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Abstract: This paper proposes an active steering controller for Driven Independently Rotating
Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway
vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-
side motor, the Ape-X DDPG controller, an enhanced version of the Deep Deterministic Policy
Gradient (DDPG) algorithm, is adopted. Incorporating Distributed Prioritized Experience Replay
(DPER), Ape-X DDPG trains neural network function approximators to obtain a data-driven DIRW
active steering controller. This controller is utilized to control the input torque of each wheel, aiming
to improve the steering capability of IRWs. Simulation results indicate that compared to the existing
model-based H∞ control algorithm and data-driven DDPG control algorithm, the Ape-X DDPG
active steering controller demonstrates better curving steering performance and centering ability
in straight tracks across different running conditions and significantly reduces wheel–rail wear. To
validate the proposed algorithm’s efficacy in real vehicles, a 1:5 scale model of the DIRW vehicle and
its digital twin dynamic model were designed and manufactured. The proposed control algorithm
was deployed on the scale vehicle and subjected to active steering control experiments on a scaled
track. The experimental results reveal that under the active steering control of the Ape-X DDPG
controller, the steering performance of the DIRW scale model on both straight and curved tracks is
significantly enhanced.

Keywords: independently rotating wheelsets; active steering; deep reinforcement learning; Ape-X
DDPG algorithm

1. Introduction

Independently Rotating Wheelsets (IRWs) allow the wheels on the same axle to rotate
independently, decoupling the dependency between the yaw and lateral movement of
the wheelsets. This configuration virtually eliminates the longitudinal creep force at the
wheel–rail interface, which plays a significant role in self-guidance and steering in traditional
solid-axle wheelsets. Consequently, while IRWs can inhibit hunting motion, the wheelsets’
inherent self-steering capability and curving performance can also be compromised [1–3].
With the advancements in mechatronics and motor technologies for railway vehicles, Driven
Independently Rotating Wheelsets (DIRWs) and the active steering control algorithms
have been extensively studied in recent years. Railway vehicles with DIRWs, based on
active steering control, apply steering torques directly to the IRWs through hub motors or
wheel-side motors [4,5], which restores both the straight-track centering ability and the curve
steering performance of the IRWs, while also eliminating unstable wheelset hunting motions,
avoiding flange contact, and significantly reducing wheel–rail wear [6,7]. Moreover, vehicles
equipped with DIRWs do not require additional actuators, enabling simultaneous traction
and steering control [4,8,9], thereby reducing costs and enhancing reliability, representing a
promising mechatronic solution for railway vehicles based on IRWs.

In existing designs of active steering controllers for vehicles, control algorithms like
PID controllers [10–13], H∞ controllers [14,15], sliding mode controllers [16], and neural-
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network-based controllers [17,18] have all been studied. Ahn [10] adopted a centering con-
trol approach, designed a PI controller, and conducted active steering control experiments
on a small-scale roller rig using DIRWs driven by surface permanent magnet synchronous
motors (SPMSMs). Liu [11] employed a series PID controller, using the wheelset’s lateral
displacement, yaw rate, and the differential rotational speed between the left and right
wheels on the same axle as feedback. Lu [14], considering the wheel–rail nonlinearity and
system parameter uncertainty as external disturbances, proposed a robust controller based
on the µ-synthesis method and validated the results on a 1:5 scale track. In the Next Gener-
ation Train (NGT) project at the German Aerospace Center, Kurzeck [12] designed a PD
controller for DIRWs, where the controller parameters were obtained through multibody
simulation and pattern search, taking into account the impact of peak output torque.

Considering that the DIRW rail vehicle is a complex nonlinear system, with factors
such as the geometric nonlinearity and the creep force nonlinearity of the wheel–rail contact
of the railway vehicle, the variability of the suspension parameters, and other unmodeled
dynamic characteristics, existing controller design methods find it difficult to achieve
an optimal controller. Model-based controllers often neglect nonlinear factors in vehicle
systems, design controllers according to a simplified linearized mathematical model, or
treat nonlinear factors as external uncertainties, designing robust controllers that adapt to
parameter changes. However, the simplified linearized dynamic model cannot accurately
and fully consider vehicle dynamic characteristics [13,14,17,19], and the performance of
controllers designed based on a simplified model is hard to guarantee in actual vehicles.

To address the problems in the design of active steering controllers mentioned above,
this paper proposes an algorithm based on deep reinforcement learning (DRL) to enhance
the straight-line centering performance and curve guidance ability. DRL is a branch of
machine learning that builds on the foundation of the Markov Decision Process (MDP).
The agent in DRL interacts with the environment and drives the system to maximize the
expected reward under continuous stimulation from a reward–penalty system, overcoming
the “curse of dimensionality” problem in solving high-dimensional sequential decision
problems [20], using iterative training and deep neural networks to determine policy and
value functions, obtaining an approximate optimal controller for nonlinear systems.

In the current research, DRL has been successfully applied to the control of different
nonlinear systems, such as the intelligent driving of automobiles [21–24], active control
of railway vehicles [25–28], and robotic control [29,30]. In automotive fault-tolerant con-
trol, a double Q-Learning algorithm has been proposed for the online determination of
optimization weight factors by integrating DRL into a fault-tolerant coordinated controller,
which ensures that vehicles can achieve optimal control strategies across various operating
conditions [21]. In active safety control, DRL has been utilized to enhance the yaw motion
stability of distributed drive electric vehicles using the Deep Deterministic Policy Gradients
(DDPGs) to learn and control the vehicle’s nonlinear dynamics [22]. A controller that com-
bines DRL with Nonlinear Model Predictive Control (NMPC) has been proposed in [23]
to achieve safe highway autonomous driving. Within a hybrid two-layer path planning
architecture, a Double Deep Q-Network (DDQN) has been employed to train vehicles in
choosing tactical behaviors according to the surrounding environment. DRL has been
integrated with Mixed Traffic Flow (MTF) control [24], employing an Adam Optimization
algorithm and Deep Q-Learning models to guide the longitudinal trajectory of Connected
and Autonomous Vehicles (CAVs) on a typical urban roadway with signal-controlled
intersections. In the field of railway transit, the Soft Actor–Critic (SAC) algorithm has
been employed in the precise active control of pantograph–catenary systems (PCSs) in
high-speed trains [25]. In terms of the decentralized management of energy storage sys-
tems in urban railways [26], the cooperative Markov game (MG) algorithm and the value
decomposition network (VDN) have been introduced. Railway maintenance has also seen
the application of the Advantage Actor–Critic (A2C) algorithm [27]. In the field of robotics,
two types of DRL-based Deep Q-Learning algorithms, including DQN and DDQN, were
used to enhance the autonomous learning abilities of mobile robots for collision avoidance
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and navigation in unknown environments [29]. Similar methods have also been employed
in obstacle avoidance for wheeled robots [30]. In summary, the diverse applications of
DRL in areas ranging from automotive control to railway transit and robotics illustrate its
capabilities for solving complex challenges in controller design.

This paper applies the Ape-X DDPG controller based on the DRL algorithm to the active
steering control of DIRWs. The Ape-X DDPG algorithm is an improvement on the DDPG
algorithm, which adopts a Distributed Prioritized Experience Replay (DPER) mechanism,
further enhancing learning efficiency and stability by making efficient use of sample data.
The Ape-X DDPG algorithm uses deep neural networks to learn the nonlinear dynamic
characteristics of railway vehicle dynamics models, unmodeled characteristics, and parameter
uncertainties, outputting the control torques required for active guidance through an end-to-
end algorithm. Compared to the classical DDPG algorithm, Ape-X DDPG can better handle
complex problems in high-dimensional, continuous action spaces and effectively utilize
distributed computing resources to enhance the learning efficiency of controller training.

The remainder of this paper is organized as follows. Firstly, a dynamic model of a
two-axle DIRW vehicle is established, with each wheel being connected to a wheel-side
motor as an actuator. Secondly, we describe the algorithmic framework, set up the training
loop for Ape-X DDPG, design controllers based on deep neural networks, and, within
the vehicle dynamics simulation environment SIMPACK, compare them with the H∞
controller and the classical DDPG controller, demonstrating the superiority of the Ape-X
DDPG controller in terms of control performance and training efficiency. Subsequently, a
DRL controller trained based on the digital twin model is deployed on a 1:5 scale DIRW
model, and active steering control experiments for DIRW are conducted on both straight
and curved tracks to validate the control effects. Conclusions are drawn in the end.

2. DIRW Vehicle Dynamics Model

The two-axle DIRW vehicle, as illustrated in Figure 1, comprises two sets of IRWs, a
bogie, drive motors, the vehicle body, and both primary and secondary suspensions. The
vehicle body is connected to the IRWs through lateral and longitudinal spring–damper
systems. The wheels on the left and right sides of the same axle of the IRW rotate inde-
pendently, with the drive motors directly connected to each IRW. With the development of
motor technology, wheel-side motors with high bandwidth and short response times have
been widely adopted, capable of providing both the torque required for traction and active
steering. The active steering controller controls the torque difference applied to the wheels
on the left and right of the same axle, thereby generating a restoring torque in the yaw angle
direction, ensuring the IRWs maintain straight-line stability and curve steering ability.

Processes 2023, 11, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 1. Structure of the DIRW vehicle. 

The main focus of this paper is the active steering control system of the DIRW vehicle; 
hence, the dynamics analyzed pertain to the lateral dynamics model of the vehicle, as 
shown in Figure 2. In designing the active steering controller, the lateral displacements 
and yaw motions of the vehicle body and the front and rear IRWs, as well as the rotational 
motions of the wheels, are considered. The dynamics equations are presented as (1) to 
(10). All dynamic parameters are relative to the track coordinate system, where subscript 
1 denotes the front wheelset, and subscript 2 denotes the rear wheelset. 

 
Figure 2. Lateral dynamics model. 

The dynamics equations of the front IRW are as follows: 

( ) ( )22
1 1 1 1 22 1

2

2 2 2 2 2

2

w w w y w b y w b w x y b
x

x
x y b w

c

fm y y C y y K y y f l C
V

Vl K m g
R

ψ ψ

ψ θ

+ + − + − − −

 
− = − 

 

   
  (1)

Figure 1. Structure of the DIRW vehicle.



Processes 2023, 11, 2677 4 of 25

The main focus of this paper is the active steering control system of the DIRW vehicle;
hence, the dynamics analyzed pertain to the lateral dynamics model of the vehicle, as
shown in Figure 2. In designing the active steering controller, the lateral displacements
and yaw motions of the vehicle body and the front and rear IRWs, as well as the rotational
motions of the wheels, are considered. The dynamics equations are presented as (1) to (10).
All dynamic parameters are relative to the track coordinate system, where subscript 1
denotes the front wheelset, and subscript 2 denotes the rear wheelset.
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The dynamics equations of the front IRW are as follows:
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The dynamics equations of the rear IRW are as follows:
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The dynamics equations of the carbody are as follows:
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The angular velocities of the left and right wheels in the i-th IRW are as follows:

ωLi =
Vx

r0
+

.
φwi, ωRi =

Vx

r0
−

.
φwi, i = 1, 2 (9)

where mw is the mass of the IRW; mb is the mass of the vehicle body; Iwz is the yaw moment
of inertia for the IRWs; Iwy is the rotational moment of inertia for each wheel; Ib is the yaw
moment of inertia for the vehicle body; ls is half the gauge of the IRWs; ly and lx are half the
lateral and longitudinal distances of the suspension system, respectively; r0 is the nominal
rolling radius of the wheel; λ is the wheel conicity; f 11 and f 22 represent the longitudinal
and lateral creep coefficients, respectively; Vx is the longitudinal vehicle speed; Rc is the
curve radius; θR is the superelevation of curve line; ywi is the lateral displacement of the
IRWs; Ψwi is the yaw angle of the IRWs; Twi is half the torque difference applied for active
steering control on the left and right wheels of the same axle; ωLi and ωRi are the rotational
speeds of the left and right wheels of the IRWs, respectively;

.
φwi is half the speed difference

between the left and right wheels of the IRWs; TLi and TRi represent the input torques
on the left and right wheels, respectively, equal in magnitude but opposite in rotational
direction, satisfying Equation (10):

TLi = Twi, TRi = −Twi, i = 1, 2 (10)

Given that the DIRW vehicle is a complex nonlinear system, its creep coefficients,
wheel conicity, and other dynamic parameters constantly change during operation. Unlike
the design methods of many existing IRW active steering controllers, this study, when
designing the controller based on the dynamic model as mentioned above, considers the
wheel–rail contact parameters to be constantly changing values obtained through nonlinear
wheel–rail contact calculations rather than pre-setting them as fixed values to achieve
stronger robustness when deployed in real-world environments.

3. Controller Design Based on Ape-X DDPG Algorithm

The fundamental learning approach of reinforcement learning agents involves inter-
acting with their environment, autonomously optimizing behavioral policies to achieve
a higher expected reward. This expected reward is often defined based on the objectives
of the target task. Controllers based on DRL can achieve end-to-end optimization and,
through deep learning algorithms, produce agents with superior control outcomes. In the
design of the DIRW active steering controller, the agent continuously trains and optimizes,
enabling the IRWs under the agent’s control to achieve improved centering performance
and enhancing the IRWs’ running stability and energy efficiency. This study adopts the
Ape-X DDPG algorithm for controller implementation and collects data and trains the
agent through interaction with the DIRW vehicle.

3.1. Basic DRL Theory

The mathematical foundation of reinforcement learning is the MDP [31]. When the
DIRW active steering controller acts as an agent, the IRW’s operation on straight and curved
tracks can be described as shown in Figure 3. An MDP can be represented as a four-tuple
(S, A, P, R). Here, S represents the state space of the agent, a stands for the agent’s action
space, P is the state transition function, and R is the reward function.

Within the DRL framework, the agent interacts with the environment E at each time
step t to collect data, optimizing the behavioral policy µ based on the reward function R.
This policy is parameterized by a deep neural network. The agent obtains the state st from
observations in environment E and samples action at = µ(st) based on policy µ. After the
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agent performs the action at, the environment transitions to the next state st+1 according to
the model dynamics P(st+1|st, at) and receives a reward rt from the environment. During
this process, the agent stores the state and action transition (st, at, rt, st+1) in the experience
replay buffer D for subsequent learning.
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The reinforcement learning algorithm aims to learn a policy that maximizes the ex-
pected return. To achieve this, the objective function that needs optimization is shown in
Equation (11), which measures the quality of policy µ.

J(µ) = Eρ∼µ

(
T

∑
0

γtr(st, at)

)
(11)

where ρ = (s0, a0, s1, a1, . . .) represents the trajectory of states and actions, γ is the discount
factor adjusting the emphasis on immediate rewards and future rewards, and Eρ∼µ repre-
sents the mathematical expectation under policy µ. By selecting appropriate optimization
algorithms, such as the policy gradient method and the Q-Learning method, one can find
the optimal policy µ* such that J(µ) is maximized as shown in Equation (12).

µ∗ = argmax
µ

Eρ∼µ

(
T

∑
0

γtr(st, at)

)
(12)

3.2. DDPG Algorithm

To find the optimal policy µ* for the active steering controller and maximize J(µ), this
paper uses the DDPG algorithm as the basis for the DRL controller, further introducing the
DPER to enhance the learning capability of the DRL algorithm.

The DDPG algorithm is an improved offline, model-free deep reinforcement learning
algorithm based on the Deterministic Policy Gradient (DPG) suitable for continuous action
space problems. DDPG combines the framework of Off-policy Deterministic Actor–Critic
(OPDAC) and the training techniques of DQN, providing an effective way to learn de-
terministic policies in continuous action spaces [32]. In DDPG, both the policy function
µ(S; θµ) and action value function Q(S, A; θQ) are represented using deep neural networks,
forming the actor–critic algorithm, where θµ represents the policy network parameters,
and θQ represents the action value network parameters. As the policy function, the actor
network outputs continuous action values in a greedy way, as shown in Equation (13). The
critic network estimates the action value function Q(S, A) based on the state and the action
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provided by the actor network. At each time t, Equation (14) is used to approximate the
value function.

at = µ(st; θµ) + Nt (13)

qt = Q(st, at; θQ) (14)

where Nt is the action perturbation used to enhance the efficiency of environment explo-
ration during the learning process. We used Ornstein–Uhlenbeck noise with its standard
deviation denoted as σOU. qt is the estimation of the Q-value for the current state and action.

To stabilize the learning process, DDPG borrows the target network structure from
DQN, constructing both the target policy network and the target value network. A soft
update strategy for the target network is introduced, as shown in Equation (15).{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (15)

where θµ′ and θQ′ represent the neural network parameters for the target networks µ′ and
θQ′ , respectively; τ is the soft update rate, used to control the extent of the updates to the
target network.

For the policy and value networks, the DDPG algorithm uses the experience replay
mechanism. DDPG stores the transition samples (st, at, rt, st+1) in the experience buffer
D. When optimizing the neural network parameters, DDPG randomly draws a batch of
samples, denoted as I, from the experience buffer for training. This helps reduce the
correlation between samples. Based on the target networks µ′ and Q′, the respective loss
function for Q and the gradient update for µ are presented in Equations (16) and (17).

L
(

θQ
)
=

1
|I|

I

∑
i
(ri + γQ′(si+1, µ′(si+1; θµ′); θQ′)−Q(si, ai; θQ))

2
(16)

5θµ J ≈ 1
|I|

I

∑
i
5θµ Q

(
si, µ(si; θµ); θQ

)
· 5θµ µ(si; θµ) (17)

Updating the parameters of the target network by smoothly updating the original
network parameters helps stabilize the training process, suppresses learning oscillations in
Q and µ during training, and achieves the purpose of stabilizing the algorithm’s learning
process. The neural network training process in DDPG is shown in Figure 4.
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3.3. Introduction of Prioritized Experience Replay

The conventional DDPG algorithm uses Uniform Random Sampling (URS) to draw
samples from the experience replay (ER) buffer, effectively decoupling sample correlations
to meet the requirements of offline training. However, URS does not leverage the signifi-
cance of the samples efficiently. Some samples contribute greatly to the learning process but
are not efficiently utilized due to the uniform sampling approach, resulting in a decreased
learning efficiency for valuable experiences. To address this deficiency, the Ape-X DDPG
algorithm adopted Prioritized Experience Replay (PER) in place of URS to enhance the
utilization of high-value samples.

Ape-X DDPG first computes the priority of samples based on their Temporal Difference
(TD) error and then employs Prioritized Weighted Exponential Normalization Sampling
(PWENS) as the sampling probability, ensuring a more balanced sampling mechanism. In
line with the DDPG algorithm, the TD error, yi, for any sample i can be calculated as shown
in Equation (18).

yi = ri + γQ′(si+1, µ′(si+1); θQ′)−Q(si, ai; θQ) (18)

PER uses the computed TD error to represent the value of a sample. A sample’s priority
is higher when its absolute TD error is larger. For different samples i, the probability pi of
each sample being chosen is calculated as indicated in Equation (19).

pi =
pα

i
|D|

∑
k=1

pα
k

(19)

where α is a priority adjustment parameter ranging from 0 to 1. α balances between uniform
sampling and priority sampling. When α = 0, all experience samples have equal sampling
probability, regressing to conventional ER without considering priorities. When α = 1, the
experience samples are sampled strictly based on their priority in the ER buffer.

To further mitigate the effect of oversampled high-priority experiences, PER introduces
Importance Sampling (IS) weights to correct the biases introduced by the priority-based
sampling. This ensures the stability of the learning process. The IS weight, wi, for the
sample i is presented in Equation (20).

wi =

(
1

|D|·pi

)β

(20)

where β is a hyperparameter ranging from 0 to 1, used to counteract the bias induced by
the frequent replay of high-value samples. In the Ape-X DDPG algorithm, for the critic
network, each sample’s IS weight is used to weight the TD error, resulting in a weighted
TD error which is then used to compute the loss function of the critic network, as shown in
Equation (21).

L(θQ) =
1
|I|

I

∑
i

wi[yi −Q(si, ai; θQ)]
2

(21)

For the actor network, the IS weight of each sample is employed to weight the policy
gradient, yielding a weighted policy gradient. This weighted policy gradient is then used
to update the parameters of the actor network, as illustrated in Equation (22).

5θµ J ≈ 1
|I|

I

∑
i

wi[5AQ(si, µ(si; θµ); θQ) · 5θµ µ(si; θµ)] (22)
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3.4. Structure of Ape-X DDPG Algorithm

The structure of the Ape-X DDPG algorithm is illustrated in Figure 5. It encompasses
three components: the Learner, the Actor, and the global experience replay buffer. The
Actor is responsible for collecting data samples generated during the simulation of the
IRW’s steering system under the agent’s control. The Actor deploys multiple independent
interaction environments using parallel, distributed computing techniques, composed of
the local DDPG policy network, the local sample pool Dl, and the DIRW vehicle dynamics
interaction environment. The local DDPG policy aims to enhance the guidance and steering
ability of the IRWs while being controlled, which fetches the network parameters from the
parameter buffer. The local sample pool serves as a cache for the experiences generated
by the local Actor. When the volume of samples reaches the storage threshold Dm, these
experiences are forwarded to the global experience replay buffer D.
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The global experience replay buffer is dedicated to storing all samples generated
during interactions. The Learner manages the actual learning process, drawing experiences
from the global experience replay buffer and then updating the policy network and value
network using the DDPG algorithm. After completing each training iteration, the Learner
saves the trained network parameters into the parameter buffer and calculates the TD error
for each sample to send to the global experience replay buffer. This TD error is used to
update the sample’s priority within the shared buffer.

Ape-X DDPG parallelly executes the interaction, learning, and storage processes,
achieving the decoupling of interactions and training. By deploying multiple independent
Actors, the training speed and efficiency of sample collection are significantly enhanced.
The algorithms of Ape-X DDPG’s Actor (Algorithm 1) and Learner (Algorithm 2) are
described as follows:
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Algorithm 1: Pseudocode of the Actor

Input: Initial state s0 from the environment; policy network parameters θµ from the Learner’s
parameter buffer; local buffer size Dm; maximum interaction timesteps T
Output: Updated experience tuples and priorities to shared experience replay buffer D

01: Initialize local buffer Dl and shared experience replay buffer D.
02: Initialize state s0.
03: for t = 1 to T do
04: Calculate action at−1 = µ(st−1; θµ).
05: Obtain reward rt, next state st, and discount factor γt based on action at−1.
06: Add experience tuple (st−1, at−1, rt, γt) to local buffer Dl.
07: if the size of Dl reaches Dm then
08: Retrieve experience tuples from Dl, denoted as τl.
09: Calculate the priority p for each experience tuple in τl.
10: Add τl and corresponding priorities p to D.
11: end if
12: Periodically fetch the latest network parameters θµ from the Learner.
13: end for
14: end procedure

Algorithm 2: Pseudocode of the Learner

Input: Maximum interaction timesteps T; initial value network parameters θQ; initial policy
network parameters θµ; initial shared experience replay buffer D
Output: Updated network parameters θQ and θµ

01: Initialize value network parameters θQ and policy network parameters θµ.
02: Send θQ and θµ to the parameter buffer shared with Actors.
03: for t = 1 to T do
04: Sample training samples I and IS weights wi from D using PER sampling.
05: Compute the loss function L according to Equation (21) based on I, θQ and θµ.
06: Update the value network parameters θQ using L.
07: Compute the policy network gradient according to Equation (22) and update θµ.
08: Recalculate priorities p for sample I based on the TD error yi for each training sample.
09: Update the priorities of samples in D with the newly computed priorities p.
10: if the size of D reaches maximum capacity then
11: Remove the experiences with the lowest priorities from D.
12: end if
13: end for
14: end procedure

3.5. DRL-Based Controller Design

For the training process of the DIRW vehicle’s active steering controller based on DRL,
the definition of the state space, action space, and reward function is very important. These
directly influence the steering performance of the controller agent trained in the vehicle
dynamics environment.

3.5.1. Definition of State Space

In this study, the state space S is defined as continuous and represents the vehicle
dynamics data obtained through sensor observations. Specifically, the agent’s state space
includes the longitudinal speed Vx of the DIRW vehicle and the kinetic variables Dx of the
two IRWs of the two-axle railway vehicle. The dynamic variables Dx of IRWs include the
lateral displacement and the yaw angle of the front and rear IRWs relative to the track and
the difference in rotation speed between the left and right wheels of each IRW. Among
them, the lateral displacement and yaw angle of the IRWs can be indirectly measured by
displacement sensors arranged on the wheelsets. The difference in wheel rotation speed
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can be calculated from the motor encoder. Additionally, the first-order derivatives of these
sensor measurements are also included in state space. Hence, the dynamic variables Dx
of the two IRWs obtained through sensor observation in the state space are shown in
Equation (23).

Dx =
[
yw1 ψw1

.
φw1

.
yw1

.
ψw1

..
φw1 yw2 ψw2

.
φw2

.
yw2

.
ψw2

..
φw2

]
(23)

Considering that the vehicle has different speeds under different running conditions,
the longitudinal speed Vx of the vehicle is also one of the observations. The final state space
S of the agent is represented as in Equation (24).

S =
[
yw1 ψw1

.
φw1

.
yw1

.
ψw1

..
φw1 yw2 ψw2

.
φw2

.
yw2

.
ψw2

..
φw2 Vx

]
(24)

3.5.2. Definition of Action Space

The active steering of IRWs is controlled through the torque of the wheel-side motors,
with the DRL-based controller’s output in a continuous action space. For the DIRWs, the
controller’s output separately controls the half torque difference between the left and right
wheels for both the front and rear IRWs. The action space A is defined in Equation (25).

A = [Tw1Tw2] (25)

where Tw1 and Tw2 are half of the input torque difference of the left and right wheels of
the front and rear IRWs, respectively, satisfying −Tmax ≤ Tw1, Tw2 ≤ Tmax, in which Tmax
represents the maximum output torque limit of the active steering controller.

Based on the defined action space, during the operation of the DIRW vehicle, the left
and right wheels of each IRW will be subjected to force torques of equal magnitude but
opposite directions. The left and right wheels of the front IRW receive steering torques
of Tw1 and −Tw1, respectively. Similarly, the left and right wheels of the rear IRW receive
steering torques of Tw2 and −Tw2, respectively.

3.5.3. Control Objectives and Reward Function

The active steering controller of DIRW vehicles is required to meet multiple objectives.
First and foremost, the controller must improve the steering stability of the IRWs. Under
the guidance of the active steering controller, the IRW should avoid flange contact on both
straight and curved tracks. Therefore, the controller should be designed to minimize the
lateral displacement and yaw angle of the IRWs relative to the track, ensuring the steering
capability of the IRWs. Based on these control objectives, in the DRL reward function, the
centering performance reward of the IRW is defined as r1, as shown in Equation (26).

r1 = η11 · (ymax − |yw1|)2 − η12ψ2
w1 + η21 · (ymax − |yw2|)2 − η22ψ2

w2 (26)

where η11, η12, η21, and η22 are the weighting coefficients for the lateral displacement
and yaw angle of the two IRWs; ymax denotes the maximum lateral clearance between
the wheels and rail. Since the front IRWs are more prone to losing steering capabilities,
resulting in flange guidance when the vehicle runs on a curved track, the reward coefficients
η11 and η12 for the front IRW are set to be greater than the weighting coefficients η21 and
η22 for the rear IRW.

Furthermore, the control torque must be constrained within a reasonable range, which
ensures the performance of the controller while reducing actuator output torque to improve
energy efficiency. The reward function of motor output is defined as r2, as illustrated in
Equation (27).

r2 = η13 · (Tmax − |Tw1|) + η23 · (Tmax − |Tw2|) (27)

where η13 and η23 are the reward coefficients for the motor output torque.
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The controller should also ensure the vehicle’s smoothness, preventing the active
steering control from decreasing comfort. We measure this aspect using the vehicle’s lateral
acceleration. r3 is defined as the contribution to the agent’s reward function for vehicle
comfort, as shown in Equation (28). If the vehicle’s lateral acceleration exceeds a threshold,
a significant penalty is applied in the reward function design.

r3 =

{
0 ,

∣∣ ..yb
∣∣ 6 amax

−rp ,
∣∣ ..yb
∣∣ > amax

(28)

where amax is the maximum allowed lateral acceleration of the vehicle under active steering
control; rp is the penalty given to the agent when lateral acceleration surpasses the threshold.

In summary, the reward function is as shown in Equation (29).

rt = r1 + r2 + r3 (29)

The training objective of the active steering controller is to maximize the designed
reward function rt, ensuring the controlled IRWs reduce the lateral displacement and attack
angle and restore the running stability. Simultaneously, the agent should learn to decrease
control torque while achieving the desired control effects.

3.5.4. DRL Interaction and Training Process

Within our Ape-X DDPG training framework, the neural network parameters for the
policy network (actor network) and value network (critic network) are initialized randomly.
For storing experience tuples, a shared experience replay buffer needs also to be initialized.
We set up N parallel Actors that perform action sampling in the environment based on the
current policy. Each episode has a maximum time step of 20 s, during which experience
tuples are collected and stored in their respective local experience buffers.

During the data collection phase, each episode’s training process for every Actor is
shown in Figure 6. Inside each Actor unit, the active steering controller agent calculates
actions based on the policy network. This action, representing half of the torque difference
between the left and right wheels for both the front and rear IRWs, is applied accordingly.
According to the dynamic response of the DIRW vehicle, the observation for the next time
step is obtained as the next state, and the corresponding reward is also calculated. The
agent’s control frequency is 100 Hz, meaning that every 0.01 s, the IRW will receive active
steering torque from the agent. During the DRL controller’s training process, the interaction
between the agent and the environment will be terminated, and the environment state will
be reinitialized if any of the following four situations occur:

(a) The training episode reaches the maximum timestep T.
(b) The lateral displacement of the IRWs reaches the maximum wheel–rail clearance.
(c) The control torque output from the policy network exceeds the maximum limit.
(d) Under the effect of the active steering controller, the lateral acceleration of the vehicle

body exceeds the threshold.

To enhance the adaptability of the agent under different vehicle operating conditions,
every time the vehicle dynamics environment is initialized, the longitudinal speed, curve
radius, and superelevation of the vehicle’s operation are reset. The training conditions for
each episode are randomly selected from five different operating speeds and curve radii.
The operating conditions for the DIRW vehicle are shown in Table 1.

Experience tuples generated from the interaction between the agent and the vehicle
dynamics environment are stored in their respective local experience buffers. When the
local buffer reaches the storage threshold, experiences are batched and sent to the global
shared experience replay buffer. At the same time, the Actor periodically retrieves the latest
policy network parameters from the Learner.
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Table 1. Operation conditions of the training agent.

Track 1 Track 2 Track 3 Track 4 Track 5

Track Type Straight line Straight line Curve line Curve line Curve line
Curve Radius (m) — — 70 250 600

Speed (km/h) 80 120 30 80 100
Cant (mm) — — 0 150 80

Track Irregularities AAR5 AAR5 AAR5 AAR5 AAR5

During the model training phase, the Learner prioritizes sampling from the global
experience replay buffer and extracts training samples to calculate the loss function. This
is used to update the parameters of the value network and to update the policy network
parameters using the gradient of the policy network. After updating the value network,
the TD error for each sample is recalculated to update the priority of the samples in the
global experience replay buffer. The training process is repeated continuously, enabling
the continuous optimization of the policy network and value network until the model’s
performance converges.
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4. Training and Simulation Results
4.1. Training Environment

This paper conducts co-simulation through the multibody dynamics simulation soft-
ware SIMPACK and the Python-based reinforcement learning framework RLlib [33,34] to
validate the learning and control capabilities of the Ape-X DDPG active steering controller.
Specifically, RLlib is responsible for implementing Ape-X DDPG, while SIMPACK handles
the dynamics simulation for the DIRW two-axle railway vehicle. The SIMPACK Realtime
API facilitates data communication between SIMPACK and RLlib. In SIMPACK, the pa-
rameters for the two-axle DIRW railway vehicle dynamics model are shown in Table A1,
and the UIC60 rail profile and S1002 wheel profile are used. The contact tangential forces
are calculated using the FASTSIM method. The state values and rewards required for DRL
training are calculated by SIMPACK and transferred to RLlib at each time step.

All DRL training was conducted on a server running Ubuntu 20.04, equipped with
dual Intel Gold 6132 CPUs, clocked at 2.60 GHz, and an NVIDIA GeForce RTX 2080 Ti GPU
used for deep learning computations. In RLlib, the Ape-X DDPG algorithm is implemented
using Pytorch [35]. Heterogeneous training is adopted, with Actors interacting with
the vehicle dynamics environment distributed across different CPU cores for parallel
computing. In contrast, the Learner is assigned to the GPU for neural network gradient
descent optimization. In the Learner unit, both the policy network µ and the value network
Q use fully connected deep neural networks, each with four hidden layers. The unit counts
for these layers are 200, 400, 400, and 50. ReLU is chosen as the activation function for
the hidden layers, with Adam [36] being used as the optimizer for the neural network
parameters. The input layer network unit count is determined by the state space, and
Q receives the corresponding action in the second hidden layer. For the output layer
activation function, both µ and Q use the tanh activation function. Detailed DRL neural
network training parameters are presented in Table 2.

Table 2. Training parameters of DRL.

Parameter Value Description

LRµ 10−4 Learning rate of the policy network µ

LRQ 10−3 Learning rate of the value network Q
γ 0.99 Temporal discount rate
τ 10−4 Soft update rate

batchsize 512 Batch size for training
|D| 106 Storage limit for the public sample pool

α 0.8 Exponent for priority sampling
β 0.3 IS hyperparameter

Dm 104 Storage limit for the local sample pool
N 10 Number of Actors

σOU 0.2 Standard deviation of OU disturbance noise
Tmax 1200 N·m Maximum output control torque
ymax 9.2 mm Maximum lateral clearance between wheel and rail
η11 1 Reward coefficient for the lateral displacement of the front IRW
η12 0.5 Reward coefficient for the yaw angle of the front IRW
η21 0.2 Reward coefficient for the lateral displacement of the rear IRW
η22 0.1 Reward coefficient for the yaw angle of the rear IRW
η13 5 Reward coefficient for the steering torque of the front IRW
η23 2 Reward coefficient for the steering torque of the rear IRW

amax 2.5 m·s−2 Lateral acceleration limit
rp 100 Penalty for exceeding lateral acceleration limit
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4.2. Training Comparison of DRL

A comparative experiment was conducted to evaluate the influence of the number of
Actors in Ape-X DDPG on its performance and to compare it against other DRL algorithms,
such as DDPG, Proximal Policy Optimization (PPO), and Twin Delayed DDPG (TD3). In
our experimental setup, PPO employs mini-batches of size 64, and TD3 uses a policy delay
setting of 2. PPO aims to stabilize the training process by optimizing a surrogate objective
function and limiting policy updates, as referenced in [37]. TD3, an extension of DDPG,
uses dual value function networks to improve bootstrapping accuracy and introduces
delayed policy updates to reduce estimation errors [38].

The impact of the number of Actors in Ape-X DDPG is significant. Therefore, we
conducted simulation experiments with three different numbers of Actors—2, 5, and 10—to
investigate their effects on learning efficiency and convergence speed. We measured the
performance of each DRL algorithm through their respective reward curves after 2 × 105

training episodes, as shown in Figure 7.
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Our results indicate that the average reward values after convergence for the Ape-
X DDPG configurations are positively correlated with the number of Actors (N). Ape-X
DDPG, a distributed version of DDPG, particularly excels when N is set to 5 or 10. In
contrast, standard DDPG shows a slower learning curve and oscillations, achieving lower
final rewards than Ape-X DDPG when N = 10. Ape-X DDPG not only converges more
quickly but also demonstrates enhanced stability during training, leading to higher final
rewards. While TD3 improves upon DDPG, it still does not outperform Ape-X DDPG when
N is 5 or 10.

To test the robustness of these DRL algorithms, we conducted further experiments
with 1000 randomly sampled groups from the initial state space. Each DRL algorithm used
network parameters obtained from previous training. The test evaluated the ability of these
algorithms to complete 20 s of active steering under various operating conditions for DIRW
vehicles. Figure 8 plots the number of successful episodes for each controller.
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In Figure 8, DDPG and Ape-X DDPG with two Actors show similar performance,
while TD3 outperforms both. However, Ape-X DDPG with 10 Actors achieves the best
performance, successfully completing 961 active steering episodes under various initial
operating conditions without triggering early termination.

In summary, the Ape-X DDPG algorithm, particularly when configured with 10 Actors,
exhibits marked superiority over other DRL algorithms like DDPG, PPO, and TD3 in terms
of active steering control. It not only converges faster but also achieves higher final
rewards. Furthermore, it demonstrates robust performance under various initial conditions.
Therefore, Ape-X DDPG with 10 Actors will be the chosen algorithm for comparative
studies in subsequent simulation experiments.

4.3. Comparative Analysis of Control Effects between Model-Based and Data-Based Algorithms

To validate the improvement in centering performance and curve steering ability
of the DIRW vehicle by the Ape-X DDPG active controller, this study selected the data-
driven classic DDPG algorithm and the model-based robust H∞ control [14] algorithm for
comparison with our proposed Ape-X DDPG controller. The robust H∞ control, rooted in
the µ-synthesis [39] method, is designed for MIMO systems characterized by uncertainties.
In the design of the DIRW vehicle dynamics controller, wheel–rail creep contact and
wheel conicity are considered as uncertainty parameters that vary within a certain range.
Leveraging this robust H∞ control approach, an adaptive controller robust to the ever-
changing wheel–rail contact dynamic characteristics is developed, relying on the D-K
iteration process.

Three typical DIRW vehicle operating conditions from Table 1 were selected for
detailed analysis. Given that leading IRW often plays a more critical guiding role than the
rear IRW, the lateral displacement and yaw angle of the front IRW during curve running
are generally significantly greater than those of the rear IRW. Therefore, in each operating
condition, we compared the lateral displacement and yaw angle, wear number, and received
steering control torque of the front IRW during running.

(1) Case 1: Operation on a straight track at 120 km/h.

The simulation results for Case 1 are shown in Figure 9. For the leading IRW wheelset,
all three control algorithms avoid flange contact to prevent severe wheel–rail wear. Under
the guidance of the Ape-X DDPG active steering controller, the maximum lateral displace-
ment of the wheelset is 4.4 mm. In comparison to the 9.1 mm with the DDPG controller and
8.2 mm with the H∞ control controller, it demonstrates significant advantages in centering
performance. With the controller proposed in this paper, the maximum attack angle of the
front IRW under this operating condition is only 2.2 mrad. For comparison, the maximum
wheelset attack angle under DDPG control is 5.5 mrad, and it is 4.6 mrad under H∞ control.
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The fundamental purpose of active steering control is to reduce wear between the
wheel and the rail. The simulation results indicate that by applying the active steering
control proposed in this paper, the average wear number of the wheelset drops from 8.5 N
under the DDPG controller and 4.6 N under the H∞ controller to 2.5 N. This means that
Ape-X DDPG reduces wheel–rail wear by 71% and 46%, respectively, compared to the other
two controllers. The maximum output torque of the Ape-X DDPG controller is 178 N·m,
which is lower than the other controllers, indicating that the control torque adequately
meets the design requirements.

(2) Case 2: Operation on a curved track with Rc = 70 m at 30 km/h.

The simulation results for Case 2 are shown in Figure 10. The results indicate that, in
the case of a small curved line, the controller still maintains good curve guidance capability,
avoiding wheel flange guidance and reducing wheel–rail wear. Under the Ape-X DDPG
controller, the maximum lateral displacement of the leading wheelset is 5.1 mm, and the
attack angle is 5.4 mrad. This is less than the 7.8 mm/8.5 mrad under the DDPG controller
and 6.4 mm/6.5 mrad under the H∞ controller. The average wear number of our proposed
controller on a small-radius curve is only 8.7 N, which is a 54% reduction compared to the
DDPG controller and a 37% reduction compared to the H∞ controller. The maximum wear
number is 28.6 N, which is less than the other two controllers used for comparison. The
Ape-X DDPG controller has a maximum output torque of 725 N·m and an average torque
of 431 N·m, reducing the requirements for control output peaks and control bandwidth
compared to the other two controllers.
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(3) Case 3: Operation on a curved track with Rc = 250 m at 80 km/h.

The simulation results for Case 3 are shown in Figure 11. Due to the increase in curve
radius, the control effect is better relative to Case 2. The Ape-X DDPG controller allows the
IRW to stay almost radially positioned, with both the front wheelset’s lateral displacement
and attack angle kept at low levels. The maximum lateral displacement is 1.37 mm, and the
maximum attack angle is 1.3 mrad. These values are superior to the 3.9 mm/4.3 mrad of
the DDPG controller and the 2.5 mm/2.4 mrad of the H∞ controller. The total wear number
remains at a low value, with an average wear number of 2.6 N for our proposed controller.
The peak control torque is 318 N·m, only a small fraction of the motor’s maximum output
torque. Additionally, thanks to the improved experience replay strategy, the output of the
Ape-X DDPG controller is smoother than that of the DDPG controller.

Comparing the control effects of different controllers under various conditions, the
Ape-X DDPG controller significantly improves the IRW’s straight-track centering perfor-
mance and curve steering capability and can greatly reduce wheel–rail wear. At the same
time, the controller’s output torque is stable and less than the motor’s peak torque.
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5. Scale Model Experiments
5.1. Scale DIRW Vehicle

To verify the performance of the Ape-X DDPG controller in a real vehicle operating
environment, we designed and manufactured a 1:5 scale IRW model for experimental
verification, as shown in Figure 12. The DRL-based controller is trained using the digital
twin dynamics model of the scaled DIRW vehicle and is deployed on the test vehicle. This
scaled model comprises a bogie and a carbody and two subframes, each equipped with
IRWs. The primary and secondary suspensions are steel springs and rubber bushings,
respectively, and they support the mass of the upper carbody. The left and right wheels are
connected to the reduction gearboxes via short axles. Four 600 W servo motors transfer
the active steering control torque to the IRWs through the reduction gearboxes. Each drive
system and IRW are located on the same subframe, ensuring synchronized movement in
lateral, yaw, and other directions.

The block diagram of the scaled model’s control system is shown in Figure 13.
The scaled model is powered by an AC source, converting the input voltage into

a three-phase AC high-voltage circuit for the drive motor via an inverter, as well as a
low-voltage for the controller and sensors. The active steering controller’s hardware
is based on the NVIDIA Jetson Nano edge computing development board. Once the
controller is trained using reinforcement learning algorithms, it is exported in the Open
Neural Network Exchange (ONNX) format, which contains the neural network structure
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and weight parameters. This exported model is subsequently transformed into CUDA
executable code using TensorRT and is then deployed on the Jetson Nano.
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5.2. Acquisition of Sensor Signals

The wheel–rail relative position needed by the active steering controller, including the
lateral displacement and yaw angle of the IRW relative to the track, is obtained through
laser profilers mounted on each IRW. Compared to point laser displacement sensors and
eddy current displacement sensors, the laser profilers offer a broader measurement range
and higher accuracy. Even when there is significant lateral displacement and attack angle
between the wheel and rail, the laser profilers can still ensure the measurement beam
projects on the rail surface, avoiding the loss of reflected laser measurement points which
could lead to control failure.

The laser profilers are mounted on the subframes, located both at the front and back
of each IRW, with the laser emitting vertically downwards towards the top of the rail, as
depicted in Figure 14. Each set of laser profilers obtains the two-dimensional coordinates of
the rail’s outer contour during vehicle operation. By fitting these coordinates with a quartic
curve and comparing the peak coordinates of the contour to the baseline (when the lateral
displacement is zero), the current lateral displacement between the laser profiler and rail
can be calculated.
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The wheelset’s lateral displacement and yaw angle can be calculated using Equations
(30) and (31).

ywi = −
ys1,i + ys2,i

2
(30)

ψwi = −
ys1,i − ys2,i

Ls
(31)

where ys1,i and ys2,i are the lateral displacement values of the two sets of laser profilers
at each IRW, with subscript i = 1,2 indicating the front and rear IRWs, respectively. Ls
represents the longitudinal interval distance between the two sets of laser profilers at
each IRW.

5.3. Experimental Results

The active control experiment of the DIRW scaled model was conducted on a 1:5
railway test track, which includes a 10 m straight track and a 10 m curved track with a
radius of 15 m. The vehicle runs through the test track at a speed of 2 m/s, and each
experiment of the scaled model lasts for 10 s. We deployed four control methods: passive
travel, H∞ control, DDPG controller, and Ape-X DDPG controller.

The experimental results of the scaled model are shown in Figure 15, displaying
data for the front IRW’s lateral displacement, yaw angle, and steering torque. Without
active steering control in the IRW, the maximum lateral displacement was 6.9 mm on
the straight track and 9.8 mm on the curved track due to wheel flange guiding, causing
intense wheel–rail wear. Using the Ape-X DDPG controller proposed in this paper, the
lateral displacement of the IRW can be controlled within ±0.5 mm on the straight track
and ±2 mm on the curved track. The maximum control torque occurred at the transition of
the curve and straight track, at 5.3 N·m, which is below the motor’s peak output torque.
Relatively speaking, both the DDPG-based controller and the H∞-based controller had
greater maximum lateral displacements and attack angles during operation compared to
our proposed controller. Additionally, the Ape-X DDPG controller responds smoothly,
reducing the dynamic response requirements for the motor. Therefore, we conclude that
the Ape-X DDPG controller effectively meets the design requirements.
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6. Conclusions

This study introduced an active steering controller for DIRW vehicles based on the DRL
algorithm, effectively enhancing the guidance capability of IRWs and reducing wheel–rail
wear. Given the complex wheel–rail contact dynamics in the railway vehicle system, tradi-
tional design methodologies struggle to effectively design controllers for highly nonlinear
systems. However, reinforcement learning, through constant trial and error and maxi-
mizing the reward function, combined with the deep neural network’s capability to fit
nonlinear systems, allows the controller to adaptively train and attain optimal strategies.
We integrated DPER with the DDPG algorithm in our DRL controller’s training and inter-
action, leading to the implementation of the Ape-X DDPG algorithm. This was to address
the classic DDPG algorithm’s challenges, such as low sample efficiency and propensity to
get stuck in local optima. Using the multibody dynamics theory, we established a nonlinear
DIRW vehicle model and trained the Ape-X DDPG controller, and the control efficacy was
validated under multiple vehicle operational conditions. Both simulation results and scaled
model experiments demonstrate that our control strategy outperforms previous methods.
With the intervention of the Ape-X DDPG active guidance controller, the IRWs have en-
hanced straight-line centering performance and curve guidance ability while diminishing
wheel–rail wear. This research underscores the significance of DRL-based controllers in
terms of efficacy and feasibility when the large-scale application of DIRW’s active steering
control is considered.
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Appendix A

Table A1. Parameters of the DIRW vehicle.

Dynamic Parameters Value Unit

Wheel base 2.0 m
Lateral length of primary suspension 1.08 m
Longitudinal length of primary suspension 0.39 m
Lateral length of secondary suspension 1.80 m
Longitudinal length of secondary suspension 0.50 m
Mass of carbody 9000 kg
Pitch moment of inertia of carbody 80,000 kg·m2

Yaw moment of inertia of carbody 80,000 kg·m2

Roll moment of inertia of carbody 10,000 kg·m2

Mass of bogie 1600 kg
Pitch moment of inertia of bogie 900 kg·m2

Yaw moment of inertia of bogie 1300 kg·m2

Roll moment of inertia of bogie 1500 kg·m2

Mass of IRW 1250 kg
Pitch moment of inertia per wheel 30 kg·m2

Yaw moment of inertia of IRW 600 kg·m2

Primary longitudinal stiffness per axle box 600 kN·m−1

Primary lateral stiffness per axle box 8000 kN·m−1

Primary vertical stiffness per axle box 15,000 kN·m−1

Primary longitudinal damping per axle box 100 kN·m·s−1

Primary lateral damping per axle box 500 kN·m·s−1

Primary vertical damping per axle box 800 kN·m·s−1

Secondary longitudinal stiffness per side 200 kN·m−1

Secondary lateral stiffness per side 200 kN·m−1

Secondary vertical stiffness per side 600 kN·m−1

Secondary longitudinal damping side 50 kN·m·s−1

Secondary lateral damping per side 50 kN·m·s−1

Secondary vertical damping per side 50 kN·m·s−1
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