Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion

Shiyi Chen ${ }^{1}$, Xiaolei Zhou ${ }^{1}{ }^{1(D}$, Zhihao Zheng ${ }^{2}$, Ren Chen ${ }^{3, *}$, Shan Yu^{3} and Chunyang Shi ${ }^{3}$
1 School of Metallurgy and Energy, Kunming University of Science and Technology, Kunming 650093, China; sheachen@163.com (S.C.); zhouxiaolei81@163.com (X.Z.)
2 School of Metallurgy, Northeastern University, Shenyang 110819, China; haohao2020@yeah.net
3 School of Metallurgy and Materials Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China; windhat@163.com (S.Y.); scy9090@126.com (C.S.)
* Correspondence: toughold@163.com

Citation: Chen, S.; Zhou, X.; Zheng, Z.; Chen, R.; Yu, S.; Shi, C. Fractal Characterization of Particle Size and Coordinate Distribution of Dispersed Phase in the Steelmaking Process of Combined Blowing Conversion. Processes 2023, 11, 2680. https:// doi.org/10.3390/pr11092680

Academic Editor: Carlos Sierra Fernández

Received: 3 August 2023
Revised: 31 August 2023
Accepted: 5 September 2023
Published: 7 September 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

A two-dimensional water model was used to simulate the process of combined blowing. The effect of boundary conditions on the size and coordinate distribution of the dispersed phase was investigated. The results showed that the frequency of the dispersed phase at a certain size level is proportional to its size; the coordinates of the dispersed phase can be expressed in a dimensionless form that shows its uniformity of distribution. An empirical equation for the influence of the boundary conditions on the size and coordinate distribution of the dispersed phase in combined blowing process is also presented.

Keywords: combined blowing converter; water model; dispersed phase; particle size distribution; coordinate distribution; fractal characterization

1. Introduction

In most metallurgical reaction systems, the overall rate of the reaction between the dispersed phase and the continuous phase is determined by a number of physical processes, such as diffusion conditions and dispersion (emulsification) conditions [1]. For converter blowing and other types of metallurgical reactors, accelerating the exchange of substances often determines the efficiency of the processes. Therefore, generating droplets of exchanged substances has become one of the key research topics in related fields. When the mass transfer between the droplets and the melt dominates the material exchange process, it is important to determine its mass transfer coefficient under various boundary conditions [2]. If an accurate mass transfer coefficient is obtained, it is possible to calculate the amount of substance exchange for reactions such as dephosphorisation and desulfurization after determining the interfacial area and knowing the equilibrium constants [3]. In current production practice and experimental research, the mass transfer coefficient is generally unknown due to the complexity of the system, and the reaction rate of the substances concerned can only be estimated within a certain period of time. Apparently, this method contains a certain degree of hysteresis, and the estimation of the interfacial area of the reaction contains a certain degree of uncertainty. Therefore, most of the metallurgical simulation of the mass transfer coefficient is generally reduced to the determination of the reaction equilibrium constants. The determination of the coefficient is generally reduced to the determination and calculation of the volumetric mass transfer coefficient. Under certain external boundary conditions, the mass transfer coefficient should be a certain value; thus, in order to determine the mass transfer coefficient, the interfacial area has to be calculated accurately and quantitatively.

The size of the slag-metal interfacial area in the process of combined blowing conversion is related to the amount of dispersed phase and the particle size distribution of
the dispersed phase. In addition, it is also related to the coordinate distribution of the dispersed phase since the coordinate distribution determines the residence time of the dispersed phase in the continuous phase and thus the interfacial area per unit of time [4]. The resolution of the number of dispersed phases, the size class distribution, and the coordinate distribution currently mainly rely on statistical theoretical approaches, and as a result of their influence, the isoconcentration curves or surfaces of the dispersed phases, whether obtained by numerical simulations or achieved experimentally, are almost depicted as continuous smooth curves or surfaces with a theoretical basis that is entirely based on Euclid geometry [5]. However, just as the lines, surfaces and bodies in nature are not always smooth [6]. In metallurgical reaction processes such as converter blowing, the slag-metal dispersed phase interfaces are often rough and broken due to turbulence, and the boundaries may be discontinuous or continuous but not differentiable, which are mathematically called "pathological curves or surfaces" [7]. Fractal geometry, as proposed by Mandelbrot, is used to describe these geometrical objects with highly irregular or fragmented geometry objects [8]. The main purpose of this study is to analyze the particle size and coordinate distribution of the slag and metal dispersed phases in the continuous phase during the smelting process of combined blowing conversion with the help of fractal theory and then provide a quantitative calculation method for obtaining the area of the slag-metal reaction interface.

2. Experimental Equipment and Analysis Methods

2.1. Experimental Equipment

A Plexiglass model was used to simulate the longitudinal section of an industrial combined blowing convertor, and the experimental setup is shown in Figure 1. Metal and slag were simulated by using water oil; a digital camera was used for image acquisition (resolution of $0.277 \times 0.277 \mathrm{~mm}^{2} /$ pixel), and the two-dimensional images were processed by a computer to extract the dispersed phase image data. The experimental parameters are listed in Table 1.

Figure 1. Experimental apparatus.
The geometric similarity between the model and the prototype was guaranteed in the experiments, and the geometric similarity ratio was deemed to be 1:6. The top blowing gas flow rate and bottom blowing gas flow rate were determined according to the Buckingham Π Theorem [9]. Furthermore, in order to ensure the similarity of dynamics between the model and the prototype, it is crucial to ensure that the Froude number $F r_{m}$ of the model is equal to the Froude number $F r_{m}^{\prime}$ of the prototype, which can be written as follows:

$$
\begin{equation*}
\frac{\rho_{a} V_{M}^{2}}{\rho_{w} g d_{M}}=\frac{\rho_{O_{2}} V_{O_{2}}^{2}}{\rho_{m} g d_{I}} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\mathrm{V}_{M}}{\mathrm{~V}_{O_{2}}}=\left(\frac{\rho_{O_{2}} \rho_{w}}{\rho_{a} \rho_{m}}\right)^{0.5}\left(\frac{d_{M}}{d_{I}}\right)^{0.5} \tag{2}\\
Q_{a}=V_{M}\left(\frac{\pi}{4} e d_{M}^{2}\right) \times 3600 \tag{3}\\
Q_{O_{2}}=V_{O_{2}}\left(\frac{\pi}{4} e d_{I}^{2}\right) \times 3600 \tag{4}\\
\frac{Q_{a}}{Q_{O_{2}}}=\left(\frac{V_{M}}{V_{O_{2}}}\right)\left(\frac{d_{M}}{d_{I}}\right)^{2}=0.004678 \tag{5}
\end{gather*}
$$

To calculate the bottom blowing gas flowrate, the Froude number of the model Fr_{m} must be equal to the Froude number of the prototype $F r_{m}$.

$$
\begin{gather*}
\frac{\rho_{a} V_{M}^{2}}{\rho_{w} g d^{\prime}{ }_{M}}=\frac{\rho_{N_{2}} V_{N_{2}}^{2}}{\rho_{m} g d^{\prime}{ }_{I}} \tag{6}\\
\frac{\mathrm{~V}_{M}^{\prime}}{\mathrm{V}_{N_{2}}}=\left(\frac{\rho_{N_{2}} \rho_{w}}{\rho_{a} \rho_{m}}\right)^{0.5}\left(\frac{d^{\prime}{ }_{M}}{d^{\prime}{ }_{I}}\right)^{0.5}=0.386\left(\frac{d^{\prime}{ }_{M}}{d^{\prime}{ }_{I}}\right)^{0.5} \tag{7}\\
Q_{a}^{\prime}={V^{\prime}}_{M}\left(\frac{\pi}{4} n_{1}{d^{\prime}}_{M}{ }^{2}\right) \times 3600 \tag{8}\\
Q_{N_{2}}=V_{N_{2}}^{\prime}\left(\frac{\pi}{4} n_{2}{d^{\prime}}_{I}^{2}\right) \times 3600 \tag{9}\\
\frac{Q_{a}^{\prime}}{Q_{N_{2}}}=0.386\left(\frac{d^{\prime}{ }_{M}}{d_{I}{ }_{I}}\right)^{0.5}\left(\frac{n_{1}}{n_{2}}\right)\left(\frac{d^{\prime}{ }_{M}}{d_{I}^{\prime}}\right)^{2}=0.00146 \tag{10}
\end{gather*}
$$

Table 1. Main parameters of the experiment.

Parameter	Converter	Water Model	
Height	(mm)	4800	800
Diameter (width)	(mm)	3000	500
Thickness	(mm)	-	50
Bath depth	(mm)	708	118
Blowing mode		Combine-blowing	Combine-blowing
Blowing gas	$\left(\mathrm{Nm}^{3} / \mathrm{h}\right)$	Tonnage oxygen	Air
Bottom gas	$\left(\mathrm{Nm}^{3} / \mathrm{h}\right)$	Nitrogen	Air
The Density of molten	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	7000	1000
The Density of slag	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	3200	808
Diameter of the throat	(mm)	38	6.3
Angle of the throat		12	12
Number of the throat		4	4
Throat circle diameter	(mm)	140	23.3

2.2. Experimental Method of Image Processing

The experimental digital image consists of two types of regions with many different grayscales. The grayscale histogram of the image has a distinct bimodal form, corresponding to the grayscale ranges of two regions. These two peaks can be separated by choosing an appropriate threshold.

The optimal threshold of the image is determined by using the minimum error method [10-16]. Due to the fact that the digital images of dispersed phase contain two types of brightness regions-continuous phase (background) and dispersed phase (object)their grayscale histograms can be represented by the brightness density functions $p_{1}(x)$ and $p_{2}(x)$, which are the sum or weighted sum of two unimodal density functions (one
corresponds to the bright region and the other one peak corresponds to the dark region). If $p_{1}(x)$ and $p_{2}(x)$ are normal density functions, the mixed brightness density function is given by the following:

$$
\begin{equation*}
p(x)=P_{1} p_{1}(x)+P_{2} p_{2}(x)=\frac{P_{1}}{\sqrt{2 \pi} \beta_{1}} \exp \frac{-\left(x-\mu_{1}\right)^{2}}{2 \beta_{1}^{2}}+\frac{P_{2}}{\sqrt{2 \pi} \beta_{2}} \exp \frac{-\left(x-\mu_{2}\right)^{2}}{2 \beta_{2}^{2}} \tag{11}
\end{equation*}
$$

where μ_{1} and μ_{2} are the average brightness of the two regions, β_{1} and β_{2} are the standard deviation of brightness in the corresponding area, and P_{1} and P_{2} represent the prior probability of background and object appearance, respectively.

Since $P_{1}+P_{2}=1$ as the constraint condition must be satisfied, the mixed density function $\mathrm{p}(\mathrm{x})$ is a function of five unknown parameters. After obtaining these parameters, the optimal threshold can be determined.

In this case, with T as the threshold, pixels with grayscale levels lower than T are considered as continuous phase (background), while pixels greater than T are considered as dispersed phase (object) [17]. Therefore, the probability of misclassifying points on the object to points on the background is

$$
\begin{equation*}
\mathrm{E}_{1}(\mathrm{~T})=\int_{-\infty}^{\mathrm{T}} \mathrm{p}_{2}(\mathrm{x}) \mathrm{dx} \tag{12}
\end{equation*}
$$

Similarly, the probability of misclassifying points on the background to object points is

$$
\begin{equation*}
\mathrm{E}_{2}(\mathrm{~T})=\int_{\mathrm{T}}^{\infty} \mathrm{p}_{1}(\mathrm{x}) \mathrm{dx} \tag{13}
\end{equation*}
$$

Therefore, the total error probability is

$$
\begin{equation*}
\mathrm{E}(\mathrm{~T})=\mathrm{P}_{2} \mathrm{E}_{1}(\mathrm{~T})+\mathrm{P}_{1} \mathrm{E}_{2}(\mathrm{~T}) \tag{14}
\end{equation*}
$$

In order to determine the threshold value with the smallest error of classification, the derivative of $\mathrm{E}(\mathrm{T})$ over T is deduced and defined as 0 ; then,

$$
\begin{equation*}
\mathrm{P}_{1} \mathrm{p}_{1}(\mathrm{~T})=\mathrm{P}_{2} \mathrm{p}_{2}(\mathrm{~T}) \tag{15}
\end{equation*}
$$

Substitute the normal density function into the above equation and followed this by taking the logarithmic form and simplifying it to obtain a quadratic equation:

$$
\begin{gather*}
\mathrm{AT}^{2}+\mathrm{BT}+\mathrm{C}=0 \\
\mathrm{~A}=\beta_{1}^{2}-\beta_{2}^{2} \\
\mathrm{~B}=2\left(\mu_{1} \beta_{2}^{2}-\mu_{2} \beta_{1}^{2}\right) \tag{16}\\
\mathrm{C}=\beta_{1}^{2} \mu_{2}^{2}-\beta_{2}^{2} \mu_{1}^{2}+2 \beta_{1}^{2} \beta_{2}^{2} \ln \left(\beta_{2} \mathrm{P}_{1} / \beta_{1} \mathrm{P}_{2}\right)
\end{gather*}
$$

At this point, the optimal threshold is the average of the two means.

$$
\begin{equation*}
\mathrm{T}=\frac{\mu_{1}+\mu_{2}}{2}+\frac{\beta^{2}}{\mu_{1}-\mu_{2}} \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right) \tag{17}
\end{equation*}
$$

If the grayscale ranges of the dispersed and continuous phases partially overlap, two values of T_{1} and T_{2} (assuming $T_{1}>T_{2}$ and the overlapping region of grayscale is in between T_{1} and T_{2}) are used for thresholding:

$$
g(x, y)= \begin{cases}1 & \mathrm{f}(\mathrm{x}, \mathrm{y}) \geq \mathrm{T}_{1} \tag{18}\\ 0 & \mathrm{f}(\mathrm{x}, \mathrm{y}) \leq \mathrm{T}_{2}\end{cases}
$$

In a scenario where $T_{2}<f(x, y)<T_{1}$, the affiliation of the pixel can be determined by checking the affiliations of the majority pixels within the zone under consideration.

Alternatively, it is considered that the pixel and the adjacent one belong to the same category based on the difference in the grayscale levels of the two pixels.

According to Equation (18), a 256-level grayscale bitmap can be converted into a monochrome black and white bitmap. The original image and dispersed phase extraction results of the experiment are shown in Figure 2.

Figure 2. Original digital photos and results of image processing. (a) Original digital photos; (b) black and white bitmap; (c) dispersed phase bitmap.

2.3. Methods for Studying Particle Size Distribution in Dispersed Phase

The experimentally obtained image can be considered as a cross-section in three dimensions. The dispersed phase can be considered as a set of clusters in a two-dimensional pixel space. The distribution of the clusters can be described by a proportional function since a particular physical property within the system varies proportionally [18-21]. Table 2 lists the statistical results of the dispersive phase under a certain boundary condition.

Table 2. Number and dimension of the dispersed phase.

\mathbf{s} (pixel)	\mathbf{n}	\mathbf{N}	\mathbf{s} (pixel)	\mathbf{n}	\mathbf{N}
1	85	196	11	1	10
2	27	111	12	1	9
3	34	84	13	1	8
4	13	50	14	1	6
5	7	37	16	1	4
6	6	30	17	1	3
7	4	24	1	2	
8	4	16	35	1	
9	3	13			

The relationship between the size of the dispersed phase and its frequency of occurrence is expressed in logarithmic coordinates, and the linear relationship shows that the frequency of occurrence of a dispersed phase with a certain size is proportional to its size [22-24]. Mathematically, this relationship can be expressed as follows:

$$
\begin{equation*}
\mathrm{N}=\mathrm{S}^{\mathrm{M}} \tag{19}
\end{equation*}
$$

where N is the number of clusters with a size greater than or equal to S , and M is the slope. The distribution of the dispersed phases at each size level can be determined by M under the condition. As shown in Figure $3, \ln (\mathrm{~N})$ and $\ln (\mathrm{S})$ are linearly related, and $|\mathrm{M}|$ reflects the particle size distribution under this boundary condition, with a larger $|\mathrm{M}|$ indicating a larger proportion of dispersed phases with a smaller size.

Figure 3. Logarithmic relationship between S and N .

2.4. Methodology for Analyzing Dispersed Phase Coordinate Distributions

Taking the intersection of the upper edge of the oil layer and the center line of the flowing strand as the coordinate origin (the x-axis along the horizontal direction) and the center line of the flowing strand as the y-axis, the extracted scattered phase images are processed, and the scattered phases larger than one pixel can be regarded as mass points and averaged according to the following equation.

$$
\begin{equation*}
\left(x=\sum_{\mathrm{i}=1}^{n} x_{\mathrm{i}} / n, y=\sum_{\mathrm{i}=1}^{n} y_{\mathrm{i}} / n\right) \tag{20}
\end{equation*}
$$

where n is the number of pixels in the dispersed phase, and $\left(x_{i}, y_{i}\right)$ is the coordinates of the pixels in the dispersed phase.

Since the number of dispersed phases and their coordinates vary greatly depending on the boundary conditions, the coordinates must be dimensionless, and the definition can be written as follows.

$$
\begin{equation*}
\left(x_{\mathrm{m}}^{\prime}=\left(x_{\mathrm{m}}-r\right) /(R-r), y_{\mathrm{m}}^{\prime}=y_{\mathrm{m}} / \delta\right) \tag{21}
\end{equation*}
$$

where $x^{\prime}{ }_{m}$ and $y^{\prime}{ }_{m}$ are the dimensionless horizontal and vertical coordinates of the metal droplet, r is the impact pit radius, R is the model radius, and δ is the slag layer thickness, respectively.

In the equation above, the droplet dispersion phase horizontal x_{s} and vertical coordinates y_{s} are also dimensionless.

$$
\begin{equation*}
\left(x_{\mathrm{s}}^{\prime}=\left(x_{\mathrm{s}}-r\right) /(R-r), y_{\mathrm{s}}^{\prime}=y_{\mathrm{s}} / h\right) \tag{22}
\end{equation*}
$$

where $x^{\prime}{ }_{\mathrm{s}}$ and $y^{\prime}{ }_{\mathrm{s}}$ are the dimensionless horizontal and vertical coordinates of the slag droplet, respectively. h is the depth of the molten bath. Table 3 shows the statistical results of the dispersed phase transverse coordinates under certain boundary conditions, and Figure 4 depicts the dimensionless distribution of the dispersed phase.

In Figure 4, L represents the range of dimensionless transverse coordinates of the dispersed phase, P denotes the percentage of the number greater than or equal to this range, and K represents is the mean of the rate of change in the inverted S-shaped regression curve.

$$
\begin{equation*}
\mathrm{K}=\left(\int_{0}^{1} \mathrm{P}^{\prime} \mathrm{dL}\right) /(1-0) \tag{23}
\end{equation*}
$$

A larger $|\mathrm{K}|$ value leads to an increase in the proportion of dispersed phase that is close to the origin, thus giving rise to a more concentrated distribution of the dispersed phase. Conversely, a smaller value corresponds to a more uniform distribution. For the dimensionless longitudinal distribution analysis, the method is slightly different from the transverse analysis, i.e., a larger value of $|\mathrm{K}|$ indicates a larger proportion of dispersed phase that is close to the upper edge of the slag layer. Thus, the value of K can be used to indirectly describe the regularity of the dispersed phase coordinate distribution.

Table 3. Distribution statistics of the dispersed phase.

\mathbf{F}	\mathbf{n}	$\mathbf{D L}_{\mathbf{r}}$	\mathbf{P}
$0<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.1$	18	0.02894	1
$0.1<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.2$	98	0.15755	0.9711
$0.2<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.3$	118	0.18971	0.8135
$0.3<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.4$	104	0.16720	0.6238
$0.4<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.5$	72	0.11576	0.4566
$0.5<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.6$	78	0.12540	0.3408
$0.6<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.7$	105	0.16881	0.2154
$0.7<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.8$	15	0.02412	0.0466
$0.8<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 0.9$	3	0.00482	0.0225
$0.9<\mathrm{x}_{\mathrm{m}}{ }^{\prime} \leq 1.0$	11	0.01768	0.0177

Figure 4. Dimensionless distribution of the dispersed phase.

3. Results and Discussion

3.1. Particle Size Distribution of the Dispersed Phase of Metal Droplets

Figure 5a,b show the metal droplet size distribution $\left|\mathrm{M}_{\mathrm{m}}\right|$ versus the boundary conditions. As shown in the figure, $\left|M_{m}\right|$ increases with decreasing H and increasing Q_{T}, while at a shallow impact depth with a high H or low $\mathrm{Q}_{\mathrm{T}},\left|\mathrm{M}_{\mathrm{m}}\right|$ increases with increasing Q_{B}. When H is decreased by 50% and Q_{T} is increased by a factor of two, $\left|\mathrm{M}_{\mathrm{m}}\right|$ will increase by a factor of two. At low H and large Q_{T}, there is a peak value of $\left|M_{m}\right|=3.1$ with Q_{B}. According to the droplet critical diameter relation $[25] / d_{T}=\left[6 \sigma \cos \alpha / g\left(\rho_{m}-\rho_{s}\right)\right] 0.5$, as the impact pit depth h increases, α decreases, and then d_{T} decreases. At this time, the interfacial flow velocity u_{i} is much larger than the critical flow velocity $u_{\mathrm{i} \text {, crit, }}$, and the diameter of the droplets rapidly decreases when they leave the parent phase. Thus, the metal droplets are emulsified into the slag with a high proportion of small scale. As H decreases ($\mathrm{H} \leq 110 \mathrm{~mm}$) and $\mathrm{Q}_{\mathrm{T}}\left(\mathrm{Q}_{\mathrm{T}} \geq 35 \mathrm{Nm}^{3} / \mathrm{h}\right)$ increases, vertical and horizontal oscillations occur in the impact pit, while the intervention of bottom blowing ($\mathrm{Q}_{\mathrm{B}} \geq 0.8 \mathrm{Nm}^{3} / \mathrm{h}$) intensifies the amplitude of the above oscillations, thus increasing α instead, and d_{T} becomes larger. It can be considered that when the top and bottom blowing is small, their interaction is weak, and their respective independent formation of vortex is driven by the liquid bath movement, giving rise to a negligible interference. While the top and bottom
blowing intensity are very large, the top and bottom blowing formation of vortex cross, and the mutual influence of the two cannot be ignored. In addition, with the increase in S / M, it is more difficult to form the 'effective impact area' than in a scenario with a low metal/slag ratio. Therefore, the effect of external gas supply on the change of $\left|\mathrm{M}_{\mathrm{m}}\right|$ is relatively delayed in the high metal/slag ratio condition, and it can be assumed that under the low metal/slag ratio condition, $\left|\mathrm{M}_{\mathrm{m}}\right|$ is more sensitive to the change of the external boundary conditions (the lance height H , the top-bottom combined blowing flow rate Q_{B}) than the high metal/slag ratio condition.

Figure 5. Relationship between $\left|\mathrm{M}_{\mathrm{m}}\right|$ and bottom blowing under various lance positions with different S/M ratios: (a) $\mathrm{S} / \mathrm{M}=14 / 118, \mathrm{H}=80 \mathrm{~mm}$; (b) $\mathrm{S} / \mathrm{M}=45 / 118, \mathrm{H}=170 \mathrm{~mm}$.

3.2. Particle Size Distribution of the Dispersed Phase of Slag Droplets

Figure $6 \mathrm{a}, \mathrm{b}$ show the relationship between the droplet size distribution $\left|\mathrm{M}_{\mathrm{s}}\right|$ and the boundary conditions As can be seen, Q_{T} has a negligible effect on $\left|M_{S}\right|$ when H is high ($\geq 150 \mathrm{~mm}$) or S / M is large ($\geq 37 / 118$), and its variation is mainly influenced by Q_{B}; thus, it can be assumed that top blowing only plays a role in the variation of $\left|\mathrm{M}_{\mathrm{s}}\right|$ under low H or small S / M conditions. An increase in Q_{B} increases $\cos \alpha$, decreases d_{T}, and increases $\left|M_{s}\right|$. Unlike the extreme value of $\left|M_{m}\right|$, there is no such trend in the variation of $\left|M_{s}\right|$, which is mainly due to the difference in the formation and dispersion mechanisms of metal and slag droplets. The metal droplets are no longer subject to the forces of the liquid bath after leaving the parent phase; the particle size does not change, and after falling back into the slag phase, the slag layer is dominated by laminar flow, so the chance of continuing to split into smaller droplets becomes wea. The droplets, once generated, remain in the liquid bath and are subject to various forces, which may be both longitudinal and transverse tensile stresses and shear stresses. Therefore, it is more likely to be further split into smaller droplets, resulting in a large $\left|\mathrm{M}_{\mathrm{s}}\right|$ value.

It should be noted that the above analysis only discusses the relationship between the particle size distribution of the dispersed phase and its scale under various boundary conditions in the combined blowing conditions without involving the size of the specific scale value and the total amount of the dispersed phase, so it can only be used as a kind of possibility analysis of the size of the interfacial area between the metal and slag and cannot be used for the calculation of the interfacial size.

Figure 6. Relationship between $\left|M_{S}\right|$ and bottom blowing under various lance positions with different S/M ratios: (a) $\mathrm{S} / \mathrm{M}=14 / 118, \mathrm{H}=80 \mathrm{~mm}$; (b) $\mathrm{S} / \mathrm{M}=45 / 118, \mathrm{H}=170 \mathrm{~mm}$.

In addition, the different $|\mathrm{M}|$ values obtained under various experimental boundary conditions can thus be related to the calculation of the interfacial area of emulsified metal and slag. However, this calculation is only limited to two-dimensional cases. Therefore, if the three-dimensional interfacial area is required, the Law of Additive Codimensions in the fractal theory must be applied to convert the two-dimensional cross-section codimensions under experimental conditions into the surface codimensions of a three-dimensional image, so that quantitative calculations of metal-slag interfacial area can be realized.

3.3. Dimensionless Coordinate Distribution of the Dispersed Phase of Metal and Slag Droplets

Figure 7a,b show the metal drop horizontal and vertical coordinate distributions $\left|K_{m x}\right|,\left|K_{m y}\right|$ versus the boundary conditions. As can be seen, with the increase in H, both hand u_{i} decrease, so the horizontal component of u_{i} decreases and falls into the slag phase mainly near the origin, and $\left|K_{m x}\right|$ increases $\left(\left|K_{m x}\right|\right.$ can be up to 0.98$)$. An increase in Q_{T} increases h, and although u_{i} increases, the angle between u_{i} and the horizontal direction also increases, and the effect of the angle on the fractional velocity may be greater, and the horizontal fractional velocity of the metal droplets decreases.

Figure 7. Relationship between $\left|K_{\mathrm{m}}\right|$ and top blowing under various lance positions with different S/M ratios: (a) $\mathrm{S} / \mathrm{M}=45 / 118, \mathrm{H}=170 \mathrm{~mm} ;(\mathrm{b}) \mathrm{S} / \mathrm{M}=14 / 118, \mathrm{H}=80 \mathrm{~mm}$.

Therefore, an increase in Q_{T} causes the metal droplets to be unevenly distributed along the x-direction. As S/M increases, the horizontal fractional velocity at the detachment
point decreases and $\left|K_{m x}\right|$ increases (when S/M increases from $14 / 118$ to $45 / 118$, $|\mathrm{Kmx}|$ increases from 0.93 to 0.98), resulting in an unequal distribution of metal droplets along the x-direction. The increase in Q_{T} produces a large number of droplet dispersed phases and, to a certain extent, corresponds to a decrease in S / M, where $\left|K_{m x}\right|$ decreases, and this trend slows down with the increase in Q_{B}, which is caused by the interaction between top and bottom blowing. The effect of H and Q_{T} on $\left|\mathrm{K}_{\mathrm{my}}\right|$ is essentially the same as that of $\left|K_{m x}\right|$. It should be explained that with the increase in Q_{T}, the vertical velocity of the metal droplet detachment point and the slag phase flow velocity increase simultaneously, and the increase in the vertical velocity of the metal droplet detachment point may be larger than the increase in the slag phase flow velocity, so the increase in Q_{T} instead makes the y -direction distribution show non-uniformity, but this non-uniformity is the non-uniformity in the high emulsion state. As Q_{B} accelerates the slag layer flow, $\left|K_{m y}\right|$ decreases as Q_{B} increases. The Q_{B} exceeds a certain value ($\geq 0.8 \mathrm{Nm}^{3} / h$), which will prevent the steel droplets from moving in the y-direction, and $\left|K_{m y}\right|$ increases instead.

Figure $8 \mathrm{a}, \mathrm{b}$ show the relationship between the distributions of $\left|K_{s x}\right|$ and $\left|K_{\text {sy }}\right|$ in the horizontal and vertical coordinates of the dispersed phase of the slag droplet and the boundary conditions. As can be seen in the figure, the distribution of droplets in both horizontal and vertical coordinates is the same; with the increase in $\mathrm{H}(80 \mathrm{~mm}$ to 170 mm) and S/M (14/115 to 45/118) (when | Ksx| decreases from 0.85 to 0.60 , | Ksy | decreases from 1.05 to 0.75), the stirring of the liquid bath decreases and the generation rate of the dispersed phase of droplets and the velocity of the flow field decreases. The decrease in the velocity of the flow field is the main influencing factor at this time. With the increase in Q_{B}, the stirring of the liquid bath becomes stronger, the velocity of slag droplet generation and the velocity of the flow field increase, and the increase in the flow velocity is the main influencing factor.

Figure 8. Relationship between $\left|\mathrm{K}_{\mathrm{s}}\right|$ and top blowing under various lance positions with different S/M ratios: (a) $\mathrm{S} / \mathrm{M}=45 / 118, \mathrm{H}=170 \mathrm{~mm}$; (b) $\mathrm{S} / \mathrm{M}=14 / 118, \mathrm{H}=80 \mathrm{~mm}$.

Under combined blowing conditions, the horizontal and vertical coordinates of the dispersed phase (slag droplets) tend to be distributed in a similar way. In a scenario with specified top and bottom blowing flow rates, an increase in the lance height or slag/metal ratio weakens the stirring of the melt pool, thus significantly lowering the generation rate of the slag droplets and the velocity of the dispersed phase. However, the decrease in liquid velocity is the determining factor behind an increase in the lance height or slag/metal ratio, thus resulting in an uneven distribution of the dispersed phase. When the lance height and slag/metal ratio are relatively fixed, with the increase in the stirring gas flow rate, especially the bottom blowing flow rate, the stirring of the metal pool becomes stronger, and the generation rate of slag droplets and the velocity of the dispersed phase are increased
drastically. The increase in the latter is greater than in the former. Therefore, the coordinate distribution of the dispersed phase becomes uniform.

4. Conclusions

(1) There is a proportional relationship between the frequency of dispersed phases and their size for each size class in the combined blowing process. The empirical relationship between the size distribution of the metal and slag dispersed phases and their scales $\left|\mathrm{M}_{\mathrm{mf}}\right|$, $\left|\mathrm{M}_{\mathrm{sf}}\right|$ and the experimental boundary conditions can be written as followss:

$$
\begin{gathered}
\left|\mathrm{M}_{\mathrm{mf}}\right|=1.6487 \mathrm{Q}_{\mathrm{O} 2}{ }^{(-3.2043 \times 10-8 \mathrm{Q} 2}{ }_{\mathrm{N} 2}{ }^{+8 \times 10-5 \mathrm{Q}_{\mathrm{N} 2}{ }^{+0.2542)} /\left[(\mathrm{S} / \mathrm{M})^{0.0524} \mathrm{H}_{\mathrm{f}}^{0.3443}\right]} \\
\left|\mathrm{M}_{\mathrm{sf}}\right|=0.2431 \operatorname{tg}\left\{0.2021 \mathrm{Q}_{\mathrm{O} 2}{ }^{(1.2 \times 10-4 \mathrm{QN} 2+0.3158)} /\left[(\mathrm{S} / \mathrm{M})^{0.08392} \mathrm{H}_{\mathrm{f}}^{0.139}\right]-2.3815\right\}+1.9551
\end{gathered}
$$

(2) The size distribution of the metal drops shows extreme values with increasing top and bottom blowing intensity, and the trend becomes more pronounced with a smaller metal/slag ratio.
(3) The empirical relationships between the distribution of the metal and slag dispersed phases in the horizontal and vertical coordinates and the boundary conditions under combined blowing conditions are as follows:

$$
\begin{aligned}
& \left|\mathrm{K}_{\mathrm{mx}}\right|=0.8508(\mathrm{~S} / \mathrm{M})^{0.0229} \mathrm{H}_{\mathrm{f}}^{0.01004} \mathrm{Q}_{\mathrm{O} 2}{ }^{0.01482}\left(2.3378 \times 10^{-8} \mathrm{Q}_{\mathrm{N} 2}{ }^{2}-3.4434 \times 10^{-5} \mathrm{Q}_{\mathrm{N} 2}+0.9665\right) \\
& \left|\mathrm{K}_{\mathrm{my}}\right|=1.5938(\mathrm{~S} / \mathrm{M})^{0.02975} \mathrm{H}_{\mathrm{f}}{ }^{-0.09002} \mathrm{Q}_{\mathrm{O} 2}^{0.01963}\left(1.8081 \times 10^{-6} \mathrm{Q}_{\mathrm{N} 2}^{2}-1.45 \times 10^{-3} \mathrm{Q}_{\mathrm{N} 2}+1.3946\right) \\
& \left|\mathrm{K}_{\mathrm{sx}}\right|=15.09\left\{1-\exp \left[-10.8311(\mathrm{~S} / \mathrm{M})^{0.0133} \mathrm{H}_{\mathrm{f}}^{0.108} \mathrm{Q}_{\mathrm{O} 2}{ }^{-0.2647} \mathrm{Q}_{\mathrm{N} 2}^{-0.2468}\right]\right\} \\
& \left|\mathrm{K}_{\mathrm{sy}}\right|=1.069\left\{1-\exp \left[6.4407(1-35.1172(\mathrm{~S} / \mathrm{M}))^{0.00828} \mathrm{H}_{\mathrm{f}}^{0.2048} \mathrm{Q}_{\mathrm{O} 2}{ }^{-0.4167} \mathrm{Q}_{\mathrm{N} 2}{ }^{-0.1974}\right]\right\}
\end{aligned}
$$

the boundary conditions

$$
1300 \leq \mathrm{H}_{\mathrm{f}} \leq 1900 \mathrm{~mm}, 4300 \leq \mathrm{Q}_{\mathrm{O} 2} \leq 8600 \mathrm{Nm}^{3} / \mathrm{h}, 46 \leq \mathrm{Q}_{\mathrm{N} 2} \leq 230 \mathrm{Nm}^{3} / \mathrm{h}, 0.1186 \leq \mathrm{S} / \mathrm{M} \leq 0.3814
$$

(4) An increase in the bottom blowing flow rate facilitates the homogeneous distribution of the coordinates of the slag droplets, while an excessive increase is detrimental to the homogeneous distribution.

Author Contributions: Conceptualization, S.C. and X.Z.; methodology, S.C. and X.Z.; software, R.C.; validation, S.C., X.Z. and S.Y.; formal analysis, S.Y. and C.S.; investigation, X.Z.; resources, S.C.; data curation, Z.Z.; writing-original draft preparation, S.C.; writing-review and editing, S.C. and Z.Z.; visualization, Z.Z.; supervision, S.C. and R.C.; project administration, R.C.; funding acquisition, R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (Grant Number: 50774019). This research was funded by the Natural Science Foundation of Liaoning Province of China (Grant Number: 2023-MS-291). This research was funded by the Foundation of Yunnan Province Science and Technology Department (Grant Number: 202101AT070083).

Data Availability Statement: The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Acknowledgments: The authors acknowledge the National Natural Science Foundation of China (Grant Number: 50774019). The authors acknowledge the Natural Science Foundation of Liaoning Province of China (Grant Number: 2023-MS-291). The authors acknowledge the Foundation of Yunnan Province Science and Technology Department (Grant Number: 202101AT070083).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbol	Definition $F r_{m} F r^{\prime}{ }_{m}$ ρ_{a}
$\rho_{\mathrm{O} 2}$	Froude number for the model and the prototype.
ρ_{w}	The density of air at $20^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

References

1. Chen, R.; Huang, Y.; Li, L.L.; Luo, Z.G. Water Modeling Study on Dispersed Phase Size Distribution and Interface Areas in Metallurgical Multiphase Reactor. Adv. Mater. Res. 2014, 1052, 567-573. [CrossRef]
2. Chen, R.; Zou, Z.S. Textural fractal dimension of slag-metal boundary in top-blowing converter with water modeling. Chin. J. Process Eng. 2005, 5, 103-106.
3. Chen, R.; Li, M.; Zou, Z.S. Fractal study on slag-metal distribution in top-blown converter using water model. J. Iron Steel Res. 2005, 17, 22-25.
4. Kaye, B.H. A Random Walk through Fractal Dimensions; Northeastern University Press: Shenyang, China, 1994; pp. 116-120.
5. Shen, B.M.; Shang, Z.W. Fractal Dimension; Seismological Press: Beijing, China, 1989; pp. 52-65.
6. Dong, L.K. Fractal Theory and Its Applications; Liaoning Science and Technology Press: Shenyang, China, 1991; pp. 70-82.
7. Lin, H.Y.; Li, Y.X. Fractal Theory; Beijing Institute of Technology Press: Beijing, China, 1992; pp. 30-34.
8. Nakanishi, K.; Kato, Y.; Nozaki, T.; Emi, T. Cold model study on the mixing rate of slag and metalBath in Q-BOP. Tetsu Hagane 1980, 66, 1307-1308. [CrossRef] [PubMed]
9. Zheng, P.R. Steelmaking; Metallurgical Industry Press: Beijing, China, 1994; pp. 33-41.
10. Gao, R.H.; Liu, S.H.; Zhao, Y. High-precision laser spot center positioning method for weak light conditions. Appl. Opt. 2020,59, 1763-1768. [CrossRef] [PubMed]
11. Zhu, J.; Xu, Z.J.; Fu, D.L.; Hu, C. Laser spot center detection and comparison test. Photonic Sens. 2019, 9, 49-52. [CrossRef]
12. Huang, K.; Dai, J.; Chen, X.; Deng, W.T.; Huang, Z.J. Laser spot center detection for laser synthesizer. Laser Infrared 2017, 47, 1499-1504.
13. He, W.; Ren, M.J.; Xiao, Y. Calculation method of fly ash permeability based on image recognition. J. Hunan Univ. 2020, 47, 144-148.
14. Chen, J.Y.; Zhao, H.; Zhao, M.H. Image Processing and Multi-fractal Characteristics of Fly Ash Particles. J. Hunan Univ. 2021, 48, 205-214.
15. Nie, Z.H.; Liao, J.Y.; Zhou, S.H.; Li, B.X.; An, A.J. Image Processing and Shape Quantitative Analysis of Volcanic Cinder Particles. J. Hunan Univ. 2020, 47, 131-139.
16. Yang, S.Y.; Zhao, R.D.; Jin, H.S.; Li, F.H. Analsis on Mechanical Properties and Fractal Characteristics of Micropore Structure of Geopolymer Mortar. J. South China Univ. Technol. 2020, 48, 126-135.
17. Liu, P.; Huang, Y.P. Semi-Supervized Crack-Detection Method Based on Image-Semantic Segmentation. Laser Optoelectron. Progress 2021, 58, 317-328.
18. Zhao, L.D.; Sheng, Z.H. Applications of Fractal Models in Simulating Natural Scene. J. Southeast Univ. 1996, 26, $145-148$.
19. Huang, Z.L. Fractal nature of turbulence. Adv. Mech. 2000, 4, 581-596.
20. Falconer, K.J. Fractal Geometry-Mathematical Foundations and Applications; Northeastern University Press: Shenyang, China, 1991; pp. 57-75.
21. Li, J.; Zhu, J.Z.; Zhu, Q.K. Review on methods of calculating fractal dimension. J. Beijing For. Univ. 2002, $24,71-78$.
22. Liu, S.J.; Li, T.R.; Liu, J.; Xie, P. Research on multi-fractals of weighted hypernetworks. J. Univ. Sci. Technol. China 2020, 50, 85-97.
23. Liu, S.J.; Li, T.R.; Liu, X.W. Network dimension: A new measure for complex networks. Comput. Sci. 2019, 46, 51-56.
24. Balka, R.; Buczolich, Z.; Elekes, M. A new fractal dimension: The topological Hausdorff dimension. Adv. Math. 2015, 274, 881-927. [CrossRef]
25. Oeters, F. Metallurgy of Steelmaking; Metallurgical Industry Press: Beijing, China, 1997; pp. 317-319.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

