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Abstract: The pore structure and its complexity play a critical role in fluid migration and recovery
efficiency. Multiple pore types, broad pore size distribution (PSD), and extremely irregular pore
morphology hinder the comprehensive investigation of pore systems and their complexity in low-
permeability conglomerates. In this study, the multi-scale pore system and fractal characteristics
of the Permian Lower Wuerhe Formation and Triassic Baikouquan Formation conglomerates from
the Junggar Basin were investigated, combining physical property analysis, casting thin sections,
scanning electron microscopy, and Nuclear magnetic resonance (NMR). The results show that the
pore system of conglomerates consists of residual intergranular pores (RIPs), dissolution pores (DPs),
clay-related pores (CRPs), and microfractures. Three types of PSD were identified according to the
shape of the T2 spectrum. Based on the fractal characteristics derived from NMR data, pore systems
in conglomerates were divided into macropores (mainly RIPs and DPs), mesopores (mainly CRPs),
and micropores (reflect adsorption spaces). The fractal dimension of macropores (D3) increases with
the increase of clay mineral content and the decrease of contents of quartz and feldspar. Moreover,
the volume of macropores decreases with the increase of clay mineral content and the decrease of
contents of quartz and feldspar. In addition, the fractal dimensions and volumes of mesopores and
micropores have no obvious relationship with mineral composition. D3 and macropore volume
control the physical properties and fluid mobility of conglomerates. T2,gm shows a strong negative
correlation with D3 and macropore volume. Meanwhile, the high value of D3 would reduce the
volume of macropores. These results demonstrate that D3 is a good indicator to reveal the quality of
pore structure in low-permeability conglomerates.

Keywords: fractal characteristics; pore system; NMR; low-permeability conglomerates; Junggar Basin

1. Introduction

With the discovery of a large number of conglomerate reservoirs, they have become
extremely important unconventional resources [1–5]. The Junggar Basin is a large superim-
posed oil-bearing basin in western China, and the Mahu Sag is a lacustrine hydrocarbon-rich
sag from the Junggar Basin (Figure 1). Major breakthroughs have been made in petroleum
exploration of low-permeability conglomerates of the Permian Lower Wuerhe Formation
(P2w) and Triassic Baikouquan Formation (T1b) in the Mahu Sag. In 2013, Well Mahu
1 achieved an unfractured daily output of 58 m3 in the T1b conglomerate reservoirs [6].
As of 2017, more than 12.4 million tons of petroleum reserves have been discovered in
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the T1b and P2w conglomerate reservoirs, of which the proven reserves are 5.2 million
tons [5]. The T1b and P2w conglomerate oil fields in the Mahu Sag have become the largest
conglomerate oil fields in the world. Affected by primary packing type, grain size, and
pebble content, conglomerate reservoirs exhibit strong heterogeneity [7,8]. Compared with
other clastic reservoirs, the pore system of conglomerate reservoirs is more complex [8–12].
Pore system parameters mainly include pore type, pore size and volume, pore shape, and
topology [13]. An accurate investigation of pore structure is crucial to reveal the seepage
characteristics and productivity of low-permeability conglomerates. However, the pore
system of conglomerates have various pore sizes and strong heterogeneity, making them
difficult to characterize.
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logical map of the Mahu Sag; (b) The Location of the Mahu Sag in the Junggar Basin; (c) The Location
of the Junggar Basin in China.

In recent years, researchers have tried to adopt various advanced techniques to com-
prehensively investigate the pore system of tight reservoirs. However, these techniques
have different advantages and disadvantages due to their working mechanisms. The image
method (e.g., casting thin sections (CTS) and scanning electron microscopy (SEM)) can
directly observe the pore types and pore shapes, and quantitatively count the size and
distribution of pores and throats [13,14], but the representation is poor. N2 adsorption (NA)
can only accurately measure fine pores of 1.5~200 nm [15]. Mercury injection porosimetry
(MIP) can obtain throat and its controlling pore volume information, but cannot correctly
display larger pores [16]. Nuclear magnetic resonance (NMR) is the most effective means of
quantitatively characterizing full-scale pore systems but needs to be calibrated with other
experimental data [10,17,18]. Therefore, multiple experimental approaches are required to
comprehensively investigate the size and distribution of pores.

It is difficult to characterize the complexity of the pore system using Euclidean geome-
try and traditional techniques [19]. The fractal method provides an effective means to inves-
tigate the irregular and complex pore system of porous media [20]. Many researchers have
confirmed that coal, shale, sandstone, and carbonate have fractal characteristics [20–23].
However, little research has been done on the fractal characteristics of conglomerates. The
fractal dimension can be calculated from SEM, NA, MIP, or NMR data [19–21,24]. Con-
glomerate has a wide pore size distribution (PSD) from 0.001 to 200 µm [10]. Therefore,
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calculating the fractal dimension by using the NMR method can fully understand the fractal
characteristics of the full-scale pore structure of conglomerates.

The purpose of this work is to elucidate the fractal characteristics of the full-scale pore
system of conglomerates. In this paper, the T1b and P2w conglomerates were collected from
the Mahu sag of the Junggar basin in NW China. The pore system of low-permeability
conglomerates was investigated by CTS, SEM, and NMR experiments. Furthermore, the
fractal characteristics of the pore system from the conglomerates were analyzed by NMR
experiments. Finally, the correlations between the fractal dimension and the pore system of
conglomerates are revealed.

2. Geological Setting

The Junggar Basin is located in northwest China and is the second largest inland basin
in China, which can be divided into the Central Depression, the East Uplift, the West Uplift,
the Luliang Uplift, the Wulungu Depression, and the North Tianshan Thrust Belt. The
Mahu sag is a secondary structural unit of the Central Depression (Figure 1), covering an
area of about 5000 km2. The strata in the Mahu sag are relatively well developed. From
bottom to top strata are: Carboniferous (C), Permian (Jiamuhe Formation (P1j), Fengcheng
Formation (P1f ), Xiazijie Formation (P2x), Lower Wuerhe Formation (P2w), and Upper
Wuerhe Formation (P3w)), Triassic (Baikouquan Formation (T1b), Karamay Formation (T2k),
Baijiantan Formation (T3b)), Jurassic (Badaowan Formation (J1b), Sangonghe Formation
(J1s), Xishanyao Formation (J2x), Toutunhe Formation (J2t), Qigu Formation (J2q)), and
Cretaceous Tugulu Group (K1tg). The target strata of this work are the P2w and T1b. The
T1b displays an angular unconformity with the P2w in the Mahu Sag [25]. The P2w and
the T1b conglomerate reservoirs are deposited in fan delta front subfacies [10]. Four sets
of potential source rocks (i.e., C, P1j, P1f, and P2w) developed in the Mahu Sag. The P1f
source rock (0.14% < TOC < 3.5%, Ro > 1%) is the main source rock, with a thickness of
50–400 m [26]. Based on Folk’s classification scheme, the P2w and T1b conglomerates are
mainly feldspathic litharenites and litharenites. Rock fragments are in the range of 32–96%,
with an average of 66.8%. Feldspar particles vary from trace to 44% (with a mean of 18.5%).
Quartz particles range from 2% to 35%, with an average of 14.5%. The rock fragments are
dominated by tuff, with subordinate amounts of mudstone and sandstone.

3. Samples and Experiments
3.1. Samples

We selected twenty-seven conglomerate samples for analysis. Conglomerate samples
collected from the T1b and P2w are denoted as “Bxx” and “Wxx”, respectively. Prior to the
experiments, all as-received conglomerate samples were extracted with a dichloromethane/
acetone mixture (3:1 v/v) for one week to remove residual oil from the core. After solvent
extraction, all conglomerates were dried at 110 ◦C for 6 h. Then, the conglomerates were
subjected to porosity, permeability, CTS, SEM, and NMR techniques.

3.2. Experiments

The permeability was measured under a confining pressure of 10 MPa. Mineral
composition analysis was carried out via a D8 DISCOVER X-ray diffractometer.

Casting thin sections was performed using a ZEISS Z1 polarizing microscope fol-
lowing the Chinese Oil and Gas Industry Standard SY T 5368-2000. Conglomerates were
impregnated with blue epoxy to facilitate visualization of pores and throats.

Before SEM analysis, the samples were prepared to a size of 1 cm (length) × 1 cm
(width) × 0.5 cm (height). The observation surface was milled by an argon ion beam on an
Ilion+II 697C Argon Ion Polisher. Then, SEM tests were conducted on a Quanta 450 field
emission SEM according to the GB/T 16594-2008. Two typical conglomerate samples (B14
and W4) were selected for QEMSCAN analyses using an AmicSCAN automatic mineralogy
electron microscope.



Processes 2023, 11, 2667 4 of 14

NMR measurements were conducted on a MesoMR23-060H-1 instrument at the Key
Laboratory of Deep Oil and Gas at the China University of Petroleum. Two sets of T2
spectra were measured on the conglomerate samples: a saturated sample and a centrifuged
sample. The centrifuged samples were obtained at a centrifugation speed of 10,000 r/min.
T2 spectra were measured by the CPMG sequence. The NMR parameters we use are as
follows: TE, 0.1 ms; Tw, 9000 ms; NECH, 8000; NS, 16.

4. Results
4.1. Porosity, Permeability, and Pore Types

The collected porosity was between 1.9% and 16.4%, with an average of 8.3%. The
collected permeability under net confining stress of 1.4 MPa varied from 0.011 mD to 94.8
mD (Figure 2A). The studied porosity varied from 3.4% to 20.3%, with an average of 8.2%.
The studied permeability ranged from 0.0088 mD to 3.5200 mD at 10 MPa (Table 1 and
Figure 2B). There was a poor relationship between permeability and porosity due to the
presence of micro-fracture and the influence of intense diagenesis (Figure 3).
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Figure 2. The physical properties of the P2w and the T1b conglomerate reservoirs from the Mahu Sag.
(A) Relationship between permeability and porosity from collected data; (B) Relationship between
permeability and porosity from studied data.

Table 1. Porosity, permeability, and mineral composition of the conglomerates. Φ—porosity,
K—permeability, Q—quartz, F—feldspar, Ca—calcite, CM—clay mineral, S—smectite, Ka—kaolinite,
I—illite, C—chlorite, I/S—mixed layer illite and smectite, C/S—mixed layer chlorite and smectite.

No. Well Φ (%) K (mD)
Mineral Composition (wt.%)

Q F Ca CM S Ka I C I/S C/S

B1 M601 14.5 / 41.9 45.3 1.3 11.4 0.00 2.28 1.37 4.45 1.14 2.17
B2 M601 7.4 0.0088 41.5 45.6 0.0 12.9 0.00 2.32 2.45 4.77 1.03 2.32
B3 M603 11.1 0.0147 45.5 45.6 0.7 8.2 0.00 0.66 6.07 0.98 0.16 0.33
B4 M604 10.3 / 45.5 45.6 0.7 8.2 0.00 0.66 6.07 0.98 0.16 0.33
B5 M603 6.7 0.0795 38.5 47.3 0.0 14.3 0.00 3.15 3.43 5.15 1.43 1.14
B7 M604 8.9 / 44.7 41.8 1.7 11.8 0.00 2.12 1.53 4.84 1.30 2.01
B8 M154 11.3 / 48.1 41.4 0.5 10.0 0.00 1.30 2.90 4.10 0.30 1.40
B9 M154 6.6 / 31.9 32.3 30.1 4.4 0.00 0.75 0.84 1.98 0.22 0.62

B10 M154 7.5 / 31.9 32.3 30.1 4.4 0.00 0.75 0.84 1.98 0.22 0.62
B11 M154 7.2 / 42.1 44.3 0.0 13.6 0.00 1.36 6.66 3.26 0.54 1.77
B12 M154 7.2 / 62.3 18.7 0.0 19.1 2.10 1.72 4.78 6.69 0.00 3.82
B13 M136 13.9 0.2070 51.6 32.0 4.6 11.7 0.00 0.23 9.13 1.52 0.00 0.82
B14 M139 20.3 3.5200 53.2 40.0 0.0 6.8 0.00 1.09 2.24 2.45 0.48 0.54
B15 M139 12.5 / 35.7 52.8 3.3 8.2 0.08 0.33 4.35 2.71 0.16 0.57
B16 M139 6.8 / 37.6 49.1 0.0 13.3 1.06 0.40 5.59 4.92 0.00 1.33
B17 M139 7.2 / 47.2 42.1 0.0 10.6 / / / / / /
B18 X723 9.5 0.0579 49.7 41.3 3.6 5.4 0.00 0.43 1.89 2.00 0.27 0.81
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Table 1. Cont.

No. Well Φ (%) K (mD)
Mineral Composition (wt.%)

Q F Ca CM S Ka I C I/S C/S

B19 X723 9.8 / 37.8 36.6 0.0 25.6 2.30 1.79 7.94 9.98 0.00 3.58
B20 X723 8.2 0.0185 44.2 41.9 4.3 9.6 0.00 1.15 2.98 3.65 0.48 1.34
B21 X723 8.3 0.3160 40.9 47.5 6.9 4.7 0.66 1.60 1.18 1.27 0.00 0.00
W1 M001 4.7 / 35.0 21.9 29.1 13.8 11.87 0.83 0.00 1.10 0.00 0.00
W2 M001 4.8 / 59.3 23.1 0.0 17.6 3.52 4.75 2.46 6.86 0.00 0.00
W3 M211 5.8 0.0378 42.7 31.6 0.0 25.1 13.30 2.51 1.51 7.78 0.00 0.00
W4 M211 5.3 / 49.8 35.0 0.3 14.9 9.24 1.94 0.00 3.73 0.00 0.00
W5 M218 3.4 0.0956 44.0 28.6 0.0 25.2 11.59 0.76 2.27 10.58 0.00 0.00
W6 M218 3.4 / 43.9 31.9 1.2 3.1 0.90 0.06 0.00 2.14 0.00 0.00
W7 M218 3.8 / 49.8 20.9 15.4 13.9 7.92 0.28 0.00 5.70 0.00 0.00
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Figure 3. Pore types identified by CTS and SEM images in the P2w and T1b conglomerates. (A) In-
tragranular dissolution pores (IDPs), B1, plane polarized light; (B) grain boundary fractures and
structural fractures, W5, plane polarized light; (C) residual intergranular pores (RIPs) and intragran-
ular dissolution pores (IDPs), B14, SEM; (D) QEMSCAN image in the same view field as photo C;
(E) IDPs within rock fragments, B7, plane polarized light; (F) IDPs, W4, SEM; (G) clay-related pores
(CRPs) associated with detrital clay and IDPs within feldspar, W4, SEM; (H) QEMSCAN image in the
same view field as photo G; (I) CRPs associated with authigenic clay, W4, SEM; (J) grain boundary
fractures and calcite cement, B21, plane polarized light; (K) RIPs and DPs, B14, plane polarized light.

The minerals were dominated by quartz (31.9–62.3%) and feldspar (18.7–52.8%), fol-
lowed by clay minerals (3.1–25.6%) and calcite (0–30.1%). The P2w clay minerals were
dominated by illite (0.84–9.13%) and chlorite (0.98–9.98%). The major components of T1b
clay minerals were smectite (0.90–13.3%) and chlorite (1.10–10.58%) (Table 1).

The pore system controlled the petroleum storage and seepage capacity in the reservoir.
Under the joint influence of sedimentation and diagenesis, the low-permeability conglom-
erate has a variety of pore types and a broad range of pore sizes (Figure 3). The geometry
of residual intergranular pores (RIPs) is irregular, and the pore size is mainly > 10 µm.
RIPs only develop in conglomerate samples with good particle sorting and rich rigid
particles. RIPs are mostly formed between quartz particles with grain-coating chlorite
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(Figure 3C,D,K). The detrital particles such as feldspar, quartz, and rock fragments in
the conglomerate in the study area were partially or completely dissolved to form disso-
lution pores. In the presence of alkaline fluid, quartz was susceptible to dissolution to
form the intragranular dissolution pores (IDPs), and the pore size was mostly nano-scale
(Figure 3C) [27]. However, feldspar and rock fragments are prone to dissolution in the exis-
tence of acidic fluids [28]. The DPs formed by dissolution of feldspar and rock fragments
were mostly micron-scale pores (Figure 3A,C,E,F,K). A large amount of detrital clay was dis-
tributed among the conglomerate framework grains, which develop abundant nano-scale
pores. Moreover, the DPs are usually filled with authigenic clay, forming intercrystalline
pores. In this work, we refer to such pores as clay-related pores (CRPs). There are two main
causes of microfractures in the study area: diagenetic fractures (mainly grain boundary
fractures) and structural fractures. Microfractures play an excellent role in improving the
seepage capacity of the reservoir. The width of the microfractures was mainly in the order
of microns (Figure 3B,J).

4.2. Pore Structure and Movable Fluid Saturation from NMR

The T2 spectra under saturated fluid conditions can reveal the full-scale PSD of con-
glomerates. The largest T2 value corresponds to the largest pore size, and the smallest T2
value corresponds to the smallest pore size. The T2 spectra of the typical conglomerates
are displayed in Figure 4. Three types of PSD are observed according to the shapes of T2
spectra. Type I conglomerates had a broad T2 distribution, varying from 0.01 ms to 700 ms
(Figure 4C,D), indicating that the large-scale RIPs, DPs, and CRPs were all developed in
this type of conglomerate. Type II conglomerates had a relatively broad T2 distribution,
in the range of 0.01–300 ms (Figure 4A,E), reflecting that this type of conglomerate was
dominated by small-scale RIPs or DPs and CRPs. Type III conglomerates had a narrower
T2 distribution, varying from 0.01 ms to 100 ms (Figure 4B,F), showing that this type of
conglomerate mainly developed CRPs and a few small-scale IDPs or microfractures.

The movable fluid saturation (Sm) of the selected conglomerates was in the range of
12.62–51.25%, with an average of 27.53% (Table 2). Moreover, from type I conglomerate to
type III conglomerate, the Sm decreased gradually. The fluid mobility in pores of different
sizes also displayed large differences.

Table 2. Parameters derived from NMR.

No. Depth
/m

T2l
/ms

T2r
/ms

T2,gm
/ms

Sm
/%

Fractal Dimension Pore Volume/10−4 mL·g−1

D1 D2 D3 Macro- Meso- Micro-

B1 3861.5 0.05 1.54 2.60 41.89 −1.992 1.856 2.905 4.77 301.15 277.18
B2 3892.0 0.05 5.36 0.96 23.39 −1.983 2.202 2.969 3.97 261.20 47.80
B3 3806.3 0.05 4.66 2.42 42.69 −2.074 1.957 2.936 1.66 257.27 114.26
B4 3806.3 0.05 500 2.44 40.65 −2.148 1.965 2.940 1.40 254.20 109.34
B5 3837.9 0.05 3.53 3.39 40.30 −1.867 2.206 2.871 2.78 129.78 111.72
B7 3881.0 0.05 3.30 1.10 27.23 −1.969 2.133 2.958 4.78 260.48 77.27
B8 3007.6 0.05 2.50 1.07 32.80 −1.993 1.975 2.951 4.52 334.30 116.46
B9 3027.1 0.05 1.89 0.47 20.03 −1.967 2.046 2.976 4.96 152.24 23.41

B10 3027.1 0.05 2.50 0.73 22.49 −1.980 2.118 2.962 4.26 187.29 44.03
B11 3034.1 0.05 1.89 1.82 27.49 −1.896 1.997 2.911 2.77 143.06 108.14
B12 3069.8 0.05 4.06 1.56 18.81 −1.760 2.021 2.949 1.63 163.71 58.16
B13 3270.7 0.05 2.50 1.81 40.06 −1.963 2.059 2.928 6.10 329.54 194.77
B14 3260.1 0.05 2.03 1.62 51.25 −1.921 2.154 2.924 16.02 507.52 283.72
B15 3273.3 0.05 2.50 1.01 41.78 −1.923 2.115 2.953 6.97 315.34 116.48
B16 3280.3 0.05 2.17 0.65 19.43 −1.967 2.139 2.969 4.89 174.69 41.94
B17 3309.9 0.05 2.17 0.88 26.19 −1.969 2.144 2.952 5.54 197.47 75.90
B18 2676.5 0.05 1.25 3.48 43.36 −2.003 1.832 2.853 2.03 107.62 223.89
B19 2686.7 0.05 1.89 0.72 33.33 −1.911 2.114 2.965 7.68 260.93 80.12
B20 2691.9 0.05 1.89 0.66 21.66 −1.767 2.090 2.962 6.19 226.09 58.74
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Table 2. Cont.

No. Depth
/m

T2l
/ms

T2r
/ms

T2,gm
/ms

Sm
/%

Fractal Dimension Pore Volume/10−4 mL·g−1

D1 D2 D3 Macro- Meso- Micro-

B21 2734.0 0.05 2.87 2.50 29.20 −1.874 2.127 2.922 2.88 150.57 129.98
W1 3567.3 0.05 1.54 0.65 12.62 −1.889 2.316 2.931 13.98 198.44 78.45
W2 3572.8 0.05 4.66 0.89 16.81 −2.112 2.163 2.982 2.87 194.97 31.59
W3 3772.3 0.05 1.01 0.93 23.66 −1.895 2.126 2.959 6.48 112.08 53.80
W4 3768.4 0.05 0.51 1.12 18.73 −1.880 1.899 2.908 10.30 145.71 151.50
W5 3854.3 0.05 0.51 0.33 14.23 −1.912 1.850 2.964 17.33 273.22 82.92
W6 3915.3 0.05 0.51 0.35 21.39 −1.911 1.868 2.962 10.32 156.93 56.67
W7 3932.2 0.05 0.472 0.44 14.10 −1.900 1.866 2.941 13.10 182.36 94.74

Figure 4. NMR T2 spectrum of the typical conglomerate samples at the saturated and centrifuged
conditions. (A) is from sample B1; (B) is from sample B2; (C) is from sample B13; (D) is from sample
B14; (E) is from sample W4; (F) is from sample W5.

4.3. Fractal Characteristics Derived from NMR

Shao et al. (2017) proposed an effective method to calculate the fractal dimension (D)
using NMR data [24]. The calculation equation of fractal dimension is:

lg(S) = (3 − D)lgT2 + (D − 3)lgT2max (1)

where S denotes the cumulative pore volume percentage with a pore size smaller than T2,
%; D is the fractal dimension; T2max denotes the maximum T2 value, ms.
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A scatter plot of lg(S) and lg(T2) was drawn to reflect the fractal characteristics of
conglomerates (Figure 5). Three distinct linear segments are displayed by two “turning
points” (T2l and T2r). The T2l was stable for all conglomerate samples with values around
0.05 ms. However, the T2r of different conglomerate samples was quite different, ranging
from 0.4 ms to 5.4 ms. These two “turning points” divided the pore system of the conglom-
erate into three parts: macropores (>T2r), mesopores (T2l < T2 < T2r), and micropores (<T2l).
Moreover, the fluid in the pores with T2 < T2l was immobile. The fluid in the pores with
T2 between T2l and T2r was dominated by irreducible fluid. The fluid in the pores with
T2 > T2r was mainly movable fluid (Figure 4).
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Figure 5. Fractal characteristics of the typical conglomerates. (A) is from sample B1; (B) is from
sample B2; (C) is from sample B13; (D) is from sample B14; (E) is from sample W4; (F) is from
sample W5.

The fractal dimensions of macropores, mesopores, and micropores are expressed as
D3, D2, and D1, respectively, as shown in Table 2. D3 was in the range of 2.842–2.982, with
a mean of 2.936, indicating that macropores had extremely high pore structure complexity.
In this work, macropores reflect RIPs and DPs. The extremely irregular shape and the large
surface roughness of RIPs and DPs were observed from CTS and SEM images (Figure 3). D2
was in the range of 1.794–2.316, with a mean of 2.040, which was smaller than D3, implying
that the complexity of mesopores (mainly CRPs) was weaker than that of macropores. D1
varied from −2.148 to −1.760, with a mean of −1.934, indicating that D1 was meaningless.
In this work, the micropores reflect adsorption spaces. There was no apparent correlation
between D2 and D3.



Processes 2023, 11, 2667 9 of 14

5. Discussion
5.1. Correlations between Fractal Characteristics and Mineral Compositions

D3 was negatively correlated with the contents of quartz and feldspar (Figure 6A,C),
indicating that high contents of quartz and feldspar can reduce the complexity of macro-
pores. There was no distinct relationship between D3 and the calcite content (Figure 6E).
Moreover, there was a positive relationship between D3 and the clay mineral content
(Figure 6G), which was mainly due to the fact that pore-lining and pore-filling clays can
increase the surface roughness and tortuosity of macropores [29]. However, D2 had no
obvious correlation with the contents of whole rock minerals (Figure 6B,D,F,H), indicating
that whole rock minerals had no effect on the complexity of mesopores. This phenomenon
may be related to the fact that the mesopores were mainly CRPs, and their complexity may
be attributed to the crystal structure of clay minerals [30,31].
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versus calcite; (G) Correlation of D3 versus clay minerals; (H) Correlation of D2 versus clay minerals.

In addition, we further analyzed the relationship between volumes of macropores,
mesopores, and micropores and mineral compositions (Figure 7). A remarkable positive
relationship existed between the volume of macropores and the contents of quartz and
feldspar (Figure 7A,D). In addition, the volume of macropores showed a negative rela-
tionship with the contents of clay minerals and calcite (Figure 7G,J). The above findings
demonstrate that high quartz and feldspar content increases macropore volume. However,
there were no distinct relationships between mineral compositions and the volumes of
mesopores and micropores (Figure 7B,C,E,F,H,I,K,L).
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Saturation 

D3 waws negatively correlated with porosity, permeability, and Sm, while D2 showed 
no significant relationships with porosity, permeability, and Sm (Figure 8). These results 
suggest that the increase in D3 results in a complex pore structure, thereby reducing per-
meability and fluid mobility. There was an obvious positive relationship between Sm and 
the volume of macropores. Moreover, there was a weak positive relationship between Sm 
and the volume of mesopores. However, the Sm was negatively correlated with micropore 
volume (Figure 9B,C). In addition, the high value of D3 reduces the volume of macropores 
(Figure 10). Therefore, the reservoir quality and fluid mobility of conglomerates were 
dominated by the complexity of macropores. 

Figure 7. Relationships between mineral compositions and pore volumes. (A) Relationship of macro-
pore volume versus quartz; (B) Relationship of mesopore volume versus quartz; (C) Relationship of
micropore volume versus quartz; (D) Relationship of macropore volume versus feldspar; (E) Rela-
tionship of mesopore volume versus feldspar; (F) Relationship of micropore volume versus feldspar;
(G) Relationship of macropore volume versus calcite; (H) Relationship of mesopore volume versus
calcite; (I) Relationship of micropore volume versus calcite; (J) Relationship of macropore volume
versus clay minerals; (K) Relationship of mesopore volume versus clay minerals; (L) Relationship of
micropore volume versus clay minerals.

5.2. Correlations between Fractal Characteristics, Porosity, Permeability, and Movable
Fluid Saturation

D3 waws negatively correlated with porosity, permeability, and Sm, while D2 showed
no significant relationships with porosity, permeability, and Sm (Figure 8). These results
suggest that the increase in D3 results in a complex pore structure, thereby reducing
permeability and fluid mobility. There was an obvious positive relationship between
Sm and the volume of macropores. Moreover, there was a weak positive relationship
between Sm and the volume of mesopores. However, the Sm was negatively correlated with
micropore volume (Figure 9B,C). In addition, the high value of D3 reduces the volume of
macropores (Figure 10). Therefore, the reservoir quality and fluid mobility of conglomerates
were dominated by the complexity of macropores.
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Figure 8. Relationships between fractal dimensions and porosity and permeability and movable fluid
saturation. (A) Relationship of porosity versus D3; (B) Relationship of porosity versus D2; (C) Rela-
tionship of permeability versus D3; (D) Relationship of permeability versus D2; (E) Relationship of
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5.3. Implications of Fractal Characteristics for Characterizing the Pore Structure of Conglomerates

The fractal characteristics derived from NMR data revealed that macropores, meso-
pores, and micropores constituted the pore system of low-permeability conglomerates.
Macropores were dominated by DPs and RIPs, which are the major contributors to reser-
voir quality and fluid mobility. Mesopores were mainly composed of clay-related pores in
which the fluid is mostly irreducible. Micropores mainly reflect the adsorption spaces. The
geometric mean of the T2 spectra (T2,gm) under saturated conditions can be used to assess
the quality of the reservoir pore structure. A high T2,gm reflects a good pore structure [28].
T2,gm displayed a distinct negative relationship with D3, with R2 of 0.6897, while the corre-
lation between T2,gm and D2 was not obvious (Figure 11). Thus, D3 is a good indicator to
reveal the quality of pore structure in the low-permeability conglomerates.
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6. Conclusions

The P2w and T1b low-permeability conglomerate samples were measured by CTS, SEM,
and NMR experiments to investigate the multi-scale pore system and fractal characteristics.
The following conclusions can be drawn.

Four pore types are identified from CTS and SEM images: RIPs, DPs, CRPs, and
microfractures. Based on the fractal characteristics of a multi-scale pore system, the pore
system is divided into three parts: macropores, mesopores, and micropores. The phys-
ical properties and fluid mobility of conglomerates are mainly controlled by the fractal
dimension and volume of macropores. The development of macropores is dominated
by the contents of feldspar, quartz, and clay minerals. Pore-lining and pore-filling clays
can increase the complexity of macropores. Only D3 can indicate the quality of the pore
structure of conglomerates.
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