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Abstract: The chemical and biotechnology industries are facing new challenges in the use of renew-
able resources. The complex nature of these materials requires the use of advanced techniques to
understand the kinetics of reactions in this context. This study presents an interdisciplinary approach
to analyze cofactor coupled enzymatic two-substrate kinetics and competitive two-substrate kinetics
in a fast and efficient manner. By studying the adsorption energy distribution (AED), it is possible to
determine the individual parameters of the reaction kinetics. In the case of a single alcohol reaction,
the AED is able to identify parameters in agreement with the literature with few experimental data
points compared to classical methods. In the case of a competitive reaction, AED analysis can auto-
matically determine the number of competing substrates, whereas traditional nonlinear regression
requires prior knowledge of this information for parameter identification.

Keywords: kinetic modeling; alcohol dehydrogenase; adsorption energy distribution

1. Introduction

In recent years, biotechnology has steadily gained increased importance in the chemi-
cal industry [1–4]. Biotechnology can offer sustainable alternatives to traditional chemical
production methods, using microorganisms and enzymes to produce chemicals with high
selectivity and fewer by-products, as well as less hazardous waste than conventional pro-
cesses. Biotechnological processes also provide the potential to reduce production costs by
using cheaper renewable raw materials, while operating at ambient pressure and consider-
ably lower temperatures than traditional chemical processes. In addition, stereoselective
products, such as pharmaceuticals, nutraceuticals, or specialties, are comparatively easy to
produce [2,5–8]. Thus, biotechnology represents a very good opportunity to achieve the
sustainable development goal (SDG) 12, ensuring sustainable consumption and production
patterns. However, there are several challenges associated with the industrial application
of biotechnological production processes [9,10], with scaling up from the laboratory to the
industrial scale being one of the biggest challenges. This can lead to significant differences
in yield and product quality between laboratory and industrial scale. Moreover, optimiza-
tion of these highly complex processes can be difficult, as they can be sensitive to changes
in environmental conditions, and maintaining stability over long production runs can be
ambitious. Yet, mathematical modeling can play a crucial role in tackling these challenges,
providing a cost-effective and efficient way to identify process parameters and optimize
production [11–14]. However, model development itself presents a challenge that requires
proper experimental and numerical analysis.

Based on assumptions of a reaction mechanism, a kinetic model can be postulated.
Afterward, the parameter regression for a specific model is usually performed based on
experimental data, applying least squares minimization or maximum likelihood estimation.
In the case of nonlinear regression, various mathematical methods and different compu-
tational tools can be applied, potentially providing significant differences in the resulting
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parameter estimates [15]. Therefore, it is important to carefully select the calculation tool
for the parameter regression, especially since, for nonlinear regression, the results may
depend on the initial values [16]. Of course, kinetic models can include multiple substrates
and/or products. Often, a parameter is then assigned to the individual components, which,
depending on the reaction mechanism, describes, e.g., an affinity with the enzyme or an
enzyme complex [17,18]. For more complex reaction mechanisms, computer tools can assist
in model identification by offering a database of candidate models that account for a vast
pool of possible reaction mechanisms [15,19]. However, internal parameter estimation tools
may use a rather simple solver, e.g., the gradient-free Nelder–Mead method, which may not
be the most effective for parameter estimation in nonlinear models [15]. Incremental model
identification and model reduction are additional tools used to systematically generate
suitable model candidates and eliminate unidentifiable parameters [20,21]. Furthermore,
model-based optimal experimental design provides a systematic approach for discriminat-
ing between different model candidates with limited experimental effort [22–24].

This contribution describes a numerically robust approach to analyzing assays for
enzymatic two-substrate reactions with and without competing substrates. The approach
is based on the estimation of the adsorption energy distribution (AED), which allows
for the identification of the number of individual substrates and an estimation of the
kinetic parameters of different substrates in a mixture for an enzymatic reaction using
the non-selective measurement of co-factor consumption. The results of the proposed
AED-based method, which was introduced and validated for single-substrate enzymatic
reactions in our preceding work [25], are compared with parameter estimates obtained
from classical non-linear regression based on concentration measurements. As was previ-
ously demonstrated, the AED-based method requires only a small number of composition
measurements while avoiding the need for costly separation of individual products, such
as through high-performance liquid chromatographic (HPLC) methods. As a result, it
has the potential to significantly reduce the time and cost of model identification. This
interdisciplinary approach combines ideas from systems engineering, transport process
analysis, and biotechnology and may encourage increased modeling of multisubstrate
enzymatic processes in industry to overcome the above-mentioned challenges for industrial
application.

2. Materials and Methods

As mentioned above, the choice of the kinetic model must be made carefully, as
different reaction mechanisms are mathematically described by different kinetic equations.
For alcohol dehydrogenase (ADH), various reaction mechanisms have been published
in the literature, some including inhibition while others do not. Moreover, some are
contradictory, even for ADHs of the same origin/species [26–34]. Since the focus of the
present study is not to discriminate reaction mechanisms but to present a new approach
for parameter regression, a simple three-parameter extended Michaelis–Menten model
according to Equation (1) is considered. This kinetic model assumes that substrates alcohol
and cofactor bind to the enzyme randomly and independently without any inhibition
coefficient [17]. This random mechanism for ADH is also part of the discussion in the
literature [26–28,32,34].

v(c) = vmax
cs1

KM1 + cs1

cs2

KM2 + cs2
(1)

In enzymatic two-substrate reactions, one set of experiments often keeps one substrate
concentration constant and only varies the other. In a second set of experiments, the
varied concentration is then changed. This leads to a high effort of experiments and is
not necessary at all because, in this way, only information about the varied substrate
can be obtained for each set. The simultaneous variation of both substrates reduces the
experimental effort while simultaneously increasing information density.
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The subsequent sections describe the AED-based method for analysis of a two-
substrate kinetic as well as the procedure for the experimental analysis for the example of
ADH with substrate 1-propanol and 2-butanol, respectively.

2.1. Adsorption Energy Distribution

The basic assumption used in this study is the analogy between enzyme kinetics
and adsorption equilibria. In an enzymatic reaction, a substrate molecule adsorbs to
the active center of the enzyme, where it is then converted to the product. According
to Bisswanger [17], “this phase can be considered as a quasi-equilibrium state, which is
maintained for a limited period”, called steady-state. This quasi-equilibrium is analogous
to the adsorption equilibrium of a conventional adsorption process. In a previous study,
we have shown the validity and the use of AED for the analysis of enzyme kinetics for a
uni–uni reaction [24] described by the well-known Michaelis–Menten approach. In this
study, we extend this approach to a bi–bi reaction for the example of ADH, which extends
the kinetic model by a second term for the second substrate cs2/(Km2 + cs2), cf. Equation (1).
Refer to the original work for the uni-uni reaction [25] for a more thorough description of
the fundamentals.

The AED was originally developed for the analysis of heterogeneous adsorption
surfaces. Based on the general case of a continuous distribution of arbitrary energy levels,
the heterogeneous adsorption isotherm can be described according to Equation (2) [35],
which determines the total amount of solute adsorbed via the integral over the adsorption
energy ε, considering the product of the AED f (ε) and the local adsorption model Θ(ε,c).
The integration limits min and max correspond to the minimum and maximum adsorption
energies [36].

q(c) =
max∫

min

f (ε)Θ(c, ε)dε, (2)

In order to transfer Equation (2) to enzymatic reaction kinetics, the local adsorption
isotherm is replaced by the underlying reaction kinetics. In this case, a simple two-substrate
kinetic, as described in Equation (1), is considered. The adsorption energy, as a measure of
the affinity of the adsorptive to the adsorbent can be expressed by the Michaelis constant
Km, which is a measure of the affinity of the substrate to the enzyme. Since a two-substrate
kinetic is considered, two Km values (Km1, Km2) must be used, and the integration is to be
performed from the minimum to maximum affinity (analogous to respective minimum
and maximum adsorption energy). The local adsorption model will be substituted by the
kinetic equation. The values of the integration limits are suggested to be depending on
the minimum and maximum concentration of experimental data [37]. For the numerical
evaluation, a discrete form is used, which is given in Equation (3) for each local reaction
rate, where ∆Km1 is the grid spacing around Km1,i and ∆Km2 is the grid spacing around
Km2,i, respectively, for a specific pair c1,j and c2,j.

v(c1, c2) =
Km1,max

∑
Km1, min

Km2,max

∑
Km2,min

f (Km1,i, Km2,i) · v
(
Km1,i, Km2,i, c1,j, c2,j

)
∆Km1∆Km2 (3)

In order to derive the AED from this equation using raw data of the reaction rates,
the expectation maximization (EM) algorithm with maximum likelihood estimation, as
represented in Equation (4), is used, as it is a very robust method for parameter estimation
and is expected to converge to the global optimum for Gaussian and Poisson distributed
data [36]. For the application of the EM algorithm, a uniform distribution over all Km
intervals is assumed as the initial estimate for f (Km1, Km2), also referred to as the “total
ignorance guess” [36]. A scheme of the total AED algorithm is shown in SI.

min
(

1
2πσ2

) n
2

exp −
(

∑n
i=1(vi(Km1, Km2)− v̂i)

2

2σ2

)
(4)
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The outcome of the AED analysis is a dimensionless distribution function characterized
by a prominent peak aligning with the respective Km values. The conceptual methodology
behind the AED-based approach is further illustrated in Figure 1 for a simple bi–bi reaction.
Using a set of experimentally derived reaction rates (depicted in Figure 1a), which also
serves as the starting point for NLR, a computation of the AED is performed, resulting
in a distribution diagram (depicted in Figure 1b). Subsequently, the kinetic parameters
are deducted from specific peak information, and a response surface can be calculated
(depicted in Figure 1c). The positions of the x- and y-axis in Figure 1b correspond to Km1
and Km2, while the volume below the peak corresponds to vmax.
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Figure 1. Diagrammatic representation showcasing the utilization of the AED approach in the context
of an enzymatic bi–bi reaction. (a) Empirically obtained dataset of reaction rates featuring simulta-
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from the AED analysis.

For classical nonlinear regression (NLR), the sum of squared error (SSE) is minimized.
As the experimental values are very small, the SSE is standardized; see Equation (5).

min ∑n
i=1(vi(vmax, Km1, Km2)− v̂i)

2

v2
i

(5)

In comparison to NLR, the AED-based method has two major advantages: First, the
AED-based method does not require good initial estimates or a global optimization method
of the sum of squares residuals for the identification of the optimal parameter values.
Second, its main strength is its application to the determination of competitive substrate
kinetics, in which different substrates act analogously to different adsorptives without
explicitly measuring the individual substrate concentrations since, for each substrate, an
individual peak will occur. The position of the peaks provides information about the
different Km values, while the volume of the peak corresponds to the respective vmax values.
While a direct assignment to a specific component, as with HPLC, is not necessary, it
is sufficient to follow the course of the reaction via the cofactor concentration. Thereby,
conclusions can be drawn about the reaction rates of different alcohols in a mixture of
substrates, eliminating the need for complex analysis. A major benefit of the AED-based
method is that, unlike conventional methods, the number of substrates does not need to be
known a priori, while the information on the number of substrates has to be determined a
priori from, e.g., dedicated HPLC analysis for classical NLR-based parameter estimation.
In the following, an overview of advantages and disadvantages is listed in Table 1.
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Table 1. Overview of advantages and disadvantages of NLR and AED method.

Method Advantage Disadvantage

NLR
Fast calculation (ms–s), established method, diverse
(commercial) tools (with GUI) available, many of
different solvers available

Initial value necessary, results depends on initial
values, local minima can be found, number of
competing substrates needs to be known, competing
substrates must be analyzed individually, more
experimental data necessary

AED

No initial values necessary, jet results are independent
of initial values. Automatic identification of
competing substrates, therefore no need for
time-consuming individual analysis, EM algorithm is
guaranteed to converge to the global optimum at
every iteration for Poisson and Gaussian distribution
data, less experimental data necessary

Slow calculation (s–min), complex method, limited
solvers available

2.2. Experimental Desgin

To analyze the reaction rate of ADH, batch experiments were performed in which the
increase in NADH (at 340 nm in a UV-1600PC spectrometer) was measured at ambient
temperature. Initial slope experiments are simple to perform and commonly used in
enzyme kinetic analysis as they represent the quasi-equilibrium [17]. Furthermore, the
results can be directly implemented into the differentiated form of the kinetic equation,
e.g., Equation (1). Stock solutions of 1-propanol (Carl Roth, 99.5% for synthesis), 2-butanol
(Carl Roth, 98.5% for synthesis), a mixture of both alcohols, NAD (Carl Roth, 98% for
biochemistry), and ADH from S. cerevisiae (Sigma Aldrich, A7011-75KU, Lot SLCC0980)
were used. Both substrates, as well as buffer (final 100 mM sodium phosphate buffer,
pH 8.8), were added to a cuvette in which the reaction took place. The cuvette was
placed in the spectrometer. The reaction was started by the addition of enzyme stock
solution and pipetting up and down. The initial reaction rate was measured for 10 s. The
experimental data for one alcohol are listed in Table S1, and the mixture of two alcohols in
Table S2, respectively. All experiments were performed as triplets; standard deviation for
all experiments is listed in the tables.

2.3. Data Analysis with Matlab R2022b

The classical nonlinear regression was performed by means of the lsqnonlin function,
applying the Levenberg–Marquardt algorithm to minimize the standardized sum of squares
of the residuals of observed v̂ and calculated v. Lower and upper bonds were set to 0 and
inf for each parameter. All other options were left at the default setting. For application of
the EM to calculate AED the axes were set to the measuring range of alcohol and co-factor.
Details are provided in the supporting information. For further analysis of the results,
the standard error of the estimates was calculated manually according to our previous
work [25].

3. Results and Discussion

In the following the application of the AED-based method is described and compared
with classical nonlinear regression for the ADH-based conversion of 1-propanol and 2-
butanol. Section 3.1 first presents the application of the AED-based approach to reactions
with a single alcohol. The results of the different methods are further compared with
literature data. In Section 3.2, the AED-based method is extended to the analysis of
competing alcohols in a mixture and compared with the results obtained by classical
nonlinear regression.

3.1. Single Alcohol Reaction

The kinetic characterization of ADH involved conducting initial slope experiments
utilizing ten different initial concentrations of alcohol and co-factor, which were randomly
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assigned to each other. Figure 2 illustrates the Michaelis–Menten diagram with experi-
mental data (cf. Table S1 for the numerical details), including the response surface for the
reaction kinetic model with the parameters retrieved by AED-based estimation (Figure 2a)
and nonlinear regression (NLR) (Figure 2b) with initial values of vmax = 1, Km1 = 1, and
Km2 = 1 for the conversion of 2-butanol. The corresponding parameters and standard errors
are summarized in Table 2.
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Table 2. Reaction kinetic parameters of ADH for 2-butanol and propanol determined via AED-based
estimation and NLR with initial values of vmax = 1, Km1 = 1, and Km2 = 1.

Alcohol Parameter
AED NLR

Value S.E. [%] Value S.E. [%]

2-butanol

vmax [mol s−1 g−1] 3.06 × 10−7 45.7 1.96× 10−7 193.05
Km,alc [mM] 139.50 53.8 1.30 389.65

Km,NAD [mM] 1.25 76.2 3.11 280.62
SSE 0.65 2.66

propanol

vmax [mol s−1 g−1] 8.00 × 10−6 3.9 1.60 × 10−5 95.17
Km,alc [mM] 11.35 14.5 1.30 192.10

Km,NAD [mM] 0.55 11.7 3.11 138.34
SSE 0.0056 0.60

As can be seen at first glance, the results of the two methods differ considerably. This
applies to both a qualitative (shape of the area) and a quantitative analysis (cf. Table 2).
It is noteworthy that the standard error of the parameters is significantly larger for the
NLR estimates than for the AED-based estimates, which is also evident from the sum of
squared errors. The qualitative difference in the response surface is remarkable. In the
NLR, the Km,alc is below the smallest experimental value, which leads to an insensitivity
for the alcohol concentration. Therefore, the surface looks like a straight ramp, which
only increases with the cofactor concentration. The results of the analysis of propanol are
analogous as can be seen in Table 2. The resulting peaks of AED analysis are shown in
Figure S1.

The Km value for 2-butanol for the reaction of ADH from S. cerevisiae was determined
to be 93.3 mM ± 36.33% by Nealon et al. [38], while the manufacturer gives a Km value
of 140 mM [39]. The parameter estimation based on the AED (139.50 mM) agrees very
well with these values, whereas the analysis by NLR (1.30 mM) deviates significantly. The
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Km value for NAD for ADH from S. cerevisiae is reported in the literature to be in the
range of 0.11–0.81 mM as it differs with alcohol and depends on the type of isozyme [30].
Furthermore, the Km value depends on the pH value, whereby a Km value of 0.2 mM for
ADH from yeast is reported for a pH of 8.5 [33]. Dependence on alcohol is evident in the
AED-based method, where a value of 1.25 mM for 2-buthanol and 0.55 mM for propanol as
the substrate is reached. Both values are quantitatively consistent with literature values.
The NLR method calculates the same Km value for both alcohol substrates, which is 3.11 mM
and somewhat high compared with literature values. The Km value of propanol for ADH
from S. cerevisiae was determined to be 2.6 mM, 11 mM, and 27 mM for each isozyme
respectively [30], and 5.7 mM [40]. Although the values of both methods used in this
study are closer to each other than for 2-butanol, the value of the AED method (11.35
mM) agrees more closely with the differing literature values compared with the NLR
estimate (1.30 mM). It is to be expected that the maximum reaction rate for the linear
alcohol propanol is significantly higher than for the secondary alcohol 2-butanol, which is
documented in the literature [29,38]. Remarkably, the NLR predicts the same Km values
for 2-butanol and propanol and the corresponding co-factor. However, the NLR estimates
depend considerably on the initial values, which is a well-known problem when utilizing
local optimization algorithms, such as the applied Levenberg-Marquardt algorithm [25,41].
The NLR estimates for alternative initial values are listed in Table S3. It can be seen that the
algorithm apparently always runs into a local minimum, as no significant change can be
observed between the initial parameter of Km values and the calculated parameter, while
the SSE differs. It may be assumed that the NLR cannot cope with the small number of
experimental data and that a higher experimental effort would have to be made to obtain
more reliable values [16]. However, even with an extension of experimental data up to
19 data points for the example of 2-butanol (cf. Table S1), NLR is not able to identify
unambiguously due to numerical difficulty [18].

To sum up, the kinetic parameters determined with AED estimation agree well with
values reported in the literature, while the NLR results are very sensitive to the initial values
and show larger deviations with comparably large standard errors. Therefore, both the
experimental method and the method for parameter identification by means of the AED-
based method are deemed reliable, enabling the application of this approach for actual
assessments of competing substrates. It should be emphasized that all parameters could be
determined by AED at just ten data points (30 individual experiments, as triple determination
was performed) with simultaneous variation of alcohol and cofactor concentrations.

3.2. Competing Alcohol Reaction

A common approach to describe the competing two-substrate kinetics is the simple ad-
dition of the individual kinetics [42–45]. In this study, this is the addition of two individual
v according to Equation (1) to a vtotal. Figure 3 illustrates the Michaelis–Menten diagram
with experimental data (cf. Table S2 for numerical details) as well as the response surface
of the reaction kinetic model based on the parameter estimates determined by AED-based
estimation for a mixture of propanol/2-butanol with a mole content of 50/50 (a) and 25/75
(b). The corresponding kinetic parameters are listed in Table 3.

As can be seen, there is a good qualitative agreement of experimental data with the
response surface. It has to be noticed that the AED-based approach has automatically
detected the correct number of alcohol substrates, which is two in all cases. Therefore, two
peaks appear in the AED analysis for all three mixtures (cf. Figure S2).

The kinetic parameters were also calculated from the experimental data using the local
NLR method, for which the number of alcohols has to be specified beforehand. Table 4
shows the calculated parameters, determined for the initial values of 1. On the one hand,
it can be seen that both the SSE and the S.E. are significantly higher than with the AED
method. On the other hand, one vmax value is identified as 0, while the corresponding
Km values have extremely high S.E. Thus, the NLR is not able to distinguish between the
different alcohols. It only identifies one alcohol even though the model equation assumes
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two alcohols since this makes no difference to the minimization of the least squares as long
as the values of the individual alcohols are not identifiable. This issue is effectively avoided
by the inherent reconvolution in the estimation of the AED, which does not only resolve
individual substrate kinetics from the experimental data but enables the identification of
parameter estimates with a relatively small set of experimental data.
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Figure 3. Kinetic analysis of ADH with substrate mixture propanol/2-butanol and cofactor NAD at
ambient temperature in 100 mM phosphate buffer (pH 8.8), Area represents sum of two individual
kinetics according to Equation (1). (a) AED-based estimation for 50/50; (b) AED-based estimation for
25/75.

Table 3. Reaction kinetic parameters of ADH for a mixture of propanol/2butanol (mol content)
determined via AED-based estimation.

Peak Parameter
50/50 25/75

Value S.E. [%] Value S.E. [%]

1
vmax1 [mol s−1 g−1] 3.35 × 10−6 4709 3.53 × 10−6 929

Km,alc1 [mM] 28.44 5517 62.60 792
Km,NAD1 [mM] 0.75 1202 0.85 298

2
vmax2 [mol s−1 g−1] 1.54 × 10−6 9865 2.83 × 10−7 11,796

Km,alc2 [mM] 2.81 37,724 11.35 14,225
Km,NAD2 [mM] 1.15 5146 0.65 3641

SSE 1.4954 0.0650

Table 4. Reaction kinetic parameters of ADH for a mixture of propanol/2-butanol (mol content)
determined via NLR with initial values of vmax = 1, Km1 = 1, and Km2 = 1.

Peak Parameter
50/50 25/75

Value S.E. [%] Value S.E. [%]

1
vmax1 [mol s−1 g−1] 1.41 × 10−5 1 × 1011 9.39 × 10−6 3 × 1010

Km,alc1 [mM] 1.04 4 × 107 1.10 2 × 107

Km,NAD1 [mM] 3.14 1 × 107 3.18 5 × 106

2
vmax2 [mol s−1 g−1] 0 ∞ 0 ∞

Km,alc2 [mM] 1.04 7 × 1025 1.10 2 × 1025

Km,NAD2 [mM] 3.14 2 × 1026 3.18 1 × 1026

SSE 18.7394 15.0992
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As in the case of single alcohol kinetics, it can be seen that the results for the local
optimization are strongly dependent on the initial values (cf. Table S4) and that apparently
local minima are found. The Km values stay nearly the same, while the vmax value is
changed. This can be interpreted as an imprecise integration of the peak for the AED
method. For competitive substrates, the statement remains identical. Starting with AED
values as initial values for a subsequent NLR, the Km values stay nearly the same while the
vmax value is changed. However, the SSE values decrease as the S.E. decreases considerably,
implying better parameter identification.

In silico experiments with computed measured values show that an increase in the
data points leads to a significant improvement in the S.E. by using the AED approach. Thus,
the AED method is capable of performing model discrimination.

Identification of Substrates

In contrast to the estimated Km value of cofactor, in the context of competing substrate
kinetics, the Km for the main substrate alcohol cannot be directly deducted from the peak’s
position within the AED-based approach, as it reflects the summed-up concentration of all
alcohols. Hence, in order to estimate the Km value for an individual alcohol, it becomes
necessary to establish a relationship between the positions of the peaks and the respective
alcohol concentrations. Therefore, the Km value of a component j in a multicomponent
mixture with m components can be calculated from the position of the peak xPeak,j and the
total concentrations of all components (in this case: alcohols) according to Equation (6):

Km,j = xPeak,j ×
cComponent,j

∑m
i=1 cComponent,i

(6)

As the vmax of the linear alcohol is significantly higher than the vmax of the secondary
alcohol, it can be assumed that the bigger peak (which is equal to a higher vmax) represents
propanol, which is why the smaller peak represents 2-butanol. Therefore, the Km estimated
from the 50/50 mixture is 28.44 mM/2 = 14.22 mM, while the Km estimated from the 25/75
mixture is 62.60 mM/4 = 15.65 mM. The Km of pure propanol is 11.35 mM. Therefore, the
Km value increases with decreasing alcohol content. This was to be expected since only the
apparent Km value is observed in a mixture, which is defined according to Equation (7) [18]:

Kapp
m = Km(1 +

cinhibitor
Ki

) (7)

Therefore, the apparent Km must increase with an increase in the competing alcohol,
which is the case. The Km value for NAD does not need to be corrected, as it is not a
mixture of different cofactors. However, also in this case, the Km value increases from
0.55 mM (pure propanol) to 0.75 mM and 0.85 mM for a mixture of 50/50 and 25/75,
respectively. However, conclusions must be chosen with great care since the standard
error for the calculated parameters in the case of competing substrate kinetics is extremely
large, even with the AED method. As mentioned above, the combination of AED and
NRL minimally reduces the error. However, this effect may be only due to a different
vmax value, as the Km values stay the same. This change in the vmax value may be due to
the resolution of the grid surface. In the case of the small peak, the standard errors are
even larger. Here, too, no statement can be made about the course of the Km value for
2-butanol. This may also be due to the fact that the influence of 2-butanol is too small due
to the significantly lower reaction rate and may hardly stand out from the noise of the
experimental values. Moreover, the underlying model may not reflect reality. As described
in Section 2, there is some controversial discussion on this point. Further research may use
a model-based design of experiments to reduce the standard error of estimated parameters
and to support model discrimination [46]. Further research may address an independent
validation of the experimental results by discrimination of different alcohols in the analysis,
as was demonstrated for a simple uni–uni reaction via HPLC before [25]. For the given
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experimental set-up, an offline analytic is not reasonable, as the measuring sample cannot
be taken by a closed spectrometer, and the reaction takes place within seconds.

4. Conclusions

In the present study the analysis of the AED was used for the first time for parameter
estimation of a two-substrate kinetic. For simple two-substrate kinetics, the AED approach
calculates different values than an NLR. The comparison with literature data shows that
the AED approach is superior to the NLR and calculates more appropriate values with few
data points. A Km value of 139.5 mM ± 54% was identified for the model alcohol 2-butanol
and a Km value of 11.35 mM ± 15% for propanol. Corresponding Km values for the cofactor
were 1.25 mM ± 76 and 0.55 mM ± 12%, respectively. In contrast, the NLR identified for
both alcohols the same Km value of 1.30 mM with quite a larger standard error, and in both
reactions, the same Km value of 3.11 mM for the cofactor. Furthermore, the AED approach
does not require initial values but searches a predefined range, which corresponds to the
measurement range. This is a clear strength of the AED approach. In addition, the AED
approach is also usable for analyzing competing two-substrate kinetics. The AED approach
independently determined the correct number of competing substrates—this did not need
to be specified, unlike a model for the NLR. Furthermore, the NLR results were also found
to be highly dependent on the initial values, which is not the case for the AED approach.
For the example of propanol, the AED was able to detect an increase in the apparent Km
value as expected due to the increasing influence of the 2-butanol. These Km values were
14.22 mM and 15.56 mM for a mixture of 50/50 and 25/75, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11092686/s1, Details to iteration; Figure S1: AED analysis of
ADH with (a) substrate 2-butanol and cofactor NAD at ambient temperature in 100 mM phosphate
buffer (pH 8.8) and (b) substrate propanol and cofactor NAD at ambient temperature in 100 mM
phosphate buffer (pH 8.8).; Figure S2: AED analysis of ADH with substrate propanol/2-butanol and
cofactor NAD at ambient temperature in 100 mM phosphate buffer (pH 8.8) (a) 50/50 mol content
(b) 25/75 mol content; Scheme S1: Schematic representation of AED algorithm; Table S1: Numerical
data of initial slope experiments for ADH with 2-butanol or propanol as substrate at different substrate
concentrations at ambient temperature in 100 mM phosphate buffer (pH 8.8), Table S2: Numerical
data of initial slope experiments for ADH with propanol/2-butanol mixture at different substrate
concentrations at ambient temperature in 100 mM phosphate buffer (pH 8.8), Table S3: Parameters
obtained from NLR with different initial values for single substrate kinetics, Table S4: Parameters for
NLR estimation with different initial values for mixture substrate kinetics for a mixture of propanol/2-
butanol.
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