Elastin, an extracellular matrix
protein, is recognized for providing elasticity to organs and/or tissues. Consequently,
elastin is present in human organs with elastic properties such as blood vessels, elastic
ligaments, in lung and in skin. Elastin-based biomaterials are used in a wide range of
applications such as tissue engineering, skin substitutes, vascular grafts, heart valves and
elastic cartilage [57].

2.1.8. Lactoferrin

Lactoferrin is a mammalian iron-binding glycoprotein which belongs to the transferrin
class. Recently, lactoferrin has gained potential as a therapeutic agent and as a pharmaco-
logical compound. Lactoferrin possesses immunomodulatory, anti-inflammatory, antioxi-
dant, antiviral, antimicrobial and anticancerogenic activities. Lately, various technologies
have been developed to advance the lactoferrin’s role in the ocular drug bioavailability
(Figure 6) [58].
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2.1.9. Sericin

Sericin, a component of silk known as silk sericin, has grown consideration in recent
years in sericin-based biomaterials. Due to its role in the sustenance of cell proliferation
and attachment and stimulation of cell differentiation, sericin has been used in tissue engi-
neering and cell culture [59–71]. A summary of sericin-based biomaterials for biomedical
applications is presented in Figure 7.
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2.2. Polysaccharides
2.2.1. Cellulose

The main sources of cellulose in nature are plants (wood and secondary products
from agriculture), algae, bacteria and marine animals, being practically an abundantly
available biomaterial [72]. Cellulose can be found in three forms, namely cellulose nanocrys-
tals, cellulose nanofibers and bacterial or microbial nanocellulose. Cellulose nanocrystals
demonstrate unique characteristics, such as large surface area, good crystallinity, as well
as excellent mechanical strength. [73]. Cellulose-based materials can be used as antibac-
terial agents, for tissue engineering, for wound dressing, for artificial blood vessels and
for drug delivery in the form of aerogels, hydrogels, three dimensional scaffolds and
membranes [74].

2.2.2. Chitin/Chitosan

Chitosan and its precursor chitin are bioavailable polymers that come from the shells
or skeletons of marine and nonmarine organisms [75]. They have been studied and used in
a very large range of biomedical and nanobiotechnology applications because they have
advantageous properties, such as nontoxicity, biocompatibility, biodegradability. Because
chitosan is water-soluble and easily forms ionic and hydrogen bonds with drug structures,
it can be widely used in drug delivery systems, cancer therapy, wound healing and tissue
engineering [76]. To maximize the therapeutic potential and bioavailability of drugs in
a controlled and continuous manner [77], various micro- and nanoparticles have been
developed as their active carriers [78,79], hydrogels [80–83] scaffolds [84–87] and organic
or inorganic matrices based on chitosan or chitin [88].

2.2.3. Gums

Natural gum-based polysaccharides and their derivatives are biodegradable poly-
meric materials which present advantages over synthetic polymers, mainly since they are
nontoxic, bioavailable and inexpensive [89]. Natural gums can be divided based on their
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sources and chemical structures as follows: (i) of plant origin (tree exudates, seed gums and
extracts), (ii) of microbial origin and of (iii) marine origin. Gums are principally synthesized
from the following three categories: (a) tree or shrub exudates, (b) plant exudate gums and
(c) the endosperm of some seeds [90]. A graphic illustration of the natural gum sources,
gum-based materials and their possible biomedical applications is shown in Figure 8.
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The significant characteristics of natural gums are (i) the ability to form viscous
solutions by attracting and binding water molecules, (ii) the ability to act as fibres and
(iii) the ability to form films. Besides their origin, natural gums are also grouped and
classified into the following categories:

(a) Anionic, cationic and nonionic, based on the surface charges;
(b) Linear and branched chains, based on their structure [91].

Plant Gum-Based Biomaterials

(i) Tree extrudes

Gum arabic, a natural polysaccharide obtained from Acacia nilotica, is part of the
Leguminosae family. It is composed of different compounds: galactose (39–42%), arabi-
nose (24–27%), glucuronic acid (15–16%), rhamnose (12–16%), protein (1.5–2.6%), nitrogen
(0.22–0.39%) and moisture (12.5–16%). Its main application is in the food industry, pharma-
ceuticals and cosmetics. Recently, gum arabic has been extensively used for drug delivery
and in a biomedical domain, as nanoscaffolds [92–95].

Gum karaya is produced from Sterculia species trees. Gum karaya is an exceptional nat-
ural vegetable bioproduct, with good biocompatible, biodegradable, renewable properties,
it is easy to handle and store, has a low cost and is frequently used in food, pharmaceutical,
denture-fixation, wound-dressing, nanoencapsulation and other industrial applications
(cosmetics, textile and paper industry) [96–99].

Lignin is the main component of plant cell walls, which protects the plant from
different stress factors and provides mechanical support. The chemical structure of lignin
is complex, being composed of methoxy, phenolic and aliphatic hydroxyl groups. Lignin
has satisfactory biocompatibility. Its cytotoxicity depends on the process of chemical
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extraction, as well as antioxidant and antimicrobial properties. The application of lignin
in the biomedical domain can be summarized as follows: for wound healing as hydrogel-
based materials, in tissue engineering as hydrogels and nanofibers, in drug delivery due to
its ability to encapsulate hydrophobic/lipophilic drugs for oncological therapy [100–105].

Gum tragacanth, an acidic and anionic polysaccharide having a high molecular weight
and durability, is produced from various species of Astragalus. This gum possesses good
stability and biodegradability, is available in nature and is nontoxic [106]. Gum tragacanth
is used in many biomedical applications for wound healing, prevention of growing of
cancer cells, tissue engineering and as a gelling agent in pharmacy [107–109].

(ii) Seed gums

Guar gum, a natural hydrophilic polysaccharide derived from the endosperm of
Cyamopsis tetragonolobus or Cyamopsis psoraloides seed, is formed by linear 1,4 linkages of
β−D−mannopyranose, and the branch contains 1,6 linkages of α−D−galactopyranose.
Guar gum is highly soluble in water, is nontoxic over a wide range of pH; its hydrogels
are biodegradable in nature, have higher flexibility and are biocompatible. Based on these
properties, guar gum has been widely applied in the biomedical domain for targeted drug
delivery and in tablets [110–113].

(iii) Extracts

Pectin extracted from biomass, using different treatment conditions, can be used in
biomedical applications. Several applications of pectin can be mentioned in 3D printable
inks as scaffolds with chitosan [114], in drug delivery applications [115], as a hydrogel for
cancer-targeted drug delivery [116], in tissue engineering [117] and for wound healing [118].

Pullulan, a fungal exopolysaccharide which is produced by Aureobasidium pullulans
and Aureobasidium melanogenum under aerobic conditions, has several properties that
make it highly soluble in water, tasteless, edible, odourless, nontoxic and biodegrad-
able [119]. Among biomedical applications of pullulan that can be mentioned are for bone
formation and/or repair [120], wound healing [121], tissue regeneration [122] and drug
delivery [123,124].

Microbial Gum-Based Biomaterials

Dextran is a nontoxic, hydrophilic, biodegradable and biocompatible homopolysac-
charide derived from bacterial attack of sucrose with dextransucrase or maltodextrins with
dextrinase [125]. This biocompatible homopolysaccharide has been broadly applied in
pharmaceutical and biomedical applications to stimulate wound healing and rehabilitation
of skin and to decrease the inflammatory response [126–129].

Over the past few years, gellan gum, a high-molecular-weight linear anionic ex-
opolysaccharide, formed by microbial fermentation of Sphingomonas paucimobilis, has been
paid attention and considerably used in some areas such as clinical and biomedical appli-
cations [130]. Due to its adaptable characteristics such as tuneable mechanical properties,
biocompatibility, biodegradability, easy functionalization and fabrication, gellan gum has
attracted the researchers as a promising biomaterial in regenerative medicine (cartilage and
intervertebral disc repair), drug delivery and tissue engineering [131–133]. Generally, gellan
gum is used in composite biomaterials by blending it with additional biopolymers or nano-
materials in order to improve the poor mechanical strength and lower stability [134–136].

Xanthan gum, an anionic polysaccharide is produced by a Gram-negative bacteria
named Xanthomonas bacteria. Xanthan gum due to its biodegradability and biocompatibility
has been used in numerous biomedical applications alone or in combination with other nat-
ural and/or synthetic polymers in tissue regeneration [137,138], wound healing [139–141]
and the controlled release of drugs [142].

Marine Gum-Based Biomaterials

Agar, a hydrophilic polysaccharide, is extracted from red seaweed with a composition
containing 30% agaropectin and 70% agarose (the main component responsible for the
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gelation process). Its usage as hydrogels or air-dried films was reported in wound dressing
and wound healing [143,144].

Alginate is an anionic biopolysaccharide formed by units of mannuronic acid and
glucuronic acid, randomly arranged [145]. Alginate has been extensively used in tissue
engineering, cancer therapy, wound care, controlled drug delivery and nanomedicines due
to its biocompatibility [146–152].

Carrageenan is a naturally occurring, linear sulphated polysaccharide extracted
from red seaweeds. It is composed of the disaccharide units alternating 4-linked α-D-
galactopyranose (the B unit) and 3-linked β-D-galactopyranose (the A unit) residues.
Carrageenans hold several advantages such as abundant availability, biocompatibility
and biodegradability, antiviral activity, antimicrobial properties, sustainability permit-
ting their usage as remarkable functional biomaterials for advanced biomedical applica-
tions [153–159].

2.3. Glycosaminoglycans

Both fibrous proteins and distinct polysaccharides named glycosaminoglycans are
present in the composition of the extracellular matrix. Glycosaminoglycans are formed by
a linear chain represented by repeated disaccharide units [160,161].

2.3.1. Hyaluronic Acid

Hyaluronic acid, a linear anionic polysaccharide, is a major macromolecular compo-
nent of the extracellular matrix in the most connective tissues. Due to its biocompatible,
biodegradable and bioresorbable nature, limited immunogenicity, recognized by cell sur-
face receptors, its flexible and unique viscoelasticity properties, hyaluronic acid has been
extensively studied in recent years for biomedical applications [162–164]. This biopolymer
is useful in medicine for the treatment of diverse pathological situations such as arthritis
but is also used in drug delivery and tissue engineering [165,166].

2.3.2. Heparin

Heparin is an acidic sulphated polysaccharide belonging to the glycosaminoglycan
family which is isolated by extraction from animal tissues such as porcine intestine. Heparin
is formed by repeating disaccharide units of 1→ 4-linked hexuronic acid and glucosamine
saccharide residues. Heparin is used in the manufacture of membranes [167] or in the novel
polyelectrolyte-scavenging method for biomedical applications [168]. This glycosaminogly-
can has been proposed for the cystic fibrosis treatment, for neurodegenerative diseases, as
an antimicrobial agent, and in the pancreatitis treatment [169].

2.3.3. Chondroitin Sulphate/Dermatan Sulphate

Studies initiated in the 1950s on bovine material and developed later, led to a better
understanding of the biosynthesis and homeostatic roles of chondroitin sulphate/dermatan
sulfate, especially in the control of bone development and in the regulation of the assembly
of collagen fibrils as well as cytokines. These findings were followed by highly significant
correlations between CS/DS synthesis and certain genetic abnormalities in humans [170].

2.3.4. Keratan Sulphate

Keratan sulphate (KS) is the newest glycosaminoglycan, an elaborated molecule with
a distinctive structure, whose function is still to be revealed; cornea, cartilage and brain
being the main tissue sources of KS in the human body. It has an important role in the
regulation of cells in epithelial and mesenchymal tissues, as well as in bones [171].

2.4. Extracellular Matrix

The role of the extracellular matrix and vascular basement membranes and their
influence in the regulation of angiogenesis and the progression of some tumours has
been studied and highlighted [172]. Various biomaterials of synthetic and natural origin
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have been investigated as new scaffolds for heart valve tissue engineering, especially for
paediatric patients. Among them, glycosaminoglycans such as chondroitin sulfate and
hyaluronic acid are the main components of cardiac cushions, as important parts that
regulate the functionality of the complex system of heart valves [173].

Eggshells Matrix

By recycling biological waste such as eggshells and using different natural extracts
or other compounds, materials similar to natural bone minerals have been obtained for
orthopaedic and dental applications [174], such as hydrogels with super absorbent prop-
erties for drug delivery systems [175] or composite materials in electrochemical sensors
for the determination of ascorbic acid, dopamine and uric acid in human urine and blood
serum [176].

2.5. Bioceramics

Based on their origin, bioceramics can be classified as follows:

(i) Natural. Natural bioceramics occur naturally in natural corals, algae, natural pearls,
shells, eggshell matrix, teeth and bones.

(ii) Synthetic. Synthetic bioceramics are produced artificially and include hydroxyapatite,
calcium phosphate-based materials, bioglass, alumina, zirconia, silicon nitride.

In Figure 9, a schematic representation of the main natural and synthetic bioceramic
materials is shown.
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Bioceramics are classified based on tissues response into the main three classes as
follows:

(i) Bioactive ceramics represented by hydroxyapatites, fluorapatite-based composites,
bioactive glasses and bioactive glass ceramics;

(ii) Biodegradable/bioresorbable ceramics with the presence of calcium phosphate, trical-
cium phosphate, aluminium–calcium phosphate, zinc–calcium phosphorous oxides,
zinc–sulphate–calcium phosphates, ferric–calcium phosphorous oxides, coralline,
calcium aluminates;

(iii) Bioinert/nonresorbable ceramics which includes alumina, zirconia, carbons and sili-
con nitride.

Table 1 summarizes the most recent applications of natural and synthetic bioceramics
in the biomedical area.
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Table 1. Bioceramics used in biomedical applications.

Bioceramics Examples Applications References

Bioactive ceramics

hydroxyapatites coatings on metallic implants [177–179]

fluorapatite-based composites bone applications [180]

bioactive glasses bone substitute and drug carrier [181]

bioactive glass ceramics chemo hyperthermia [182]

Biodegradable
(bioresorbable)ceramics

aluminium–calcium phosphate biomedical application [183]

zinc–calcium phosphorous oxides postoperative
tumour treatment [184]

zinc–sulfate–calcium phosphates tissue engineering [185]

ferric–calcium phosphorous oxides scaffolding for cell and drug delivery [186]

coralline drugs [187]

calcium aluminates bioactive dental materials [188]

Bioinert (nonresorbable)
ceramics

alumina drug delivery [189]

zirconia biomedical applications [190]

carbons biomedical applications for tissue
engineering [191]

silicon nitride biomedical applications in medical
implants [192]

3. Biomaterials from Synthetic Sources

The classification of biomaterials obtained from synthetic sources is presented in
Figure 10.
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Table 2 lists the main advantages and disadvantages of biomaterials obtained from
synthetic sources and their most relevant biomedical applications (adapted from refer-
ence [19]).



Processes 2023, 11, 2696 13 of 31

Table 2. Advantages and disadvantages of biomaterials obtained from synthetic sources and their
most relevant biomedical applications.

Category Advantages Disadvantages Applications References

Metals

high mechanical
properties; low friction;
high fatigue resistance;

ductility; low cost

poor biocompatibility;
stiffness;

high specific weight;
low resistance to

corrosion

orthopaedic, orthodontic,
cardiovascular, joint

prostheses
[193–196]

Ceramics

good biocompatibility;
chemical inertness;
high compressive

strength; low thermal
and electrical
conductivity;

corrosion resistance

low impulsive tensile
strength;

high specific weight;
brittleness;

reproducibility;
not easy to process

orthopaedic, orthodontic,
cardiovascular; coatings;
bone tissue regeneration;

surgical implants

[197–199]

Nonbiodegradable and
biodegradable polymers

toughness;
low specific weight; low

frictional properties;
good processability

low mechanical strength;
degradability over time;
deformability over time

orthopaedic, orthodontic,
cardiovascular, breast

implants, scaffolding for
soft tissues; eye lenses,

artificial tendons

[200–204]

Biologically-derived
materials

(porcine/bovine
pericardium)

superior biocompatibility
poor reliability;

difficult handling and
storage

bioprosthetic heart
valves, total artificial

heart
[205,206]

3.1. Metals

Metallic biomaterials are predominantly used to replace damaged hard tissues. Various
types of high-strength alloys containing nontoxic elements are used for various biomedical
applications. Functional devices based on NiTi (Nitinol) alloys have been developed due
to their exceptional shape memory and super elastic properties. The alloy is used for
the manufacture of self-expandable stents for cardiovascular surgery as well as super
elastic bone staples for orthopaedics or super elastic orthodontic wires for dentistry [207].
Patient-specific medical implants such as bone plates, screws, cranial or dental devices are
manufactured with the necessary biocompatibility, bioactivity, surface integrity and wear
resistance [208].

Table 3 summarizes recently developed metal-based biomaterials for the use in the
biomedical domain.

Table 3. Metal biomaterials used in biomedical applications.

Metals Characteristics Applications References

Titanium alloys

biocompatibility, corrosion
resistance, high mechanical

properties, high fatigue
resistance, ductility

orthopaedic implant materials, bone
plates, dental implants, spinal

internal fixation devices, orthodontic
wires, intramedullary nails

[209]

Mg alloys nontoxicity, biocompatibility bioresorbable orthopaedic materials [210,211]

Conventional stainless steel corrosion resistance metal implants [212,213]

Platinum systemic treatment chemotherapy [214]

Nickel therapeutic activity antibacterial agent [215]

CoCr alloys mechanical properties dental prosthesis; dental restorations [216]

Nitinol super-elasticity, shape
memory endovascular stents [217]
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3.2. Ceramics and Glasses

Among the materials commonly used for clinical applications, the biocompatible
characteristic of ceramics makes it suitable for implants, tissue regeneration and engineering
applications. The demand for high-quality devices is determined by global health care
problems of the increasingly numerous populations, such as defects or dysfunctions of
the bone skeleton, osteoarthritis or those in the field of dentistry. Ceramics find numerous
applications in biomedicine due to their excellent biocompatibility in the dental field, from
dental restoration to implants, for joints or bone substitutes, bone fillings and scaffolds for
tissue engineering. Some ceramic implants can be used as porous substrates to help the
ingrowth of new bone tissue and can be resorbed after tissue regeneration.

A porous nanocomposite material in the form of hematite nanoparticles covered by
amorphous alumina was produced by sol–gel combustion synthesis. Porous nanocomposite
particles have proven capable of inducing special magnetic properties, making them
suitable as contrast agents for imaging applications, namely in ultra-high field MRI [218].
Alumina and zirconia have been used as ceramic fillers for many types of polymer–ceramic
composites developed as biomaterials in dental prosthetics [219]. Biofunctional materials,
such as silicate glass ceramics, are studied and applied for the regeneration and healing
of bone tissue [220], in cancer treatment by hyperthermia [221], in implants [222] or for
total replacement in articulating surfaces to promote osseointegration [223]. Larry Hench is
one of the pioneers of studies regarding the influence of the chemical structure of bioactive
glasses and glass ceramics in general, on the interaction with the physiological system, as
well as the connection between the glass surface and the living tissue [224]. Beginning in
1969, Hench developed for the first time a bioactive and biocompatible melt-derived glass
material called bioglass, with the potential to form bonds with mineralized bone tissue
even in the body’s physiological environment [225]. The main purpose of his study was to
replace inert implants made of other materials (for example plastic or metal) that were not
well supported by the human body. Most bioglasses contain Na2O, CaO, P2O5 and SiO2 in
their formula. The latter was added in a weight percentage <55%, because a larger amount
of SiO2 could lead to the loss of bioactivities. In 1969, studies were successfully carried out
on rats, on the adhesion of a bioglass to bone and muscle 6 weeks after implantation. This
material had a composition of 45SiO2–24.5Na2O–24.5CaO–6P2O5 by weight (%) and was
named 45S5 Bioglass® [226]. Later, in 1991, Hench proposed the development of bioactive
gel-derived glasses [227]. These studies marked a shift in interest from bioinert materials
to bioactive materials. Bioactive glass has multiple uses: (i) in solid form, as different
prostheses, in dentistry, bone regeneration medicine or in tissue engineering; (ii) in the form
of powders for covering biomedical devices; (iii) in the form of composites, as different
filling materials and (iv) as a drug delivery system [228–235].

In their work, M Montazerian and ED Zanotto presented an interesting review of
the history of bioactive glass ceramics, highlighting their biochemical and mechanical
properties, as well as trends in the manufacture of commercial bioglass products for various
biomedical applications [236].

Glass-ceramic materials can be made from glasses through a suitable heat treatment,
resulting in nucleation phases and the growth of specific crystalline phases inside the
remanent vitreous matrix. It has a very fine microstructure with a small number of or no
residual pores. These characteristics improve the mechanical qualities of the final product.
A favourable microstructure can be achieved both through appropriate heat treatments and
through the use of additives that can act as nucleating agents [237]. The main methods of
obtaining bioactive glasses and glass ceramics are the traditional melting techniques [238],
the sol–gel method [239–241], the synthesis assisted by ultrasound [242], microwaves [243]
or the hydrothermal synthesis [244].

3.3. Nonbiodegradable Polymers

Nondegradable polymers are used in biomedicine, being resistant substrates over
time and proving a good performance throughout the life of the patients. They are easily
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processed in different shapes and can be bio-integrated together with other materials into
larger or smaller surfaces, in various thicknesses. They are robust and present excellent
mechanical properties [245]. In the medical field, nondegradable polymers are used for the
manufacture of tissue engineering scaffolds, orthopaedic implants, heart valves, bone and
cartilage substitutes, vascular grafts, artificial hips, eye lenses, fillings and other components
in the dental field, bone cements. Many nondegradable polymers such as poly(ethylene),
poly(propylene), poly(tetrafluoroethylene), poly(methyl methacrylate), polyurethanes,
poly(dimethylsiloxane), poly(ethylene terphthlate), poly(sulfone), poly(ethyleneoxide)
are processed under trade names by different companies as parts or medical devices for
diverse medical dysfunctions. The most important parameters of long-term implantable
nondegradable materials are their biocompatibility, biostability and mechanical resistance
to wear [246].

3.4. Biodegradable Polymers

Synthetic biodegradable polymers can be tailored to have an improved and stable
range of mechanical and chemical properties compared to natural polymers. They do not
present the risk of causing an immune reaction or transmitting microbes or viruses, but
the issue of biocompatibility and possible long-term effects such as the appearance of scars
or inflammations arises. Among the most commonly employed biodegradable synthetic
polymers for biomedical applications are saturated aliphatic polyesters, polyanhydrides
and polyurethanes.

Poly(glycolic acid) (PGA), polylactic acid (PLA) and the copolymer poly(lactic-co-
glycolic acid) (PLGA) are saturated aliphatic polyesters frequently used for the manu-
facture of 3D scaffolds applied in tissue engineering, due to their biocompatibility and
biodegradability [247]. PLA is a material used extensively in biomedical applications
and very suitable especially for cardiac, dental or orthopaedic fixation devices, because
it is biocompatible. However, it is biodegradable over a long period of time and also can
be used for other implantable devices, especially in paediatric patients [248]. It is used
in regenerative medicine due to its ability to stimulate hard tissue regeneration in bone
grafting procedures, having an extraordinary capacity for bioresorption. Many studies
have been reported on PLA-HA [249] or PLA-polycaprolactone-hydroxyapatite composite
materials that have highlighted their promising preliminary results for biomedical ap-
plications [250]. As a hydrophilic and highly crystalline polymer, with a relatively fast
degradation rate in aqueous solutions or in vivo, PGA can be used in drug delivery [251],
biological adhesives/glues [252], oral surgical treatments and injectable microspheres [253].

Poly(ε-caprolactone) (PCL) is a useful biodegradable biomaterial that can slowly
degrade (in few years) under physiological conditions and is therefore used for long-
term implants (in the treatment of bone defects), drug delivery systems [254] and as
delivery platforms for various extracellular matrix proteins [255] or 3D scaffolds [256].
Polyanhydrides are hydrophobic polymers whose degradation occurs more through surface
erosion than volume. This feature is very practical in the case of the release of certain drugs
and especially important in the case of extremely strong drugs. Because water does not
penetrate before the polymer is eroded, the implanted drugs are kept safe [257]. The PCL
is conventionally used as a local (targeted) delivery vehicle especially for the controlled
release of chemotherapeutic agents [258].

Polyurethanes are biocompatible, biodegradable polymers with excellent flexibility,
durability and resistance. Due to their biostability, they are favourable inert materials
for development of medical devices [259], vascular grafts [260], prostheses [261], heart
valves [262,263], catheters [264], drug delivery and as porous scaffolds for tissue regenera-
tion [265].

Table 4 summarizes the recent developments of polymer-based biomaterials in the
biomedical domain.



Processes 2023, 11, 2696 16 of 31

Table 4. Polymeric materials used in biomedical applications.

Polymers Characteristics Applications References

Polyesters degradability, bioresorbability (new
polymer classes)

tissue engineering, nanoscaled drug
delivery systems [266]

Polyurethane

easily malleable and flexible,
biocompatibility, prominent mechanical

properties (high tensile strength,
toughness and resistance to

degradation)

biomedical devices (cardiovascular
surgery, orthopaedic surgery and

traumatology, reconstructive surgery,
gynaecology and obstetrics, gene

therapy, implantable vascular grafts)

[267,268]

Polyamides

biocompatibility, controlled porosity,
high processability, excellent stress

crack resistance, biocompatibility, good
mechanical strength and good stability

in human body fluid

antimicrobial wound dressings,
wound healing applications [269,270]

Polysiloxanes extensible elastomer, low tensile
strength and tensile modulus

implantable devices (vascular
prostheses), magneto-responsive

4D-printed bioproducts
[271,272]

Acrylics

good mechanical strength, resistant to a
wide range of chemicals, excellent

UV-light transmittance, good scratch
resistance, biocompatibility

odontological applications including
artificial teeth, dentures and denture

bases, obturators, provisional or
permanent crown, biomedical

applications

[273,274]

Polymeric composites

biocompatibility, high corrosion
resistance, very high compressive yield

strength, bioresorbable implant
material,

antimicrobial
properties

orthopaedic applications,
tissue engineering,

flexible antibacterial surfaces,
antiadhesive surface biomaterials,

acrylic bone cements, dental
adhesives, antiadhesive surfaces for

biomedicine, medical sutures

[275–277]

4. Composite Biomaterials

Composites are materials based on two or more different compounds in order to
improve the individual properties of materials such as surface characteristics, mechanical
strength and biocompatibility in order to be easy for manufacturing. Polymer-based
composites have shown an increased interest in biomedicine applications for drug release,
tissue engineering, regenerative medicine, wound dressings, surgical operations, medical
imaging in cancer detection and dental resin composites [278,279].

The recently developed biomaterials for their applications in the biomedical area are
shown in Table 5.

Table 5. Composite biomaterials for biomedical applications.

Material Characteristics Applications References

Smart elastomer composites rapid light-responsive self-healing
ability and shape memory

surgical sutures to promote wound
healing (as spiral-like stand) [280]

HNT-PVA-ALG-Hap composite
on alkali-treated Ti–6Al–4V alloy

substrate

biocompatible with the human
tissues

biomedical applications (bone
regeneration) [281]
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Table 5. Cont.

Material Characteristics Applications References

Polydopamine (PDA)-coated
hydroxyapatite (HA)-reinforced

polyvinyl alcohol (PVA) films

higher mechanical properties,
homogeneous mineral distributions,
high antibacterial capacities against

Acinetobacter Baumannii (A.
Baumannii), Staphylococcus aureus (S.
aureus) and Streptococcus mutans (S.
mutans), good biocompatibility with
fibroblast (L929) cells and MCS cells

biomedical fields (tooth-bone
treatments for coating, filling or

occlusion purposes)
[282]

Electrospun graphene
oxide/calcium hydroxyapatite/

polycaprolactone composites

biocompatibility, antimicrobial
activity

excellent biological
compatibility for

prospective application in medicine
and clinical dentistry biologically
(compatible matrix for potential

bone tissue regeneration with
antimicrobial effect)

[283]

Ternary nanocomposites,
including graphene oxide (GO),

hydroxyapatite (HAP) and
cadmium selenite (CdSe)

encapsulated into nanofibrous
scaffolds of polylactic acid

good wettability and
mechanical properties,

cell viability and cell growth
in vitro

advanced bioactive material
for effective

and fast wound healing, for tissue
engineering application

[284]

Dual mineral-substituted
hydroxyapatite (DM-HAP)

combined with biodegradable
polymer alginate–chitosan

(ALG-CS) and graphene oxide

improved antibacterial activity
performance and

bioactivity

tissue engineering applications
(orthopaedic applications as soft

bone tissue replacements)
[285]

NiFe2O4/NG/cellulose
composites

antibacterial activity against
Escherichia coli (Gram-negative

bacteria) and Bacillus subtilis
(Gram-positive bacteria)

biomedical applications
(as antibacterial material) [286]

Biocomposite based on
alginate/gelatine crosslinked with

genipin
thermal stabilization

bioengineering (support for
β-galactosidase enzyme

immobilization)
[287]

Chitosan/poly(vinyl
alcohol)/graphene oxide

(CS/PVA/GO) nanocomposites

biodegradable films with good
mechanical, chemical and biological

properties

tissue engineering and cell
regeneration [288]

CNF-NCG reinforced
drug-loaded PVA/MC/PEG

glutaraldehyde cross-linked novel
electrospun nanofibrous

bio-nanocomposites (BNCs)

biocompatibility, biodegradability transdermal drug delivery systems [289]

Biowaste-derived nanophase
yttrium-substituted

hydroxyapatite/citrate
cellulose/opuntia mucilage

(Y-nHAP/CC/OM)
biocomposites

potential bacterial resistance against
both Gram-positive and

Gram-negative strains, in vitro
cytocompatibility, considerable
mechanical, antibacterial and

biological properties, valorisation of
biowaste material

biomedical applications [290]

Hydroxyapatite
(HA)/nanostructured monticellite

ceramic composites

good in vitro bioactivity
biocompatibility and antibacterial

properties,
ceramic composites could induce

apatite formation in SBF

biomaterial for clinical applications
such as orthopaedic and dentistry [291]
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Summarizing, the main properties of biomaterials required for their applications in the
biomedical domain are presented in Figure 11, and the strategy for synthesis and processing
technologies applied in order to develop biomaterials for the use in biomedical fields is
presented in Figure 12.
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5. Conclusions and Future Perspectives

Progress in biomaterials will comprise the advance of supplementary functional
medical biomaterials and the extended usage of biomaterials in the novel areas of their
application. Nevertheless, the future may also suggest a prospect for researchers in the field
to reconsider essentially the method in which motivation is drawn from natural science.
Consideration of the natural mechanisms of complex dynamic performances of materials in
their medium may lead to the design/synthesis of innovative materials that replicates the
nature by reproducing the functional comportment of these biomaterials in order to acquire
new properties that are presently unreachable. The future research will be focused on a
new generation of bioinspired “smart”, multifunctional biomaterials for monitoring health
and for preventing biological crises. A serious rational stage in biomaterial design and
synthesis will be their recognition as models or templates of biopolymers and organisms
for multifunctional, active devices. The economic and social impact will be diminished by
reducing the costs related to the manufacturing process of existing chemicals and drugs.
This will need the progress and application of new methods from different areas such as
engineering, biology and the physical and chemical sciences.

Author Contributions: Conceptualization, M.C. and A.M.M.; methodology, A.M.M.; validation,
A.M.M.; resources, A.M.M.; data curation, M.C. and A.M.M.; writing—original draft preparation,
M.C. and A.M.M.; writing—review and editing, A.M.M.; visualization, A.M.M.; supervision, A.M.M.;
project administration, A.M.M. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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