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Abstract: Fluid catalytic cracking (FCC) is one of the most important processes in gasoline/diesel oil
production, but the strong endothermic effect accompanied by this reaction often results in the deacti-
vation of the catalyst. In this paper, a novel multifunctional phase change material (PCM)@Catalyst
composite was designed and constructed, in which the PCM could be used to store waste heat and
regulate the temperature for enhancing the catalytic efficiency of the FCC catalyst. Firstly, a core/shell
Al-12wt%Si@Al2O3 was prepared via subsequent vapor treatment and high-temperature calcination
of an Al-12wt%Si sphere. The Al species in the Al-12wt%Si served as the source of metal ions and was
transformed in situ into a well-defined Al2O3 shell, which greatly improved the thermal stability and
prevented the leaking of the Al-12wt% Si core in the high-temperature situation. The PCMs@Catalyst
composite was then fabricated by casting the mixed powder of Al-12wt%Si@Al2O3 and Y zeolite
into a granulated structure. The FCC results demonstrate that Al-12wt%Si@Al2O3/Y zeolite can
optimize product distribution and reduce coke yield. This design concept and synthesis strategy
can be extended to the production of a wide variety of hierarchical PCM@Catalyst composites for
other reactions.

Keywords: Al-Si alloy; phase change microcapsules; catalyst; multifunctional composite; catalytic cracking

1. Introduction

Chemical reactions such as fluid catalytic cracking (FCC) are often accompanied by
strong endothermic/exothermic effects, which usually lead to problems such as uneven
temperature distribution in the catalyst bed creating localized hotspots. In severe cases,
these problems may cause catalyst sintering deactivation and uncontrolled reactor dam-
age or leakage, even inducing safety accidents such as explosions or fires. Therefore, to
ensure that the reaction can be carried out safely and efficiently, precise control and timely
monitoring are necessarily required during the FCC process [1–3]. Furthermore, in order to
pursue the maximization of production efficiency, the reaction system is usually operated
at high temperatures [4]. In these cases, the temperature of the catalyst component is close
to the unstable range, which can easily cause thermal runaway, thermal inactivation, and
other problems, resulting in a series of problems such as changes in product distribution
and a decrease in the activity and life of the catalyst [5,6]. Therefore, favorable control of
the catalyst bed temperature is essential for the efficient and stable operation of the catalytic
reaction device [7–11].

Since the beginning of this century, the world’s productivity has grown at an unprece-
dented rate, and the resulting non-renewable fossil energy consumption and pollutant
emissions have caused increasingly serious damage to the environment. In recent years,
people have paid more and more attention to industrial energy saving and environmental
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protection [12–14]. Energy storage materials with heat storage and reuse characteristics,
such as sensible heat storage materials, latent heat storage materials, and chemical energy
storage materials have been extensively studied and reported. Among these, latent heat
energy storage materials (phase-change materials, PCM) are favored by researchers due to
advantages including high enthalpy value, good recycling stability, low cost, safety, and
non-toxicity. In addition, PCM functional materials can efficiently store or release heat
energy by changing their material state, which demonstrates a good prospect for solving
the problems of uneven bed temperature and heat energy dissipation during catalytic reac-
tions [15–20]. PCM materials can mainly be categorized into three main groups depending
on their composition: organic PCMs, inorganic PCMs, and metallic PCMs. Considering
the defects and deficiencies of organic PCMs and inorganic salt phase-change materials in
high-temperature reactions, metal and alloy PCMs such as Al-Si alloys have many excellent
characteristics, such as high heat storage density, high thermal stability, high conductivity,
a wide phase transition temperature range, and a low volume expansion rate [21–24].
Their ultra-high phase transition temperatures enable them to be used as alternatives for
the thermal management and energy utilization of high-temperature catalytic cracking
reaction systems after effective encapsulation, thus showing greater application potential
and development prospects [25–30].

In this work, commercial Al-12wt%Si eutectic alloy microspheres with a high phase
transition temperature (582 ◦C) and high heat storage capacity (382 J/g), which were
compatible with the catalytic cracking technology, were selected as the phase-change
core component. A phase-change microcapsule encapsulated by alumina, named Al-
12wt%Si@Al2O3, was first obtained by combining the simple steam-assisted oxidation
route (120 ◦C) and the high-temperature calcination process. The basic phase composition,
microstructure, thermophysical properties, and cyclic thermal stability of the microcapsules
were characterized by various characterization methods, including X-ray diffraction (XRD),
scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermo-
gravimetric analysis (TGA). After constructing the heat storage/catalysis multifunctional
composite FCC catalyst with the hydrothermal aging method, its catalytic performance
test results prove that the introduction of heat storage components can effectively optimize
product distribution and reduce carbon deposition, thus improving the efficiency and
stability of the catalytic system.

2. Experimental Section
2.1. Chemicals and Materials

The raw materials used in this work include Al-12wt%Si alloy microspheres (5–8 um,
Hunan Ningxiang Jiweixin Metal Powder Co., Ltd., Changsha, China), spherical alumina
(Al2O3, Henan Tianma New Material Co., Ltd., Zhengzhou, China), silica–alumina sol
(Shaoxing Shangyu Yinyu Silicon Products Co., Ltd., Shaoxing, China), Y zeolite (Laboratory
self-made), and ethanol (99%, Beijing Tong Guang Fine Chemicals Company, Beijing, China).
All used reagents were without further purification.

2.2. Synthesis of the Al-12wt%Si@Al2O3 Microcapsules

Spherical Al-12wt%Si alloy was used as the phase-change raw material, and Al-
12Si@Al2O3 microcapsules coated with an Al2O3 shell were prepared by combining water-
vapor-assisted oxidation and the high-temperature calcination heat treatment processes;
the specific steps were as follows: (1) the raw material of the Al-Si alloy microspheres
was washed with deionized water and anhydrous ethanol alternately using a filtration
device, and the obtained alloy powder was dried under vacuum at 60 ◦C and set aside;
(2) 1.0 g of dried Al-Si microspheres were taken and spread flat on the bottom of a poly-
tetrafluoroethylene liner with a capacity of 5 mL, the liner was placed in a 100 mL kettle
containing 10 mL of deionized water, the closed kettle was put into an oven, and the heating
temperature program (target temperature of 120 ◦C, treatment time of 1 h) was set; (3) after
the reaction, the sample was separated by filtration, dried at 60 ◦C in vacuum, and calcined
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at 800 ◦C for 3 h under an air atmosphere to obtain the Al-12wt%Si@Al2O3 (Al-12Si@Al2O3)
microcapsule sample (Scheme 1).
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Scheme 1. Schematic diagram of the preparation process for the Al-12Si@Al2O3/Y zeolite FCC catalyst.

2.3. Synthesis of the Multifunctional Composite FCC Catalyst

The above-synthesized Al-12Si@Al2O3 phase-change microcapsule was used as the
high-temperature heat storage component and mixed with the catalytic active component
Y zeolite (self-made) at a mass ratio of 1:3, then the mixture was composited with silica–
aluminum sol as the binder. After the conventional pelleting process, the sample particles
were hydrothermally aged at 800 ◦C for 17 h to improve their overall thermal stability, so
as to obtain the target Al-12wt%Si@Al2O3/Y zeolite (Al-12Si@Al2O3/Y zeolite) composite
FCC catalyst (Scheme 1).

2.4. Synthesis of the Al2O3 Composite FCC Catalyst (Blank Sample)

Referring to the above Al-12wt%Si@Al2O3/Y zeolite composite FCC catalyst synthesis
process, Al2O3 particles (no FCC activity) with shapes and sizes close to the Al-12Si@Al2O3
microcapsules were assembled with the catalytically active component Y zeolite, and the
composite FCC blank sample was obtained.

2.5. Characterization

Microscopic morphology was observed by scanning electron microscopy (SEM) using
a ZEISS SUPRA 55 under a test voltage of 5 KV. Transmission electron microscopy (TEM)
images were collected by a JEM-100CX transmission electron microscope operated at 80 kV.
The thermophysical properties of the samples were analyzed with a thermogravimetric
differential thermal analyzer (DSC-TG, METTLER TOLEDO, Zurich, Switzerland) under a
nitrogen atmosphere (the test temperature range was 50–700 ◦C, and the heating rate was
10 ◦C/min). The mass loss of the sample during heating was analyzed by a simultaneous
thermal analyzer (TGA, Netzsch STA449F3, Bavaria, Germany). The phase composition and
crystal structure of the sample were obtained with a powder X-ray powder diffraction in-
strument (M21X) under the conditions of 40 KV, 40 mA, 20◦ < 2θ < 90◦ or 20◦ < 2θ < 50◦ (for
the pristine Y zeolite and Al-12Si@Al2O3/Y zeolite FCC catalyst), and a scanning rate of
0.1◦ s−1. The quantification of elements (Al and Si) in the Al-12wt%Si@Al2O3/Y zeolite and
its blank sample was achieved using an inductively coupled plasma emission spectrom-
eter (ICP-OES, Agilent Technologies 725ES, Palo Alto, Santa Clara, CA, USA). The NH3
temperature-programmed desorption (NH3-TPD) curves of the multifunctional composite
FCC catalyst and the composite FCC blank sample were measured with an AutoChem II
2920 adsorption instrument (Atlanta, GA, USA, After NH3 adsorption was completed, the
temperature was increased to 600 ◦C at a rate of 10 ◦C/min under a He atmosphere for
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desorption.). The textural properties of samples, such as specific surface area and pore vol-
ume, were examined with an Autosorb-IQ automatic static physical adsorption instrument
(Boynton Beach, FL, USA) after the samples were degassed at 300 ◦C for 6 h under vacuum.
The catalytic performance and product distribution of the composite FCC catalyst and its
blank sample were characterized using light diesel oil as a feedstock oil with an automatic
micro-reaction activity evaluation instrument (WFS-1D) (reaction temperature: 580 ◦C,
catalyst loading: 2.67 g, feed flow rate: 0.0225 g/s, total oil feed mass: 1.574 g, reaction
duration: 70 s). In order to reduce measurement error, five sets of parallel experiments
were performed on each test sample, and the catalytic data obtained were averaged as the
final data.

3. Results and Discussion
3.1. Structural Analysis of Al-12Si@Al2O3 Microcapsules

As shown in Figure 1a, the selected Al-Si alloy has a standard spherical structure and
a relatively smooth surface, and the particle size is evenly distributed at 4–8 µm. After
calcination at 800 ◦C under an air atmosphere, the unencapsulated alloy microspheres
melted and underwent a solid–liquid phase transition (Figure 1b). The thermally oxidized
Al2O3 thin film formed on the surface at the early stage of heating was too weak to maintain
the original morphology, leading to leakage of the liquid PCM inside and significant
structural collapse. In addition, these leaked alloys were rapidly oxidized to Al2O3 by air,
resulting in a significant reduction in the overall latent heat value of the material. These
results indicate that the original alloy PCM does not have sufficient thermal stability and
needs to be further microencapsulated.
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Figure 1. SEM images of the unencapsulated Al-12wt%Si alloy before and after calcination: (a) before
calcination, (b) after calcination.

Microencapsulation of the alloy PCM was achieved with steam-assisted oxidation
treatment [31,32]. Figure 2 shows the XRD spectra of the pristine Al-12wt%Si alloy and
the microcapsule samples before and after calcination; it can be found that for the two
encapsulated samples, in addition to all the absorption peaks in the pure alloy, two ad-
ditional sharp diffraction peaks of Al2O3/Al(OH)3 are also clearly observed [27,33]. The
Al(OH)3 that appears after steam treatment can be transformed into the corresponding
Al2O3 after calcination. Due to the low Si content and the presence of Al2O3 film on the
surface, the Al diffraction peaks are sharp, and the intensity of the Si absorption peaks is
very low. The diffraction peak intensities of Al and Si are slightly increased after sintering
treatment, which may be due to a small amount of leakage of molten Al-Si alloy at the
weak position of the composite. Moreover, the leaking alloy can be rapidly oxidized to an
extra silica-containing Al2O3 shell in a high-temperature oxygen-containing environment,
spontaneously completing the defect repair.
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Figure 2. XRD patterns of the pristine Al-Si alloy and the encapsulated alloy PCM before and after
calcination treatment.

Figure 3 shows the SEM images of the alloy microcapsule before and after calcination
treatment. As shown in Figure 3a,b, the surface of the uncalcined microsphere is covered
with a relatively dense Al(OH)3 layer, which mainly consists of fine rod-like long crystals
and a few columnar crystals. After being calcined at 800 ◦C, the sample can still maintain
a basic spherical morphology, with no obvious melting marks or cracks caused by alloy
leakage (Figure 3c,d), and the stability of the sample is significantly improved. After
calcination, the surface morphology of the microsphere changes from smooth to a rough
bulging structure, which may be attributed to the thermal expansion caused by the solid–
liquid transition of the alloy during the calcination heating process. Most of the original
fine rod-like bayerite crystals decomposed and reorganized to form a continuous matrix
layer with improved densification.
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3.2. Thermal Properties and Stability of Al-12Si@Al2O3 Microcapsules

The thermal properties of the microencapsulated sample before and after cycling were
characterized by TG-DSC, and the following classical equations were used to calculate the
encapsulation rate (Een), energy storage efficiency (Ees), and thermal storage capacity (Ces)
of the microcapsules, respectively. The specific results are shown in Figure 4 and Table 1.
Among them, ∆Hm,pcm and ∆Hc,pcm are the crystallization enthalpy and melting enthalpy
of the alloy PCM, respectively, while ∆Hm,sample and ∆Hc,sample are the crystallization
enthalpy and melting enthalpy of the microcapsule sample, respectively.

Een =
∆Hm,sample

∆Hm,pcm
× 100% (1)

Ees =
∆Hm,sample + ∆Hc,sample

∆Hm,pcm + ∆Hc,pcm
× 100% (2)

Ces =

(
∆Hm,sample + ∆Hc,sample

)
∗ ∆Hm,pcm(

∆Hm,pcm + ∆Hc,pcm
)
∗ ∆Hm,sample

× 100% =
Ees

Een
× 100% (3)
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Table 1. The thermal performance parameters of samples.

Sample
Crystallizing Process Melting Process Encapsulation Parameters

Tc
(◦C)

∆Hc
(J/g)

Tm
(◦C)

∆Hm
(J/g)

Een
(%)

Ees
(%)

Ces
(%)

Al-12Si pure alloy 560.57 433.63 581.72 382.37 / / /
Al-12Si@Al2O3 524.87 251.65 580.01 283.73 74.20 65.61 88.42
Al-12Si@Al2O3

(30 cycles) 526.19 299.62 580.94 280.34 73.32 71.07 96.93

Only one melting endothermic peak could be found during the heating process of the
sample before and after encapsulation, and the melting peak position was about 581 ◦C.
During the cooling crystallization process (Figure 4c), the pure alloy possessed a sharp
exothermic peak at 560.57 ◦C, while the exothermic peak of the encapsulated sample be-
came broad and flat. After performing encapsulation, the exothermic temperature range of
the sample was significantly increased from about 20 ◦C to 65 ◦C, and the crystallization
temperature (Tc) was significantly lower than the original alloy by more than 33 ◦C, at about
524.87 ◦C. Similarly, the degree of subcooling required to complete the solid–liquid phase-
change process in the microencapsulated samples increased by 33.99 ◦C from 21.15 ◦C
prior to encapsulation. The above data indicate that the presence of an Al2O3 shell sig-
nificantly affects the crystallization behavior of the alloy PCM, which may be attributed
to a decrease in the thermal conductivity of the inorganic shell layer outside the micro-
capsule, as well as phase transition temperature hysteresis caused by the internal space
confinement effect. Before encapsulation, the molten Al-Si alloy relies on the nucleation
point for rapid heterogeneous nucleation at low supercooling. After encapsulation, the
phase-change components are encapsulated in their own separate small spaces, and can
only be driven by greater supercooling to complete homogeneous nucleation due to the
lack of nucleation points.

As shown in Table 1, the microcapsule sample has a high heat storage enthalpy of about
283.73 J/g. Since the inorganic shell does not participate in the phase-change process, the
calculated coating rate is about 74.20%, and the heat storage capacity is about 88.42%, which
indicates the excellent heat storage performance of the sample. In order to characterize the
recycling performance of the prepared Al-12Si@Al2O3, thirty phase transition cycles (the
test temperature range was 500–600 ◦C) were tested in an air atmosphere. It can be seen
from Figure 4b,c that the melting–solidification DSC curves for the sample before and after
the phase-change cycle were basically the same; meanwhile, phase-change enthalpy and the
degree of supercooling also did not change significantly, indicating that the encapsulated Al-
12Si@Al2O3 sample had favorable cycle thermal stability. Furthermore, after 30 cycles, the
Tc value and melting enthalpy of the sample remained essentially unchanged. Especially
for the enthalpy of melting, nearly 99% was retained compared with uncirculated Al-
12Si@Al2O3 (about 280.34 J/g). It was calculated that the coating parameters remained at
an initial high level, and the internal PCM core could still effectively absorb and release
latent heat after undergoing multiple cycles of phase change, proving that the microcapsule
sample had good phase-change stability. In summary, well-encapsulated high-temperature
phase-change microcapsules with high heat storage capacity and excellent thermal stability
can be obtained with the vapor treatment process.

As can be seen from Figure 5a–d, the surface morphology of Al-12Si@Al2O3 before
and after cycling does not change significantly, the Al2O3 shell layer basically remains
intact, and there is no obvious leakage of the alloy PCM or crushing of the shell layer, which
indicates that the prepared microcapsule has good thermal stability in phase-change cycling.
The surface microstructure of the microencapsulated sample after cycling was observed
using TEM (Figure 5e,f), and it was found that the spherical microcapsule remained a
complete morphology. The dark edge of the sample observed in Figure 5e proves the
presence of the Al2O3 shell. As there is a certain gap between the shell layer and the inner
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core material, this will effectively avoid shell rupture due to volume expansion of the Al-Si
alloy core during cyclic solid–liquid phase-change transformations. Overall, the Al2O3 thin
shell not only prevented the leakage of liquid PCM but also ensured the high heat storage
enthalpy and good encapsulation rate of the material as a whole.
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In addition, the thermogravimetric curves of the original Al-Si alloy, as well as the
microcapsule samples before and after cycling, were comparatively studied to characterize
their thermal stability (during the test, the samples were heated from room temperature
to 700 ◦C at a heating rate of 10 ◦C/min and kept at a constant temperature for 10 min),
and the results are shown in Figure 6. The mass of the unencapsulated PCM increases
significantly with an increase in temperature, whereas the overall mass of the encapsulated
microcapsule changes insignificantly and the thermal stability increases greatly. The TGA
curve for the pristine alloy can be divided into three stages: (1) from room temperature to
250 ◦C, adsorbed water present on the surface of the alloy microspheres is desorbed during
the heating process, and the mass decreases slightly by about 0.06%; (2) around 330–570 ◦C,
O2 leads to the slow oxidation of partial Al on the alloy surface to form Al2O3, with a slow
weight gain of about 0.19% of the sample mass; (3) around 570–700 ◦C, rapid weight gain
for the sample is about 0.82%, which is attributed to the solid–liquid phase transition of
the alloy’s composition at a temperature close to the melting point. The contact surface
area between the liquid PCM and O2 increases significantly, so the Al phase can be rapidly
oxidized to Al2O3 film. For the Al-12Si@Al2O3 microcapsule sample, the thermogravimetric
curve is mainly divided into two stages: (1) below 250 ◦C, its mass also slightly decreases
owing to the removal of water; (2) from 250 ◦C to 700 ◦C, there is no obvious mass change
in the sample. Comparing the changes in the quality of the samples before and after
encapsulation, it can be confirmed that this kind of shell-layer microencapsulation process
can effectively prevent leakage and oxidation of the internal alloy during the PCM phase
transition process, improving thermal stability. The thermogravimetric curve of the Al-
12Si@Al2O3 microcapsules after 30 complete phase-transition cycles also proves that the
sample has good thermal cycling stability, as the mass does not change significantly (the
curve basically maintains the level). The above tests show that the synthesized alloy phase-
change microcapsule has both high latent heat and good thermal stability (800 ◦C), which
can provide a solid basis for the construction of heat storage/catalysis multifunctional
composite FCC catalysts (hydrothermal aging at 800 ◦C for 17 h) in the next step.
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Figure 6. The TG curves for pure alloy, Al-12Si@Al2O3, and Al-12Si@Al2O3 after 30 cycles.

3.3. Structure and Performance Analysis for Al-12Si@Al2O3/Y Zeolite

Figure 7 displays the XRD patterns for the pure Y zeolite and Al-12Si@Al2O3/Y zeolite,
and the phase structure of the Y zeolite is completely consistent with that reported in the
literature [34,35]. This may be due to the larger mass ratio and stronger diffraction intensity
of the catalytic component, resulting in the composite sample showing only the diffraction
peaks of the Y zeolite. However, by carefully comparing the XRD results of the two samples,
it is not difficult to find that the diffraction peaks belonging to the PCM microcapsule should
just be covered rather than absent, because the relative intensity of the peaks at the positions
of these peaks is obviously higher than that of the pure Y zeolite, demonstrating that the
PCM component has good thermal stability and successfully completes assembly with the
catalytic component.
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The micro-morphology of the two prepared FCC catalysts (Al-12Si@Al2O3/Y zeolite
and its blank sample) was characterized by SEM after grinding treatment, and the results are
shown in Figure 8. An amorphous structural material and regular Y zeolite can be clearly
observed in the FCC blank samples (Figure 8a–c), and the former is mainly derived from the
silica–aluminum sol binder used for granulation. The contained Y zeolite particles possess
a regular FAU octahedral structure, with particle sizes between 500 nm and 1.5 µm. After
hydrothermal aging at 800 ◦C (Figure 8d–f), partial Y zeolites start showing a continuous
mesoporous pore structure (about 10–20 nm), which may be due to the removal of high-
temperature water vapor on the aluminum of the zeolite skeleton. For the Al-12Si@Al2O3/Y
zeolite, an obvious composite structure of spherical microcapsules connected by a binder
with a Y molecular sieve can be observed. The phase-change microcapsules can still
maintain their complete spherical morphology, indicating their good thermal stability. This
will facilitate the rapid transfer of heat from the catalyst surface during the FCC process
and promote the realization of local in situ thermal management and energy recycling.
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The N2 adsorption–desorption isotherms and pore size distributions of the Al-12Si@Al2O3/Y
zeolite and its blank sample are shown in Figure 9, and the detailed texture performance
parameters are listed in Table 2. In Figure 9a, both samples display a typical type-IV
adsorption isotherm equipped with a type-H3 hysteresis loop according to the IUPAC
classification [36,37]. This indicates the presence of a mesoporous structure, especially
the slit pores generated by the accumulation of microcapsule components and Y zeolite
components. The pore size distribution image (Figure 9b) intuitively confirms that the two
materials have similar hierarchical pore structures. In addition to micropores of less than
2 nm, mesopores are mainly distributed in the ranges of 2–4 nm and 8–32 nm. Comparing
the data in Table 2, the values of SBET, SMic, VMic, VT, and VMes for both samples are
virtually identical. Further verifying the acidity features of the target sample and the
composite FCC blank sample, NH3-TPD tests were performed to determine the strength
and number of acidic sites. In general, the desorption peaks located at the low-temperature
zone (100–250 ◦C), medium-temperature zone (250–400 ◦C), and high-temperature zone
(400–600 ◦C) are ascribable to weak acid sites, medium acid sites, and strong acid sites,
respectively [38,39]. It can be seen in Figure 10 that all the curves possess only two
desorption peaks: a strong peak in the low-temperature zone and a relatively weak peak
in the medium-temperature zone, showing the absence of strong acid sites and that the
majority of acidity in all samples is mainly induced by weak acid sites. The concentrations
of acid sites with different strengths were further quantified with the NH3-TPD curves
of the two samples (Table 3). It can be seen that the Al-12Si@Al2O3/Y zeolite and the
composite blank sample remain essentially the same in terms of the number of each type of
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acid site, just like the texture performance parameters. These results explain the rationality
of the blank sample setting.
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Table 2. Textural properties of the two prepared samples.

Samples SBET
a

(m2 g−1)
SMic

b

(m2 g−1)
Micropore

Volume b (cm3 g−1)
Total Pore Volume c

(cm3 g−1)
Mesopore

Volume d (cm3 g−1)

Al-12Si@Al2O3/Y zeolite 471.30 422.25 0.163 0.256 0.091
Composite FCC blank sample 479.61 434.00 0.168 0.260 0.088

a SBET (specific surface area) calculated by the BET method. b SMic (micropore area) and VMic (micropore volume)
calculated by the t-plot method. c VT (total pore volume) calculated by the adsorption pore volume at P/P0 = 0.99.
d VMes (mesoporous volum) calculated by the BJH method (from the desorption branch).
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Table 3. Specific quantitative values for the acid sites of the two samples.

Samples
NH3-TPD (µmol/g)

Weak Acid Sites Medium Acid Sites Strong Acid Sites

Al-12Si@Al2O3/Y zeolite 787.62 405.44 0.00
Composite FCC blank sample 789.41 410.21 0.00

ICP tests were used to analyze the elements of the two prepared samples. The contents
of Al and Si elements in the Al-12Si@Al2O3/Y zeolite sample were 20.34 wt% and 23.84 wt%,
respectively. For the composite FCC blank sample, the contents of both elements were
slightly lower, 18.77 wt% and 22.51 wt%, respectively, owing to the absence of the Si element
and relatively small mass ratio of the Al element in the pure Al2O3 phase compounded with
the zeolite catalytic component of the blank sample. The catalytic performance and product
distribution of the composite FCC blank samples and functional composite FCC catalysts
were characterized using light diesel oil as a feedstock oil. As shown in Figure 11a, the
total substrate conversions for the blank and target sample were basically the same (90.48%
and 89.77%), indicating that the addition of the PCM temperature-controlled component
did not have a direct promoting effect on the catalytic process. In addition, the extremely
low catalyst-to-oil ratio of the Al-12Si@Al2O3/Y zeolite FCC system (close to 1.70) also
makes its conversion of about 90% show obvious competitiveness compared with other
reported catalytic systems (Table 4), even if the reaction conditions of all FCC systems
are basically inconsistent. With further comparative analysis of the product distribution
diagram (Figure 11b), obvious differences between the two catalytic systems can be found.
For the functional composite FCC catalyst, the proportions of light oil products, including
diesel oil and gasoline, were 45.99% and 8.93%, respectively, which are significantly higher
than those of the blank sample (42.43% and 8.18%). At the same time, the proportions
of both heavy oil and coke products presented a decreasing trend, especially for coke,
decreasing from 8.38% to 7.89%, directly proving that the presence of a PCM temperature-
controlled zone positively affects the product distribution. Since the conversions of the
above two reaction systems are basically the same, it can be calculated that the actual yield
of coke products in the functional composite catalyst system is significantly lower than
that of the blank sample. In general, coke is formed as a result of occurring side reactions,
such as incomplete dissociation of long-chain alkanes, olefin repolymerization, and alkane
rearrangement [40,41], and a large amount of coke will easily lead to a carbon deposition
phenomenon, blocking or even destroying the active sites on the surface, thus affecting
the activity and stability of the catalyst. Therefore, for the functional composite FCC
catalyst, the reasons for effective optimization of the product distribution may be as follows:
due to the endothermic effect of the FCC process, the blank sample will have a localized
low-temperature phenomenon, which easily induces more side reactions, and eventually
leads to a reduction in the selectivity of the main product and the generation of more coke.
After assembling Al-12Si@Al2O3, the microcapsule component can spontaneously release
latent heat when the local temperature decreases (the reaction temperature is near the
phase transition point of the alloy PCM), which can promote the positive movement of the
chemical equilibrium of the FCC main reaction while regulating the reaction temperature,
as well as attenuating the tendency for the occurrence of side reactions, thus optimizing the
product distribution. Interestingly, further comparison of the partial cracked gas products
of each catalytic system shows that the functional composite FCC catalytic system is less
inclined to the generation of other small molecule products, except propylene (Figure 11c).
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Table 4. The catalytic activity of some reported FCC catalysts.

Entry Sample Conv. (%) Feedstock Type Reaction Conditions

1 Meso-CAT 63.0 light diesel oil reaction temperature: 460 ◦C, catalyst loading: 5 g,
total oil-feed mass: 1.56 g, reaction duration: 70 s) [42]

2 Meso-CAT-3 63.3 light diesel oil reaction temperature: 460 ◦C, catalyst loading: 5 g,
total oil-feed mass: 1.56 g, reaction duration: 70 s) [43]

3 F-MCAT 69.9 light diesel oil reaction temperature: 460 ◦C, catalyst loading: 5 g,
total oil-feed mass: 1.56 g [44]

4 H–Y/ZrO2-50 67.81 high-basic nitrogen
vacuum gas oil

reaction temperature: 500 ◦C, catalyst loading: 5 g,
total oil-feed mass: 1.67 g, reaction duration: 70 s) [45]

5 CAT-A-d 68.7 ± 0.6 Brazilian vacuum gas oil reaction temperature: 535 ◦C, catalyst loading: 9 g,
total oil-feed mass: 1.50 g, reaction duration: 75 s) [46]

6 MSY10.7-based
catalyst 93.1 heavy oil reaction temperature: 482 ◦C, catalyst loading: 4 g,

total oil-feed mass: 1.33 g, reaction duration: 75 s) [47]

7 MM03-2P 69.9 Xinjiang heavy oil - reaction temperature: 500 ◦C, reaction duration: 60 s,
catalyst to oil ratio: 3.75) [48]

8 Base catalyst
+15%cat-24 86.3 heavy oil reaction temperature: 500 ◦C, reaction duration: 70 s,

catalyst to oil ratio: 3.20) [49]

Recycling experiments on FCC were performed with the prepared Al-12Si@Al2O3/Y
zeolite composite FCC catalyst to evaluate its reusability. During the whole cycle, the
sample did not undergo any treatment at the end of the previous round of catalysis, and
proceeded directly to the next round of catalysis. After three complete catalytic cycles,
total substrate conversion and coke yield both varied, but not significantly (substrate
conversion decreased from 89.77% to 80.67% and coke yield increased from 7.89 wt%
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to 9.41 wt%), showing favorable recyclability for the composite catalyst. Figure 12a,b
presents the corresponding SEM pattern and XRD curve for the reused Al-12Si@Al2O3/Y
zeolite after four cycles. The basic morphology and crystal structure all show no obvious
change compared with the pristine catalyst, further proving its good stability. Overall,
such PCM@Catalyst composites should have remarkable prospects for development in the
FCC process.
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4. Conclusions

In this paper, Al-12wt%Si alloy microspheres were used as phase-change components,
and Al-12Si@Al2O3 microcapsule samples with good heat storage capacity and phase-
change-cycle stability were synthesized by combining the steam-assisted oxidation route
and the high-temperature calcination process. The corresponding heat storage/catalysis
multifunctional composite FCC catalyst was further constructed by hydrothermal aging.
The Al2O3 shell formed in situ can not only effectively solve the leakage of the internal PCM
core material in a high-temperature environment but also ensure that most of the latent
heat of the original PCM component is stably retained and has good thermal-cycle stability,
providing a prerequisite for the subsequent construction of a PCM@Catalyst composite.
After combining the synthesized microcapsule with the FCC catalytic component Y zeolite,
it was determined from the FCC catalytic experiments that the introduction of the PCM
component can effectively improve product distribution. Additionally, its own latent heat
release effect is conducive to the effective promotion of the FCC main reaction, improving
the selectivity of the target products and reducing the generation of coke. The results prove
that the synthesized Al-12wt%Si@Al2O3/Y zeolite may have great application potential in
the practical field of FCC.
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