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Abstract: With the advantages of non-pollution and energy-saving, hydrogen fuel cell hybrid vehicles
(HFCHVs) are regarded as one of the potential traveling ways in the future. The energy management
of FCHVs has a huge energy-efficient potential which is combined with the Internet of Things
(IOT) and auto-driving technologies. In this paper, a hierarchical joint optimization method that
combines deep deterministic policy gradient and dynamic planning (DDPG-DP) for speed planning
and energy management of the HFCHV is proposed for urban road driving scenarios. The results
demonstrate that when the HFCHV is operating in driving scenario 1, the traveling efficiency of
the DDPG-DP algorithm is 17.8% higher than that of the IDM-DP algorithm, and the hydrogen
fuel consumption is reduced by 2.7%. In contrast, the difference in the traveling efficiency and
fuel economy is small among the three algorithms in driving scenario 2, the number of idling/stop
situations of the DDPG-DP algorithm is reduced compared with that of the IDM-DP algorithm. This
will support further research for multi-objective eco-driving optimization of fuel cell hybrid vehicles.

Keywords: hydrogen fuel cell hybrid vehicle; hierarchical joint optimization; traveling efficiency;
fuel economy; urban roads driving scenario

1. Introduction

With the advent of connected vehicle technologies, connected vehicles (CVs) have a
great potential to significantly increase road safety [1], ride comfort, traffic efficiency [2,3],
and energy efficiency. At the same time, combined with energy-saving optimization of the
vehicle driving processes, green and safe travel has been achieved [4,5].

Hydrogen fuel cells have emerged as a crucial component for the future development
of hybrid vehicles with high energy efficiency due to their high efficiency, energy savings
and non-polluting advantages [6,7]. In order to enhance the vehicle’s driving requirements
and reduce operating costs, hydrogen fuel cell hybrid vehicles (HFCHVs) currently on the
market basically use a powertrain of hybrid fuel cells and lithium batteries [8]. Compared
with the single power system using hydrogen fuel cells in the vehicle, the hybrid power
system has a more complex structure and the power source energy management strategy
needs to be further optimized [9].

1.1. Energy Management of Literature Review

Currently, rule-based, optimization-based and learning-based strategies are the three
main types of energy management strategies used in hybrid vehicles. Rule-based energy
management strategies include fuzzy rule control, which is simple and practical, but of-
ten not optimal [10]. Optimization-based energy management strategies are divided into
global optimization and transient optimization. Then, as representative algorithms for
global optimization, dynamic programming algorithms mainly achieve global optimization
based on global driving information [11]. Transient optimization algorithms are mainly
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represented by equivalent fuel consumption minimization (ECMS) algorithms, which can
solve the optimal results from local driving information [12,13]. In recent years, due to the
self-learning and adaptation of learning algorithms for intelligent agents, learning-based
energy management strategies have been widely studied, which include deep reinforce-
ment learning algorithms and neural network learning algorithms [14,15]. Chen et al. [16]
constructed an online intelligent energy management controller based on two neural net-
work (NN) modules to improve the fuel economy of vehicles. Jia et al. [17] proposed
a novel energy management strategy for hybrid electric buses with fuel cell health and
battery thermal- and health-constrained awareness to decrease battery aging and total
operating costs. Tang et al. [18] proposed an energy management strategy for fuel cell
hybrid vehicles based on the deep Q-learning algorithm, where the lifetime of the fuel cell
and lithium battery was taken as an important objective during the optimizing process [19].
Zhang et al. [20] presented a new power management strategy to deal with the inaccura-
cies and uncertainties of terrain information and extend the battery life. Yang et al. [21]
developed a new method for calculating the fuel conversion factor of hybrid vehicles to
maintain the battery state of charge fluctuations within a reasonable range. In the urban
road driving scenarios, Jia et al. [22] applied a health-aware energy management strategy
for fuel cell hybrid buses considering air-conditioning control based on the TD3 algorithm
to decrease the driving economy costs. Anselma et al. [23] proposed an energy management
strategy for hybrid vehicles based on causal optimal control to reduce fuel consumption
while maintaining the battery state of charge.

1.2. Speed Planning of Literature Review

Currently, eco-driving of connected electric vehicles and connected fuel vehicles usu-
ally only optimizes vehicle speed planning, and energy consumption assessment is usually
based on engine fuel consumption models or battery consumption models [24–27]. How-
ever, due to the fact that the powertrains of hybrid vehicles usually consist of different
power sources, the eco-driving problem for hybrid vehicles requires coordinated optimiza-
tion of speed planning and energy management [28–30]. In terms of research on eco-driving
for hybrid vehicles, Bai et al. [31] proposed a hybrid reinforcement learning framework to
enable eco-driving at signalized intersections in mixed traffic scenarios. Wang et al. [32]
introduced a data-driven predictive control strategy for optimal control of connected ve-
hicles in mixed traffic scenarios. Liu et al. [33] presented a bilaterally convex method to
achieve eco-driving of fuel cell hybrid vehicles through signalized intersection scenarios.
Dong et al. [34] proposed a predictive energy-efficient driving strategy for connected elec-
tric vehicles in signalized intersection scenarios to reduce energy consumption and battery
life loss.

1.3. Research Motivation and Contribution

The above-mentioned literature revealed that the research of connected hybrid vehicles
needs to be deepened, and the multi-objective optimization of connected vehicles for
traveling efficiency and energy-saving driving has significant research value. Therefore,
this paper carries out a hierarchical multi-objective optimization research on the eco-driving
of speed planning and energy management for HFCHVs in urban road driving scenarios.
This study will have extremely important implications for the energy economy cost and
emission reduction of vehicles and traffic optimization. The relevant contributions of this
paper are specified below:

(1) In order to optimize the speed of connected vehicles, this paper proposes a DDPG
algorithm that improves the traveling efficiency of the HFCHV through traffic lights. When
passing through multiple traffic lights smoothly, the HFCHV using the DDPG algorithm
greatly reduces the traveling time in driving scenario 1, compared with the IDM algorithm.
The HFCHV using the DDPG algorithm has only a 5 s difference in traveling time compared
with the DP algorithm. Therefore, the DDPG algorithm proposed in this paper enables the
HFCHV to have excellent traveling efficiency.
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(2) In this paper, a multi-objective hierarchical optimization framework that combines
deep deterministic policy gradient and dynamic planning (DDPG-DP) for speed planning
and energy management of the HFCHV is proposed. During the driving scenario 1, the
fuel economy of the HFCHV using the DDPG-DP algorithm is 2.7% higher than that of
the IDM-DP algorithm, which can achieve the multi-objective optimization of traveling
efficiency and energy conservation for the hydrogen fuel cell hybrid vehicle.

The structure of this paper is as follows. In Section 2, the modeling of the powertrain
of the HFCHV and the driving scenario simulation models with traffic lights are described
in detail. In Section 3, the eco-driving problem for HFCHV is presented along with a frame-
work for a collaborative optimization strategy. The upper-level speed planning and the
lower-level energy management are discussed and described in detail in Sections 4 and 5,
respectively. The eco-driving findings are shown in Section 6, and the conclusion is shown
in Section 7.

2. Vehicles Modeling and Signal Timing

The power system of the HFCHV is usually composed of a lithium battery and
hydrogen fuel cell, and its structure topology is shown in Figure 1. The motor that powers
the vehicle through the transmission system is powered by the lithium-ion battery and the
fuel cell, which are combined and connected to the vehicle by a DC/DC converter. The
detailed parameters of HFCHV are shown in Table 1.
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Figure 1. Power system topology of HFCHV.

Table 1. Vehicle parameters of HFCHV.

Items Parameters (Unit) Value

Vehicle

Crub weight M (kg) 1380
Rolling resistance coefficient f 0.013

Wheel radius (m) 0.282
Air mass density ρ (kg/m3) 1.2
Vehicle frontal area Ar (m2) 2.23

Fuel cell
Maximum efficiency 0.596

Maximum power (kW) 50

Lithium-ion battery Capacity (Ah) 26
Maximum power (kW) 85

Motor
Maximum efficiency 0.92

Maximum torque (N·m) 271
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The longitudinal dynamics of the vehicle are as follows:

Preq = [m·(dv
dt

) + 0.5ρArcdv2 + mg sin θ + mg f cos θ]v (1)

where, Preq is the power demanded by the vehicle, m is the mass of the HFCHV, and ρ, Ar, cd
denotes the air density, windward area, and air resistance coefficient, respectively. This
paper mainly studies in a flat and straight single-road environment, so θ is set to zero.

2.1. Hydrogen Fuel Cell

Because hydrogen fuel cell is a complex nonlinear system, and empirical data are
commonly used in engineering models to fit the output characteristics of hydrogen fuel
cells. The energy conversion process of the hydrogen fuel cell system is described by the
following equation:

Pf c =
.

m f cLHVH2 η f c (2)

where, η f c is the efficiency of the hydrogen fuel cell hybrid power system, mH2 is the hydro-
gen consumption rate and LHVH2 is the low calorific value of hydrogen, the relationship
between instantaneous hydrogen consumption and power for this experiment is shown
in Figure 2.
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Figure 2. Hydrogen consumption rate and efficiency for hydrogen fuel cell. (The blue line represents
hydrogen consumption rate, the orange line represents the efficiency of hydrogen fuel cell).

2.2. Lithium Battery

In the hydrogen fuel cell hybrid power system, the lithium-ion battery can not only
cooperate with the hydrogen fuel cell to produce electrical energy to meet the power
demand of the whole vehicle but also be able to recycle the energy generated by the braking
of the HFCHV during the deceleration process to reduce the loss of energy consumption.
The equivalent circuit model of the lithium battery is as follows:

Pbat = Preq − Pf c

Ibat =
V−
√

V2−4RIntPbat
2RInt

d(SOC) = − Ibat
Q0

dt

(3)

where, V and RInt are the open-circuit voltage and internal resistance of the power cell,
respectively. The relationship between the internal resistance of charge-discharge, open
circuit voltage and state of charge (SOC) of the lithium battery model is shown in Figure 3.
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Figure 3. Relationship between internal resistance of charge-discharge, open-circuit voltage and
SOC of lithium battery. (The blue solid line represents internal resistance of charge-discharge, the
orange solid line represents the open-circuit voltage, and the dished line represents the SOC of
lithium battery).

2.3. Modeling of Traffic Light Signal

In this section, a fixed signal disturbing model is developed. There are n signals on
a straight road of length L and the distance from the ith signal to the starting point is Li,
Li ∈ [0, L], and i = {1, 2, 3, · · · , n}. The cycle duration of the ith signal is defined as Ti.

Ti
R + Ti

G = Ti (4)

When the vehicle arrives at the ith signal from the starting point, the time during
which the ith signal operates in its own signal cycle Ti

d(t) can be defined as:

Ti
d(t) = (Ti

0 + t)modTi (5)

where, Ti
R, Ti

G denote the duration of the ith red light and green light, respectively, Ti
0

denotes the initial operating time of the ith traffic light when the vehicle departs, and t
denotes the absolute driving time of the vehicle.

In order to avoid red-light running by the vehicle, in the next subsequent algorithm,
the driving time constraints of the vehicle are incorporated as follows:

Ti
d(t

i
d) ≥ Ti

R (6)

where, ti
d is the absolute driving time of the vehicle through the ith traffic light.

3. Analysis of Eco-Driving Problems

Eco-driving optimization for the HFCHV includes upper-level vehicle speed planning
and lower-level energy management control of energy storage systems [33]. The goal of
speed planning is to maximize travel efficiency and minimize the energy consumption of
the vehicle passing through all traffic lights. Based on the upper-level optimized results,
the lower-level energy management strategy optimizes the algorithm on the obtained
vehicle driving data, in order to obtain the optimal outputs from the various power systems.
Combined with the analysis results of the speed planning and energy management, the
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constraints of the relevant algorithms designed subsequently in this paper are specifically
shown in Equations (7) and (8). 

vk = vk−1 + a

sk = sk−1 + vk∆t

t(0) = 0, t(sk) = tk

v(0) = v0, v(sk) = vk

vmin ≤ v(sk) ≤ vmax

ti
l(t

i
k) ≥ Ti

r

(7)


SOC(0) = SOC0, SOC(end) = SOC0

SOCmin ≤ SOC(t) ≤ SOCmax

Pf c_min ≤ Pf c(t) ≤ Pf c_max

Pbat_min ≤ Pbat(t) ≤ Pbat_max

(8)

where, vk, vk−1, sk, sk−1 represents the vehicle speed and driving distance in the kth, (k−1)th
time, v0 is the vehicle speed at the starting timing, which is set to 0 in this paper. In order
to comply with the traffic rules in the urban road, the maximum and minimum speeds
of the vehicle at the position sk are set to 60 km/h and 0 km/h, respectively. SOCmin,
SOCmax, Pf c_min, Pf c_max, Pbat_min and Pbat_max represents 0.3, 0.8, 0 kW, 50 kW, −85 kW
and 85 kW, respectively.

4. Upper-Level Speed Planning Algorithm

The upper-level speed planning problem for the HFCHV passing through traffic light
intersection scenarios includes vehicle dynamics, signal lights and traffic condition con-
straints. In this section, the DDPG algorithm is proposed to optimize the energy-saving
potential and traveling efficiency of the HFCHV passing through traffic light intersec-
tion scenarios, and the Intelligent Driver Model (IDM) algorithm and the DP (Dynamic
Programming) algorithm are introduced, respectively.

4.1. IDM Algorithm

The IDM plans the acceleration of the vehicle by acquiring information about the
vehicle and the traffic lights to ensure that the vehicle passes through the traffic lights safely.
As one of the classical algorithms for speed planning, the acceleration control strategy of
the IDM model is as follows:

aIDM = amax

[
1−

(
v(t)
vmax

)4

−
(

L∗(v, ∆v)
∆x

)2
]

(9)

where, ∆v and ∆x are the speed difference and the relative distance to the previous vehicle,
respectively, and L∗(v, ∆v) is the desired distance, which is defined as follows:

L∗(v, ∆v) = l0 + max
[

0, vtx +
v·∆v

2
√

amax·b

]
(10)

where, l0 is the minimum vehicle spacing distance, which is set to 2 m to ensure safe driving,
tx is the desired time interval, which is set to 1 s, and b is the desired deceleration rate.

In order to safely pass through the upcoming traffic light intersection, this paper
considers the traffic light ahead as the front vehicle and assumes that the vehicle can
preview the traffic signal state within the signal sensing range. The acceleration of the
modified IDM model is reformulated as follows:

aI−IDM =

{
aIDM, Piss = 0

− vk
2

2∆x , Piss = 1
(11)
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where Piss is the traffic signal status, 1 means red light, 0 means green light or that the
vehicle is outside the signal sensing range.

4.2. DDPG Algorithm

Based on the nonlinear fitting ability and self-learning ability of deep reinforcement
learning, deep reinforcement learning has been widely researched on the traveling problems
at signalized intersection scenarios. Deep reinforcement learning algorithms are typically
employed to improve vehicle fuel economy, driving safety and traffic efficiency, according
to the signal phase and timing information of traffic lights.

On the basis of deep Q-learning, the DDPG algorithm applies the Actor network
µ to fit the policy function to output continuous action. The Actor network µ interacts
with the environment to generate action at, Critic network Q evaluates the performance
of the Actor network combined with Bellman’s equation and generates at+1. The DDPG
algorithm adopts the Actor-Critic network framework to update the Actor network and
Critic network parameters, which is shown in Equation (12).{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′
(12)

where θµ represents the parameters of the Actor network, θQ represents the parameters of
the Critic network.

The Critic network is updated by minimizing the Loss function, the Actor network
selects the optimal action policy by gradient update. The gradient of objective function
J(θµ) and Loss function L(θQ) are described in the following Equation (13):

L(θQ) = 1
N ∑

t

(
ri + γQ′(st+1, µ′(st+1

∣∣∣θµ′)
∣∣∣θQ′)−Q(st, at

∣∣θQ)
)2

∇θu J ≈ E
[
∇θu Q(s, a

∣∣θQ)|s = st, a = u(st|θu)
]
=

E
[
∇θu Q(s, a

∣∣θQ)|s = st, a = u(st)∇θu µ(s|θu )|s=st

] (13)

The pseudocode of the DDPG Algorithm 1 is shown as follows:

Algorithm 1 DDPG

1: Initialization : critic network and actor network with weights θQ and θµ, target network Q′ and
µ′ with weights θQ′ ← θQ , θµ′ ← θµ , memory pool R
2: For episode: 1:M do
3: Get initial states: s0
4: For t < smax do
5: Choose action at = µ(st|θµ ) according to the policy and state
6: Choose action at = µ(st|θµ ) according to the policy and state
7: Execute action at, reward rt and next state st+1
8: Store transition (st, at, rt, st+1) in memory pool
9: Store transition (st, at, rt, st+1) in memory pool
10: Sampling a mini_batch of transition from memory pool R

11: Set yi = ri + γQ′(st+1, µ′(st+1

∣∣∣θµ′ )
∣∣∣θQ′ )

12: Updating the critic network parameters with minimizing the Loss:

L(θQ) = 1
N ∑

t

(
ri + γQ′(st+1, µ′(st+1

∣∣∣θµ′ )
∣∣∣θQ′ )−Q(st, at

∣∣θQ)
)2

13: Updating the actor network parameters :

{
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

14: if vehicle passed all traffic lights successfully: t = e10
15: End
16: End

In a single-lane training environment with many traffic light intersection scenarios,
the DDPG intelligent agents take action based on the vehicle state information which is
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observed at each discrete time step ∆t. In order to satisfy the real road driving requirements,
the speed limit of the vehicle is 0 m/s to 60 km/h. Meanwhile, in order to ensure the driving
comfort of the driver, the acceleration limit of the vehicle is −2.0 m/s2 to 1.4 m/s2. As for
the speed planning problem through traffic lights, the state space of the DDPG algorithm is
set to X =

{
v s

}
, s is the driving distance of the vehicle from the starting point, smax is the

maximum length of the road to be traveled, and the termination condition of the driving
process through traffic lights is s ≥ smax, and the action space is set to the acceleration a of
the vehicle. At the same time, a reward function for multi-objective optimization is also
designed, and the formula is as follows:

R = ω1·r1 + ω2·r2 + r3

r1 =
∣∣∣ .
m f c

∣∣∣
r2 = abs(v(t)− vmax)/5

r3 =

{
−100, P(tp) = 0

100, P(tp) = 1

(14)

where r1 guides the agent to improve energy saving when passing multiple traffic lights, r2
mainly guides the vehicle to be able to pass the traffic lights quickly, r3 guides the agent to
control the vehicle to pass the traffic lights smoothly without violating the traffic rules, and
tp is the time for the vehicle to pass the traffic lights.

4.3. DP Algorithm

In this section, as a classic global algorithm, the dynamic programming algorithm is
used as the optimal benchmark algorithm, and the multi-objective function of the dynamic
planning algorithm is set as follows:

J =
∫ tM

0
M(av + mg f v + 0.5

ρArcd
M

v3) + ε|v− vmax|dt (15)

The state equation of the dynamic programming algorithm is as follows:{
v(l + 1) = v(l) + a(l)

t(l + 1) = t(l) + 1
v(l+1)

(16)

where, with the condition of ensuring the calculation accuracy of the algorithm, the simula-
tion step of the algorithm l is set to 1 m.

5. Energy Management

In order to obtain the online driving data information by the upper-level speed plan-
ning algorithm, this section uses the Dynamic Programming algorithm to solve the energy
management problem of the HFCHV, in order to obtain the optimal energy-saving results.
Based on the constraints related to the energy management problem of the HFCHV in
Section 3, the state variable of the DP algorithm is the SOC of the lithium battery, and the
action variable is the output power of the hydrogen fuel cell, and the objective function of
the hydrogen consumption is established as follows.

J = min
∫ tM

0

.
m f cdt (17)

In this section, the energy management control strategy of the DP algorithm is used
for the maintenance simulation of lithium battery power. In the DP algorithm, the initial
and final SOC values of the power cell are set to 0.6 to minimize the hydrogen consumption
of the hydrogen fuel cell during the vehicle operation process.
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6. Results and Discussion
6.1. Test Scenarios and Trajectories

In this section, eco-driving simulation tests are conducted on three hierarchical op-
timization algorithms based on the MATLAB (2019 version) and pycharm simulation
platforms. The global optimality of the DP algorithm is used as a benchmarking method
for both the upper-level speed planning and the hierarchical optimization algorithms.
In order to facilitate the subsequent analysis and study of the vehicle during the actual
operation process, this study is divided into two scenarios, where the parameter settings of
driving scenario 1 and driving scenario 2 are shown in Table 2, respectively. To verify the
performance of the proposed algorithm in different driving scenarios, two different urban
roads are chosen in this section. The position of the vehicle is assumed as 0 m in the two
driving scenarios, the position S represents the distance of the ith traffic light. The green
light duration is TG, the red light duration is TR, the initial periodic time t0 represents the
red signal period, the green light period and the passed green light period at the start of the
ith traffic light. In order to reflect the randomness of the passed green light time in different
traffic lights at the start, the initial periodic time t0 is set to different values for different
traffic lights in two driving scenarios.

Table 2. Parameter settings of road scenario.

Scenario 1 Scenario 2

Route length L (m) 3000 2200
Traffic light number n (-) 7 5

Position S (m) 300, 700, 1000, 1700, 2100, 2500, 3000 250, 900, 1300, 1650, 2200
Green light duration TG (s) 35, 20, 30, 40, 25, 30, 20 25, 40, 20, 30, 30
Red light duration TR (s) 25, 30, 25, 30, 20, 30, 40 15, 20, 30, 25, 35
Initial periodic time t0 (s) 40, 10, 20, 50, 25, 15, 50 20, 30, 40, 10, 0

Under the principle of complying with traffic rules, in order to improve the traveling
efficiency and fuel economy of the HFCHV through traffic light intersection scenarios,
this section carries out simulation tests with three different algorithms in two driving test
scenarios, and the trajectory of the HFCHV is shown in Figures 4 and 5.
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As shown in Figure 4, in driving scenario 1, the total traveling time of the HFCHV
using DP, DDPG and IDM algorithms are 235 s, 240 s and 292 s, respectively. The number of
the idling/stop situations of the DP, DDPG and IDM algorithms are 1, 0 and 4, respectively.
Compared with the IDM algorithm, the traveling efficiency of the HFCHV using the DDPG
algorithm is improved by 17.8% and there is no idling/stop situation. Therefore, in terms
of traveling efficiency and driving smoothness, the speed planning of the HFCHV using the
DDPG algorithm is significantly better than that applying the IDM algorithm. Meanwhile,
the difference in traveling time between the HFCHV using the DDPG algorithm and the
HFCHV using the DP algorithm is only 5 s, which is closer to the overall optimized result.

As shown in Figure 5, the total time taken by the HFCHV using the DDPG, DP and
IDM algorithms in driving scenario 2 is 165 s, 164 s and 165 s, respectively, and the traveling
time is essentially the same. However, the HFCHV using the IDM algorithm has idle stops
when passing through the first signal light, while the HFCHV using the DDPG and DP
algorithms can avoid this situation, which will favor the smooth driving style adopted by
the HFCHV. Therefore, in the upper-level speed planning, the HFCHV using the DDPG
algorithm can present superior optimization results in different driving scenarios, and the
overall performance is better than that using the IDM algorithm.

6.2. Optimization of Hierarchical Eco-Driving Algorithms

Based on the analysis above, the three speed planning algorithms (IDM, DDPG and
DP) for the HFCHV passing through traffic lights are established, respectively. In this
section, with the aim of minimizing the hydrogen consumption of the hydrogen fuel cell
and combining with the optimization results of the upper-level speed planning algorithm,
three hierarchical eco-driving optimization algorithms (IDM-DP, DDPG-DP and DP-DP) are
established for the HFCHV, and the simulation analysis is carried out in driving scenario 1
and driving scenario 2.

As can be seen from Figures 6–8, during the battery SOC-maintenance simulation
process, the battery final SOC based on the three hierarchical algorithms can all be main-
tained at around 0.6. The driving behaviors of large acceleration and deceleration as well as
stopping for the HFCHV using the IDM algorithm during the upper-level speed planning
process. Therefore, as shown in Table 3, the HFCHV using the IDM-DP algorithm in driving
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scenario 1 has the highest hydrogen consumption of 22.0786 g. Combined with the results
in Section 6.1, it can be seen that the traveling efficiency and fuel economy of the HFCHV
using the DDPG-DP algorithm is better than that using the IDM-DP algorithm. Meanwhile,
the traveling efficiency of the HFCHV using the DDPG-DP algorithm is closer to that using
the DP-DP algorithm.

As shown in Figures 9–11, the final SOC of the HFCHV battery using the three
algorithms can still be maintained at around 0.6 in scenario 2. Additionally, as can be seen
in Figure 9, the overall vehicle power of the HFCHV using the IDM algorithm is significantly
increased due to the speed drastic change, which results in a significant increase in the
power output of the hydrogen fuel cell. As shown in Table 4, the hydrogen consumption
of the HFCHV using the DDPG-DP and IDM-DP algorithms is 13.7714 g and 13.6093 g,
respectively, although the hydrogen consumption of the HFCHV using the DDPG-DP
algorithm is slightly higher than that using the IDM-DP algorithm. In the upper-level speed
planning process, the HFCHV using the DDPG algorithm is able to pass through multiple
traffic lights smoothly without stopping, whereas the HFCHV using the IDM algorithm
needs to stop and wait, which undoubtedly increases the burden on the road traffic access.
As a result, compared with the HFCHV using the IDM-DP algorithm, the HFCHV using
the DDPG-DP algorithm is more advantageous in terms of comprehensive performance
with almost the same fuel consumption.

Table 3. Comparison of hydrogen fuel economy in scenario 1.

Hierarchical Algorithms Hydrogen Consumption (g) Final SOC

DDPG-DP 21.4832 0.601
IDM-DP 22.0786 0.6
DP-DP 16.8230 0.598
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Table 4. Comparison of fuel consumption in scenario 2.

Hierarchical Algorithms Hydrogen Consumption (s) Final SOC

DDPG-DP 13.7714 0.6
IDM-DP 13.6093 0.6
DP-DP 11.3240 0.6

7. Conclusions

The paper proposes a hierarchical multi-objective optimization algorithm for speed
planning and energy management of the HFCHV using the DDPG-DP algorithm. In terms
of the upper-level speed planning for the HFCHV, the algorithms of IDM, DDPG and DP
are proposed, respectively, and a multi-objective cost function is designed in the DDPG
algorithm. For lower-level energy management for the HFCHV, the DP algorithm for
energy management is proposed to minimize the overall hydrogen consumption based on
the upper-level speed planning algorithm. Meanwhile, two traffic driving scenarios are
established in the meantime for verification and the results are shown as follows:

(1) In terms of traveling efficiency, the DDPG algorithm in the HFCHV’s upper-
level speed planning can significantly reduce idling/stopping, avoid parking and sudden
acceleration and deceleration during the driving process in the two driving scenarios.
Because this can improve the vehicle traveling efficiency, it is beneficial for reducing the
road traffic jam and extending the lifetime of the vehicle.

(2) In terms of fuel economy, in driving scenario 1, the HFCHV using the DDPG-DP
algorithm improves by 2.7% compared to that using the IDM-DP algorithm. Although the
fuel economy of the HFCHV using the DDPG-DP algorithm is essentially the same as that
of the IDM-DP algorithm in driving scenario 2, the HFCHV using the DDPG-DP algorithm
reduces the number of idling/stop situation, which is more meaningful for improving road
traffic smoothness.

Based on the analysis of the previous result, compared to the IDM-DP algorithm, the
proposed DDPG-DP algorithm has a better comprehensive performance in the field of
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decreasing fuel consumption and improving the traveling efficiency of the HFCHV. In future
work, the energy-saving potential of the HFCHV will be further enhanced by combining
speed planning with energy management. Meanwhile, the computation efficiency of the
algorithm will be further improved to guarantee the online application of the HFCHV.
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