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Abstract: The heat transfer assessment of a buried hot oil pipe is essential for the economical and
safe transportation of the pipeline, where the basis is to determine the temperature field surrounding
the pipe quickly. This work proposes a novel method to efficiently predict the temperature field
surrounding a hot oil pipe, which combines the proper orthogonal decomposition (POD) method
and the backpropagation (BP) neural network, named the POD-BP model. Specifically, the BP neural
network is used to establish the mapping relationship between spectrum coefficients and the preset
parameters of the sample. Compared with the classical POD reduced-order model, the POD-BP
model avoids solving the system of reduced-order governing equations with spectrum coefficients as
variables, thus improving the prediction speed. Another advantage is that it is easy to implement
and does not require tremendous mathematical derivation of reduced-order governing equations.
The POD-BP model is then used to predict the temperature field surrounding the hot oil pipe, and
the sample matrix is obtained from the numerical results using the finite volume method (FVM). In
validation cases, both steady and unsteady states are investigated, and multiple boundary conditions,
thermal properties, and even geometry parameters (different buried depths and pipe diameters) are
tested. The mean errors of steady and unsteady cases are 0.845~3.052% and 0.133~1.439%, respectively.
Appealingly, almost no time, around 0.008 s, is consumed in predicting unsteady situations using the
proposed POD-BP model, while the FVM requires a computational time of 70 s.

Keywords: POD prediction; BP neural network; temperature field; hot oil pipe

1. Introduction

In 2022, oil accounted for the largest proportion of global energy consumption, ap-
proximately 31% [1]. Pipeline buried under the surface of the ground is the main method
of transporting oil; e.g., pipeline transportation occupies 68% of domestic petroleum ship-
ments in the United States [2]. If the oil has a high pour point or high viscosity, it should
be heated to reduce friction loss and ensure the reliability of pipe transportation [3,4]. The
continuous heat exchange between oil and the surrounding soil lowers the oil temperature,
but the oil temperature is supposed to be kept higher than the gel point at all times during
transportation, leading to great energy consumption and carbon emission from the oil
heating. Therefore, efficient and accurate prediction of the temperature field around the hot
oil pipe has important implications for the economical, safe, and environmentally friendly
operation of the pipeline system.

In recent years, much numerical research has been carried out to investigate the tem-
perature field surrounding the hot oil pipe, mostly based on direct numerical simulation [5],
such as the finite element method (FEM) [6] and finite volume method (FVM) [7,8]. Nev-
ertheless, direct numerical simulation has high computational complexity when solving
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discretization systems, resulting in large memory requirements and a long computational
time. These defects make it difficult to apply to optimal design and risk assessment of the
pipeline system, which requires the calculation of different conditions containing a great
number of combinations of operation and structure parameters [9]. Herein, this work tends
to adopt the proper orthogonal decomposition (POD) method to improve the simulation
efficiency [10].

POD can abstract large amounts of data about one mathematical model into a series
of basis functions to represent the main characteristics of this model [11,12]. It is always
combined with the Galerkin projection method to construct the POD reduced-order model
that can predict the physical field distribution [13]. The spectrum coefficients system with
lower degrees of freedom is solved in the POD reduced-order model [14], rather than all
discretized grids, as in direct numerical simulation, and thus the POD reduced-order model
can significantly improve the simulation speed. Researchers have paid extensive attention
to the POD reduced-order model, and it is widely applied to various engineering projects,
including turbulent flow [15,16], and pipe flow [17]. Recently, some applications of the
POD reduced-order model to predict the temperature field surrounding the hot oil pipe
have been published. Yu et al. [18] established the POD reduced-order model for the pipe
cross section based on the unstructured grid, in which comprehensive boundary conditions
of the physical domain were considered, and the boundary treatments in the POD reduced-
order model were discussed in detail. To make the POD reduced-order model suitable for
different geometry parameters (i.e., buried depth, pipe diameter, and pipe wall thickness),
the body-fitted coordinates (BFCs) of the pipe cross section were combined with the POD
reduced-order model in [19]. This model effectively expanded the application scope of
POD, but only a steady situation was studied. Furthermore, Han et al. [20] proposed a BFC-
based POD reduced-order model for the unsteady heat conduction of crude oil pipelines
and applied it to the cold and hot oil batch transportation as well as pipe shutdown.

The classical POD reduced-order model requires many numerical simulation results
to extract the basis functions, which are then used for predicting the temperature field.
However, this approach has two drawbacks: (1) There is a mapping relationship between
spectrum coefficients and preset parameters of the predicted sample, described by reduced-
order governing equations [20]; solving reduced-order governing equations with spectrum
coefficients as variables still needs a certain amount of computation. (2) The Galerkin
projection method used to derive the reduced-order governing equations from the POD
basis functions requires high mathematical complexity and is tedious to implement [21];
if the assumptions underlying the heat transfer processes, such as steady or unsteady
states, constant or variable thermal properties, and boundary conditions, are changed, the
reduced-order governing equations must be rederived [18].

In another way, using neural networks to fit mapping relationships has high flexibility
and adaptability [22,23]. The training process of neural networks does not require any
complex mathematical derivation, and the application of neural networks has almost no
computational effort. Hence, to address the two drawbacks of the classical POD reduced-
order model mentioned above, this work uses the backpropagation (BP) neural network
to establish the mapping between spectrum coefficients and preset parameters of the
sample. The present model is named the POD-BP model, and it can efficiently predict the
temperature field surrounding the hot oil pipe in both steady and unsteady situations. A
variety of boundary, thermal property, and geometry parameters are also considered in
validation cases to illustrate the applicability of the POD-BP model.

2. Methodology

This section first presents the physical model and governing equations for the temper-
ature field surrounding the hot oil pipe. Then, the meshing of the computational domain
is introduced to ensure that the POD-BP model applies to various geometry parameters.
Subsequently, the POD basis function calculation is briefly described and the POD-BP
model is established to predict the temperature field.
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2.1. Physical Model for Heat Conduction Surrounding the Hot Oil Pipe

Figure 1 shows the schematic of the computational domain and boundary conditions
for the heat conduction surrounding the hot oil pipeline. The deposited wax, steel layer,
and corrosion protection layer are considered for the pipe wall, and the surrounding
soil accounts for the primary area. The following assumptions are made to simplify
this problem.
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Figure 1. Computational domain and boundary condition.

• The thermal properties of the soil and pipe wall are isotropy and homogeneous. Hence,
the physical problem is symmetry along the vertical centerline of the pipe, and only
half of the domain is investigated here.

• The axial temperature variation of the surrounding soil is slight compared with the
radial direction and is thus neglected. A two-dimensional pipeline cross section is
studied here.

• The temperatures of hot oil inside the pipe and atmosphere air and the thickness of
wax deposition remain unchanged with time.

• According to the literature and engineering applications, the thermal influence regions
in the x and y directions are both 10 m [5]. It is assumed that the temperature response
outside the thermal influence region is neglected.

The governing equations of heat conduction in the pipe wall and surrounding soil are
expressed as follows:

∂
(
ρicp,iTi

)
∂t

= ∇ · (λi∆Ti) (1)

where T is the temperature in the physical domain; t is the time; ρ is the density; cp is the
specific heat capacity; λ is the thermal conductivity; and subscripts 1, 2, 3, and s denote the
wax layer, steel layer, corrosion protection layer, and soil, respectively.

For the boundary conditions, the left boundary (except the wax layer boundary) is
subjected to the symmetrical boundary condition as follows:

λi
∂Ti
∂x

= 0 at x = 0 and y ∈
[
−
(

H0 −
d
2
+ δ1

)
, 0
]
∪
[
−H0,−

(
H0 +

d
2
− δ1

)]
(2)
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where H0 is the buried depth; d is the inner diameter of the steel pipe; and δ1 is the
thickness of the wax layer. The wax layer boundary and upper boundary are subjected to
the convection boundary condition:

−λs
∂T
∂y

= ha(T − Ta) at y = 0 (3)

λ1
∂T1

∂r
= hoil(T − Toil) at r =

d
2
− δ1 (4)

where Ta is the atmosphere temperature; ha is the heat transfer coefficient between the soil
and air; Toil is the hot oil temperature inside the pipe; and hoil is the heat transfer coefficient
between the oil and the wax layer. The right boundary is assigned as the adiabatic boundary
and the lower boundary is regarded as the thermostatic soil layer and maintained at a
constant value:

λs
∂Ts

∂x
= 0 (5)

Ts = Tc (6)

where Tc is the temperature of the thermostatic layer.

2.2. Meshing of the Computational Domain

Figure 2 presents the mesh of the computational domain. All areas tend to use the
structured grid division. The geometry parameters of the computational domain, such as
buried depth, wall thickness, and pipe diameter, might change in different samples. It is
worth noting that the number of grids at the specific boundary is fixed even if geometry
parameters are changed. This limitation can ensure that the connection relationship for
grid cells is unchanged, even though the geometry parameters are different. Hence, the
POD basis functions discussed below apply to the various geometry structures of the
computational domain.
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Figure 2. Mesh of the computational domain.

Specifically, the total number of grid cells is 3846, and the upper, lower, and right
boundaries have 53, 53, and 68 grids, respectively, as presented in Figure 2. The left-upper,
wax layer, and left-lower boundaries have 12, 14, and 42 grids, respectively. The wax, steel,
corrosion protection, and virtual soil layers each have two grids for the pipe wall. The
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virtual soil layer is the meshing transition from the pipe wall to the soil, and its thermal
properties are the same as the soil.

2.3. Calculation of the POD Basis Functions

POD can extract the characteristic information of the physical problem through its
basis functions [24]. The POD basis functions are derived from the accurate results of
multiple sampling conditions, which are calculated by the finite volume method (FVM)
in this work [25]. The calculation of POD basis functions may need a large amount of
computation, but it is a one-off effort.

Suppose the computational domain has N grid cells, the matrix of a single sample
for the steady situation or unsteady situation with K recorded moments is constructed, as
shown in Equation (7). The temperature values of all grid cells and moments in a certain
sampling condition are saved in the same matrix, marked as Q.

Q =




T(x1)
T(x2)

...
T(xN−1)

T(xN)

 (Steady situation)


T(x1, τ1) T(x1, τ2) · · · T(x1, τK−1) T(x1, τK)
T(x2, τ1) T(x2, τ2) · · · T(x2, τK−1) T(x2, τK)

...
... · · ·

...
...

T(xN−1, τ1) T(xN−1, τ2) · · · T(xN−1, τK−1) T(xN−1, τK)
T(xN , τ1) T(xN , τ2) · · · T(xN , τK−1) T(xN , τK)

 (Unsteady situation)

(7)

where τ is the simulation time step and Q is generated by FVM simulations. Furthermore,
POD always applies to investigate various conditions, thus the Q of various sampling
conditions should be assembled into the same matrix S to superimpose the influences
of various conditions. It can be derived from Equation (7) that the matrix Q for the
steady situation has only one column to describe one steady temperature field, while for
the unsteady situation with K recorded moments, the matrix Q consists of K columns
to describe multiple temperature fields. Considering that there are L kinds of sampling
conditions, an entire sample matrix is constructed:

S =
[
Q1 Q2 · · · QL−1 QL

]
(8)

The basis functions are obtained by applying the singular-value decomposition
method [26] to S. When the row number Nr of S is smaller than its column number
Nc, the basis functions are calculated by the following steps:

• Calculate the matrix RNr×Nr =
1

Nc SNr×Nc(SNr×Nc)
T ;

• Orthogonally decompose the matrix RNr×Nr and obtain a series of eigenvectors
wi (i = 1, 2, 3, . . ., Nr). Sort eigenvectors wi by their corresponding eigenvalues.

• The basis functions are ϕi = wi;
• If Nr is larger than Nc, the following steps are conducted:
• Calculate the matrix RNc×Nc =

1
Nr (SNr×Nc)

TSNr×Nc;
• Orthogonally decompose the matrix RNc×Nc and obtain a series of eigenvectors

wi (i = 1, 2, 3, . . ., Nc). Sort eigenvectors wi by their corresponding eigenvalues.
• The basis functions are ϕi = Swi;
• In general, the matrix of basis functions is expressed as follows:
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Φ =



[
ϕ1 ϕ2 · · · ϕL−1 ϕL

]
=


ϕ1(x1) ϕ2(x1) · · · ϕL−1(x1) ϕL(x1)
ϕ1(x2) ϕ2(x2) · · · ϕL−1(x2) ϕL(x2)

...
... · · ·

... · · ·
ϕ1(xN−1) ϕ2(xN−1) · · · ϕL−1(xN−1) ϕL(xN−1)

ϕ1(xN) ϕ2(xN) · · · ϕL−1(xN) ϕL(xN)

 (Steady situation)

[
ϕ1 ϕ2 · · · ϕL×K−1 ϕL×K

]
=


ϕ1(x1) ϕ2(x1) · · · ϕL×K−1(x1) ϕL×K(x1)
ϕ1(x2) ϕ2(x2) · · · ϕL×K−1(x2) ϕL×K(x2)

...
... · · ·

... · · ·
ϕ1(xN−1) ϕ2(xN−1) · · · ϕL×K−1(xN−1) ϕL×K(xN−1)

ϕ1(xN) ϕ2(xN) · · · ϕL×K−1(xN) ϕL×K(xN)

 (Unsteady situation)

(9)

where Φ is the matrix of basis functions and the number of basis functions is the same as the
number of columns of S; the single basis function ϕi follows orthogonality, i.e.,

(
ϕi,ϕj

)
= δij.

Based on the POD basis functions, the original sample sequence is expressed as follows:



T(x1)

T(x2)
...

T(xN−1)

T(xN)

 =
L
∑

m=1
amϕm (Steady situation)



T
(
x1, τj

)
T
(
x2, τj

)
...

T
(
xN−1, τj

)
T
(
xN , τj

)

 =
L×K
∑

m=1
am
(
τj
)
ϕm (Unsteady situation)

(10)

where am is the spectrum coefficient and is equal to the following:

am =


([

T(x1) T(x2) · · · T(xN−1) T(xN)
]T ,ϕm

)
(Steady situation)([

T
(
x1, τj

)
T
(
x2, τj

)
· · · T

(
xN−1, τj

)
T
(
xN , τj

)]T ,ϕm

)
(Unsteady situation)

(11)

The POD basis functions can be arranged in descending order of eigenvalues, which
represents the energy or necessities of each basis function. The front POD basis functions
possess the most energy and are selected to characterize the physical problem. If the first M
basis functions were used to approximately construct the temperature field, the original
sequence is rewritten as follows:



T(x1)

T(x2)
...

T(xN−1)

T(xN)

 ≈
M
∑

m=1
amϕm, M ≤ L (Steady situation)



T
(
x1, τj

)
T
(
x2, τj

)
...

T
(
xN−1, τj

)
T
(
xN , τj

)

 ≈
M
∑

m=1
am
(
τj
)
ϕm, M ≤ L× K (Unsteady situation)

(12)
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2.4. Establishment of the POD-BP Prediction Model

In the classical POD reduced-order model, the spectrum coefficients are solved by the
reduced-order governing equations when the basis functions are attempted to represent the
predicted sample. In other words, there is a mapping between the predicted sample and
its related spectrum coefficients, described by the reduced-order governing equations in
the classical POD reduced-order method. However, the BP neural network substitutes the
reduced-order governing equations to establish the mapping in this work. The following
firstly introduces the construction of the dataset for the neural network, and then the entire
calculation process of the POD-BP model is presented.

After obtaining the sample matrix and the POD basis functions, we can construct the
spectrum coefficient matrix as the target data of the BP neural network. It is computed by
the projection of the sample matrix to the basis functions matrix:

A =
[
ϕ1 ϕ2 · · · ϕM−1 ϕM

]TS =


a1,Q1 a1,Q2 · · · a1,QL−1 a1,QL
a2,Q1 a2,Q2 · · · a2,QL−1 a2,QL

...
... · · ·

...
...

aM−1,Q1 aM−1,Q2 · · · aM−1,QL−1 aM,QL

aM,Q1 aM,Q2 · · · aM−1,QL−1 aM,QL

 (Steady situation)


a1,Q1,τ1 a1,Q1,τ2 a1,Q1,τ3 · · · a1,QL ,τK−2 a1,QL ,τK−1 a1,QL ,τK

a2,Q1,τ1 a2,Q1,τ2 a2,Q1,τ3 · · · a2,QL ,τK−2 a2,QL ,τK−1 a2,QL ,τk
...

...
... · · ·

...
...

...
aM−1,Q1,τ1 aM−1,Q1,τ2 aM−1,Q1,τ3 · · · aM−1,QL ,τK−2 aM−1,QL ,τK−1 aM−1,QL ,τk

aM,Q1,τ1 aM,Q1,τ2 aM,Q1,τ3 · · · aM,QL ,τK−2 aM,QL ,τK−1 aM,QL ,τK

 (Unsteady situation)

(13)

where every column of A is regarded as a set of outputs of neural networks.
On the other hand, the input data of the BP neural network are derived from the preset

parameters of samples, including boundary parameters, thermal property parameters,
geometry parameters, and the simulation time step if there is an unsteady situation. It is
apparent that, for all samples, the preset parameters and the associated output spectrum
coefficients have a mapping and form a dataset. Then, a typical BP neural network [27,28],
which usually has a two-layer feed-forward framework, sigmoid hidden neurons, and
linear output neurons, is established, as shown in Figure 3. For the training process of the
BP neural network, the dataset is split into training, validation, and testing sets in a ratio of
7:1.5:1.5, and the Levenberg–Marquardt algorithm is implemented [29,30].
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The predicted spectrum coefficients of the BP neural network can be used to reconstruct
the temperature field by substituting them into Equation (12). The entire calculation process
of the POD-BP model is presented in Figure 4.
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Figure 4. The entire calculation process of the POD-BP model to predict the temperature field
surrounding the hot oil pipe.

3. Results and Discussion

This section employs the POD-BP model to predict the soil temperature field for
both steady and unsteady situations. The accuracy of the prediction results is testified by
comparing them with the results of FVM.

First, the parameters, which are constant for all sampling conditions, are given. The
wax layer, steel layer, corrosion protection layer, and virtual soil layer thicknesses are fixed
at 0.016 m, 0.02 m, 0.005 m, and 0.02 m, respectively. The specific heat capacities of wax, steel,
corrosion protection, and soil are 2100 J·kg−1·◦C−1, 465 J·kg−1·◦C−1, 1670 J·kg−1·◦C−1,
and 1010 J·kg−1·◦C−1, respectively, and their densities are 910 kg·m−3, 7800 kg·m−3,
1200 kg·m−3, and 1700 kg·m−3, respectively. The thermal conductivities of wax, steel,
and corrosion protection are 2.5 W·m−1·◦C−1, 48.0 W·m−1·◦C−1, and 0.15 W·m−1·◦C−1,
respectively. For the boundary parameters, the convective heat transfer coefficients of oil
and atmosphere are fixed at 100 W·m−2·◦C−1 and 20 W·m−2·◦C−1, respectively.
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Tables 1 and 2 list the sampling conditions, which are also the preset parameters of
samples. They are solved by FVM with an algebraic multigrid solver, and the results are
used to form the sample matrix. There are three boundary parameters, three values of soil
heat conductivity, and eight kinds of geometry structures with different buried depths and
pipe internal diameters. The sampling conditions are generated by the permutation hand
combination of parameters, with 648 cases in total.

Table 1. Boundary and property parameters of samples.

Boundary Parameters Property Parameter
Geometry Parameter

Toil (◦C) Tc (◦C) Ta (◦C) λs (W·m−1·◦C−1)

30 −5 −20 0.8 Geo 1–Geo 8
(See Table 2)50 5 0 1.4

70 15 20 2.0

Table 2. Geometry parameters of samples in Table 1.

Geo No. Geo 1 Geo 2 Geo 3 Geo 4 Geo 5 Geo 6 Geo 7 Geo 8

H0 (m) 1.0 1.0 1.5 1.5 1.5 2.5 2.5 2.5
d (m) 0.5 0.8 0.5 0.8 1.0 0.5 0.8 1.0

The five validation cases supposed to be predicted by the POD-BP model are presented
in Table 3. The values of preset parameters are all different from Tables 1 and 2. In particular,
Cases 3–5 involve the parameters out of the sampling range, increasing the prediction
difficulty. The two boundary parameters and one property parameter are out of the
sampling range in Case 3, the two geometry parameters are out of the sampling range
in Case 4, and the two boundary parameters and one geometry parameter are out of the
sampling range in Case 5.

Table 3. Preset parameters of the validation cases.

Case No. Toil (◦C) Tc (◦C) Ta (◦C) λs (W·m−1·◦C−1) H0 (m) d (m)

Case 1 45 −3 −10 0.9 2.0 0.9
Case 2 60 0 8 1.0 1.5 0.6
Case 3 80 * 10 25 * 2.5 * 1.7 0.7
Case 4 35 −4 15 1.6 0.8 * 0.4 *
Case 5 75 * −10 * 12 1.8 2.8 * 0.8

* means that this value is outside the sampling range.

The error is defined to evaluate the accuracy of the proposed model quantitatively:

εi =

∣∣∣∣∣TPOD-BP(xi)− TFVM(xi)

TFVM
max − TFVM

min

∣∣∣∣∣× 100% (14)

where εi is the error of the ith grid cell; superscripts ‘POD-BP’ and ‘FVM’ mean the results
calculated by the POD-BP model and FVM, respectively; and superscripts ‘max’ and ‘min’
are maximum and minimum values, respectively, of the temperature field.

3.1. Steady Situation

With the singular-value decomposition method, 648 basis functions are obtained for
the steady situation. The eigenvalue λn, energy contribution ζn, and accumulative energy
vn of the first eight basis functions are presented in Table 4. It can be observed that the first
six basis functions account for more than 99.9% of the total energy. However, they can only
capture the main characters of the physical problem, and the subsequent basis functions
are also necessary to capture the exact information in local places. Figure 5 can illustrate
this point. The first and second basis functions have continuous and regular contours
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covering the entire area, while the fifteenth and twenty-fifth represent the heterogeneity
and randomity of the temperature field. For this physical problem, the first twenty-five
basis functions are employed in the POD-BP model after the independent test of the
selected basis function number, as presented in Table 5. The projected spectrum coefficients
of samples are used to reconstruct the approximate temperature field. If the difference
between the approximate temperature field and FVM results of samples is small enough,
the number of basis functions is sufficient.

Table 4. Eigenvalues of the first eight POD basis functions in the steady situation.

n 1 2 3 4 5 6 7 8

λn 9.47 × 108 1.73 × 108 4.55 × 107 2.46 × 107 2.45 × 106 1.13 × 106 1.51 × 105 3.85 × 104

ζn 79.338 14.475 3.810 2.058 0.205 0.0950 0.0127 0.00323
vn 79.338 93.813 97.623 99.681 99.886 99.981 99.994 99.997
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Figure 5. Distributions of the typical POD basis functions applied to the steady situation.

Table 5. Independency test of the selected basis function number.

Number of Basis Functions 5 10 20 25

Average approximation error of
all samples through Equation (12) 0.4629 ◦C 0.0370 ◦C 0.0011 ◦C 3.2972 × 10−4 ◦C

Fifteen hidden neurons and twenty-five output neurons are used to construct the
two-layered BP neural network, and the BP neural network is trained according to the
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spectrum coefficients and preset parameters of samples. The training process takes 345 s.
The decay of the mean squared error with epochs and the regression plot of the testing set
are shown in Figure 6. The mean squared error is from the sum of all grid cells and finally
becomes approximately invariant. The correlation coefficient approaches one, thus the
trained BP neural network can fit well with the mapping relationship between the input and
output. Then, the preset parameters of five validation cases are inputted into the BP neural
network to obtain the predicted spectrum coefficients. After that, substituting the predicted
spectrum coefficients into the basis functions can reconstruct the predicted temperature
field. Figure 7 presents the comparison of predicted temperature fields and accurate results.
The POD-BP model successfully captures the temperature distribution trends of cases with
different boundary conditions, thermal properties, and geometry parameters. It can be seen
that the contours of the predicted temperature field are very consistent with the accurate
results around the hot oil pipe, where the high-temperature gradient lies. The deviation
of contours is larger on the region far from the pipe because the temperature changes are
slight and hard to capture. There is no distinct regularity of error distribution among cases,
as shown in the right subgraphs of Figure 7.

Processes 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

  
(c) n = 15 (d) n = 25 

Figure 5. Distributions of the typical POD basis functions applied to the steady situation. 

Fifteen hidden neurons and twenty-five output neurons are used to construct the 

two-layered BP neural network, and the BP neural network is trained according to the 

spectrum coefficients and preset parameters of samples. The training process takes 345 s. 

The decay of the mean squared error with epochs and the regression plot of the testing set 

are shown in Figure 6. The mean squared error is from the sum of all grid cells and finally 

becomes approximately invariant. The correlation coefficient approaches one, thus the 

trained BP neural network can fit well with the mapping relationship between the input 

and output. Then, the preset parameters of five validation cases are inputted into the BP 

neural network to obtain the predicted spectrum coefficients. After that, substituting the 

predicted spectrum coefficients into the basis functions can reconstruct the predicted tem-

perature field. Figure 7 presents the comparison of predicted temperature fields and ac-

curate results. The POD-BP model successfully captures the temperature distribution 

trends of cases with different boundary conditions, thermal properties, and geometry pa-

rameters. It can be seen that the contours of the predicted temperature field are very con-

sistent with the accurate results around the hot oil pipe, where the high-temperature gra-

dient lies. The deviation of contours is larger on the region far from the pipe because the 

temperature changes are slight and hard to capture. There is no distinct regularity of error 

distribution among cases, as shown in the right subgraphs of Figure 7. 

  
(a) Performance (b) Regression plot 

Figure 6. For the BP neural network of the steady situation, (a) evolution of mean squared error with 

epochs and (b) regression plot of the testing set. 

-1000 -500 0 500 1000 1500 2000

-1000

-500

0

500

1000

1500

2000

2500

Target

 Fit

 Data

y=1*Target+0.0074

R=0.999998

Figure 6. For the BP neural network of the steady situation, (a) evolution of mean squared error with
epochs and (b) regression plot of the testing set.

The mean error and maximum error are shown in Table 6. Cases 1–4 have an error
smaller than 2.599%, 2.247%, 0.406%, and 1.403%, respectively, but there is a relatively
larger error for Case 5, which can reach 6.035%. This is because of the fact that Case 5
has both the boundary parameters (or property parameters) and geometry parameters
outside the sampling range, making the temperature distribution significantly different
from the samples.

Table 6. Mean and maximum errors of multiple cases in the steady situation.

Case No. Case 1 Case 2 Case 3 Case 4 Case 5

ε 0.845% 0.748% 0.124% 0.390% 3.052%
εmax 2.599% 2.247% 0.406% 1.403% 6.035%

On the whole, the POD-BP model has high accuracy in predicting the steady temper-
ature field surrounding the hot oil pipe and, in particular, it can successfully capture the
variation caused by geometry parameters.
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Figure 7. Prediction results of the POD-BP model in the steady situation. The left subgraphs are
accurate temperature distributions obtained by the FVM, the middle subgraphs are comparisons of
contours of POD-BP prediction (dashed line) and FVM solutions (solid line), and the right subgraphs
are error distributions.
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3.2. Unsteady Situation

For the unsteady situation, the initial temperature field is required for the simulation,
and it is assumed that there is a linear distribution between Ta and Tc from the ground
surface to the thermostatic layer. The calculation period is ten days and the discretized
time step of the FVM is half an hour. However, the recorded time step used to establish the
sample matrix is six hours, which ensures the computed size of the sample matrix is correct.
Hence, each sampling condition has 40 temperature fields related to different moments,
and the size of the sampling matrix is 3846×.

According to the singular-value decomposition method, 25,920 basis functions are
obtained for the unsteady situation. Table 7 presents the eigenvalues, energy contribution,
and accumulative energy of the first eight basis functions. It is observed that the first six
basis functions can account for 99.9% of the total energy. Similar to the steady situation,
the first and third basis functions have continuous distributions and significant gradients
around the pipe, while the fifteenth and twenty-fifth basis functions have heterogeneous
distributions to capture the local information, as shown in Figure 8. The first thirty basis
functions are employed in the POD-BP model to predict the unsteady temperature field.

Table 7. Eigenvalues of the first eight POD basis functions in the unsteady situation.

n 1 2 3 4 5 6 7 8

λn 1.53 × 1010 8.84 × 109 1.10 × 109 4.08 × 108 5.51 × 107 3.83 × 107 6.81 × 106 2.82 × 106

ζn 59.381 34.345 4.282 1.584 0.214 0.149 0.0265 0.0109
vn 59.381 93.726 98.008 99.593 99.807 99.956 99.982 99.993
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The BP neural network consists of fifteen hidden neurons and thirty output neurons,
and its training process takes 2778 s. Figure 9 shows the performance with epochs and
the regression plot of the testing set for the trained BP neural network. After that, the
preset parameters of five validation cases corresponding to the second and tenth days
are inputted into the BP neural network to obtain the predicted spectrum coefficients.
Figures 10 and 11 present the comparison of predicted temperature fields and accurate
results for the second and tenth days, respectively. It can be observed that our present
model can effectively calculate the temperature evolution with time, in which the region
having distinct temperature disturbance becomes larger. In general, the POD-BP model
can obtain temperature fields and contours comparable to the accurate results in the
unsteady situation.
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with epochs and (b) regression plot of the testing set.

Table 8 presents the quantitative errors of five cases at the moments of the second
day and tenth day, where the mean error of the PO-BP model is 0.133~1.439% and the
maximum error falls at 0.885~7.058%. Appealingly, the 10-day simulation of FVM needs
around 70 s to compute, while the POD-BP model consumes a very short time that can be
ignored. This is because the neural network is applied directly in the POD-BP model, and
no discretization equations of spectrum coefficients are solved.

Table 8. Mean and maximum errors and computational time of multiple cases in the unsteady situation.

Case No. Case 1 Case 2 Case 3 Case 4 Case 5

Prediction moment

2nd day ε 0.260% 0.166% 0.310% 0.623% 1.359%

εmax 3.956% 2.139% 1.471% 3.165% 2.906%

10th day ε 0.133% 0.133% 0.424% 1.439% 1.316%

εmax 0.885% 0.905% 2.180% 7.058% 2.739%

Computational time
FVM 67 s 74 s 68 s 70 s 71 s

POD-BP 0.008 s 0.008 s 0.008 s 0.008 s 0.008 s
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Figure 10. Prediction results of the POD-BP model in the unsteady situation on the second day. The
left subgraphs are accurate temperature distributions obtained by the FVM, the middle subgraphs
are POD-BP results, and the right subgraphs are comparisons of POD-BP predicted contours (dashed
line) and FVM solutions (solid line).
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Figure 11. Prediction results of POD-BP in the unsteady situation on the tenth day. The left subgraphs
are accurate temperature distributions obtained by the FVM, the middle subgraphs are POD-BP
results, and the right subgraphs are comparisons of POD-BP predicted contours (dashed line) and
FVM solutions (solid line).
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4. Conclusions

The fast prediction of the temperature field surrounding a hot oil pipe is important
for the optimal design and risk assessment of the pipeline system. This paper proposes a
novel POD-BP model to predict the temperature field surrounding a hot oil pipe efficiently.
Unlike the classical POD reduced-order model, the BP neural network is adopted here to
directly output the spectrum coefficients of the predicted sample according to its preset
parameters. Moreover, introducing the BP neural network can omit the complex mathe-
matical derivation of reduced-order governing equations and the solving of the spectrum
coefficients system.

Then, we use the presented model to predict the temperature field surrounding the
hot oil pipe in both steady and unsteady situations. The sample matrix is constructed based
on the numerical results of FVM with 3846 grid cells. Three boundary parameters, one
thermal property, and eight geometry structures are selected as the preset parameters of
samples, which are comprehensive and rigorous for verification. Five validation cases with
completely different preset parameters, including geometry parameters of buried depth
and pipe diameter, are tested. The results show that our model can predict the temperature
fields comparable to the FVM; the mean errors are 0.845~3.052% and 0.133~1.439% for
steady and unsteady situations, respectively; and the max errors are 0.406~6.035% and
0.885~7.058%, respectively. What is more important is that there is almost no computation
time for unsteady prediction using our model.

Our future work will concentrate on improving the prediction accuracy of the POD-BP
model. First, an advanced network framework, such as the Bayesian neural network, can
replace the two-layered BP network to robustly capture the mapping relationship. Second,
the preset parameters of samples and recorded time steps in the unsteady situation will be
optimized to obtain a series of basis functions with more accuracy.
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Nomenclature

Roman Symbols
am Spectrum coefficient
A Matrix of spectrum coefficients
cp Specific heat capacity, J·kg−1·◦C−1

d Inner diameter of the steel pipe, m
ha Heat transfer coefficient between the soil and air, W·m−2·◦C−1

hoil Heat transfer coefficient between the oil and the wax layer, W·m−2·◦C−1

H0 Buried depth, m
K Number of recorded moments
L Number of sampling conditions
M Number of selected basis functions
N Number of grid cells
Q Single sample matrix
S Entire sample matrix
t Time, s
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T Temperature, ◦C
Ta Atmosphere temperature, ◦C
Tc Temperature of the thermostatic layer, ◦C
Toil Hot oil temperature, ◦C
x, y Cartesian coordinate, m
Greek Symbols
δ1 Thickness of the wax layer, m
εi Error of the ith grid cell
ϕ Single basis function
Φ Matrix of basis functions
λ Thermal conductivity, W·m−1·◦C−1

λn Eigenvalue of the nth basis function
ζn Energy contribution of the nth basis function
vn Accumulative energy of the first n basis functions
ρ Density, kg·m−3

τ Simulation time step
Subscripts
1, 2, 3, s Layers of wax, steel, corrosion protection, and soil
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