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Abstract: Given the urgency to combat climate change and ensure environmental sustainability,
this review examines the transition to net-zero emissions in chemical and process industries. It
addresses the core areas of carbon emissions reduction, efficient energy use, and sustainable practices.
What is new, however, is that it focuses on cutting-edge technologies such as biomass utilization,
biotechnology applications, and waste management strategies that are key drivers of this transition.
In particular, the study addresses the unique challenges faced by industries such as cement manufac-
turing and highlights the need for innovative solutions to effectively reduce their carbon footprint.
In particular, the role of hydrogen as a clean fuel is at the heart of revolutionizing the chemical and
process sectors, pointing the way to cleaner and greener operations. In addition, the manuscript
explores the immense importance of the European Green Deal and the Sustainable Development
Goals (SDGs) for the chemical industry. These initiatives provide a clear roadmap and framework
for advancing sustainability, driving innovation, and reducing the industry’s environmental impact,
and are a notable contribution to the existing body of knowledge. Ultimately, alignment with the
European Green Deal and the SDGs can bring numerous benefits to the chemical industry, increasing
its competitiveness, promoting societal well-being, and supporting cross-sector collaboration to
achieve shared sustainability goals. By highlighting the novelty of integrating cutting-edge technolo-
gies, addressing unique industrial challenges, and positioning global initiatives, this report offers
valuable insights to guide the chemical and process industries on their transformative path to a
sustainable future.

Keywords: net zero; energy; process industries; emissions; climate; chemicals; biomass; waste;
cement; metals

1. Introduction

The transition to net-zero emissions is a critical undertaking for the chemical and pro-
cess industries, given their role in combating climate change and ensuring environmental
sustainability. Member countries of the United Nations Framework Convention on Climate
Change (UNFCCC) committed in the Paris Agreement to limit the global temperature
increase to well below 2 ◦C above pre-industrial levels and to aim for a limit of 1.5 ◦C.
However, without drastic reductions in global greenhouse gas (GHG) emissions, even
the 2 ◦C target could be exceeded before 2050. Recent data suggest that the global mean
temperature near the surface between 2012 and 2021 was already 1.11–1.14 ◦C warmer than
before industrialization, making it the warmest decade since records began. In Europe in
particular, land temperature rose even faster during the same period: 1.94–1.99 ◦C [1].

Projections indicate that the annual average temperature near the surface between 2023
and 2027 could be 1.1–1.8 ◦C higher than the 1850–1900 average [2]. The Intergovernmental
Panel on Climate Change (IPCC) Special Report on 1.5 ◦C Warming predicts that the world
could reach the 1.5 ◦C threshold sometime between 2030 and 2052 [3]. A 2021 projection
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using a different methodology narrowed this timeframe to the early 2030s, underscoring
the urgency of reaching the peak of global greenhouse gas emissions before 2025.

Within the industrial landscape, global energy-related CO2 emissions continue to rise,
reaching a new peak of over 36.8 Gt (gigatons) in 2022, with a growth rate of 0.9%, or
321 Mt/a (megatons per year) [4]. Most of the emissions growth was from energy combus-
tion, which increased by 423 Mt, while emissions from industrial processes decreased by
102 Mt.

The materials industry, which includes process industries such as pulp and paper,
chemicals, bio-based solutions, mining and metals, and more, contributes to 27% of global
CO2 emissions, including energy-related emissions [5]. Certain sectors such as cement,
iron and steel, chemicals, and oil refining contribute significantly and account for about
7%, 6%, 2.6%, and 2% of total global emissions, respectively [6]. Given the complexity
and energy-intensive production of certain industries, the food and beverage industry
(responsible for 36% of global emissions) and the textile industry (responsible for about
10% of global GHG emissions) are not covered in this report.

The findings underscore the urgent need for further efforts to reduce emissions and
shift to sustainable practices in the chemical and process industries. While significant
progress has already been made, it is critical to align the trajectory of industrial growth with
global climate goals to pave the way to a more sustainable and environmentally friendly
future. Achieving net-zero emissions and contributing to a greener world will require
collective and innovative action across all sectors to ultimately preserve the planet for
future generations.

2. Literature Review

The chemical industry holds a pivotal position in the global economy, generating
numerous jobs and making significant contributions to the GDP. By prioritizing emis-
sions reduction, this industry can achieve substantial growth, which is projected to reach
2.5 times current levels by 2050. It also has the potential to play a crucial role in facilitating
the transition to net-zero emissions across other sectors. Aligning with the Paris Climate
Agreement, the chemical industry can effectively manage its own greenhouse gas emissions
(Scope 1–3) while pursuing remarkable growth [7]. To realize these advantages, the Euro-
pean Commission has outlined a transition pathway specifically tailored to the chemical
industry [8].

To explore the relevance of research in approaching net-zero emissions in the chemical
and process industries, a literature search was conducted in Web of Science, Science Direct,
and Google Scholar for the following keywords: ‘Chemical Industry’, ‘Chemical Industries’,
‘Process Industry’, ‘Process Industries’, ‘Net Zero’, ‘Net-Zero’, and ‘Emissions’. The period
under consideration ranged from 2013 to half of the year 2023. The queries are listed in
Table 1. According to Google Scholar results, about 5670 articles on net-zero emissions have
been published in the last ten years, of which about 75% were published in the last three
years. In contrast, searches on Web of Science and Science Direct yielded a total of only 39
and 12 articles, respectively. The search results shown in Figure 1 clearly indicate that the
urgency of addressing global climate change challenges has led the scientific community
and the chemical industry to work together to develop sustainable solutions over the past
decade. Although it is sometimes difficult to judge whether an article is aimed at a solution
to reduce emissions or whether “net zero” is just being used as a buzzword, it is safe
to say that awareness of the need for such solutions is deeply rooted in both academia
and industry.
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Table 1. Search queries.

Keyword Keyword
No.

Query
A

Query
B

Query
C

Chemical Industry 1
(1∨ 2)
∧

(5∨ 6)
∧
7

(3∨ 4)
∧

(5∨ 6)
∧
7

(1∨ 2) ∧ (3∨ 4)
∧

(5∨ 6)
∧
7

Chemical Industries 2
Process Industry 3

Process Industries 4
Net Zero 5
Net Zero 6

Emissions 7
Logical operators :∧−AND; ∨−OR;.
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Having established the significance of research and the growing awareness of net-zero
emissions in the chemical and process industries, we now turn to innovative approaches
and transformative actions. These integrate principles of the circular economy and climate
action, essential for a sustainable and low-carbon future [7]. Urgently limiting anthro-
pogenic CO2 release to levels absorbable by natural sinks becomes imperative [9]. Critical
processes such as hydrogen production, ammonia synthesis, CO2 reduction, and novel
aspects of acetylene chemistry are vital for creating a sustainable chemical sector [10].
Innovative approaches play a crucial role in waste reduction and the discovery of new
utilization methods [11]. A notable example is the direct incineration of brewer’s grains
and coffee grounds, effectively removing biomass waste from urban solid waste streams,
which is a commendable waste recovery method [12]. Another example is the addition of
calcined canal sediments, otherwise considered waste, as an artificial pozzolanic material,
which can improve strength and significantly reduce energy consumption and greenhouse
gas emissions [13].

In addition to developing innovative technologies, the chemical industry needs a
comprehensive and coordinated strategy that incorporates its interconnected supply chains
to effectively achieve the goal of net-zero GHG emissions [14]. Even what was considered
innovation some time ago must keep pace with a new paradigm. For example, conducting
a thorough life cycle assessment (LCA) prior to establishing a biorefinery and its entire
supply chain is essential to comprehensively assess environmental impacts [15]. Recently,
circular design strategies, including the design-for-disassembly (DfD), have been promoted
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to address waste production, raw material consumption, and lack of reuse; however,
their environmental impacts are not always measured [16]. Digital transformation is
also important for decarbonization. Several computer-based tools facilitate design and
allow more rapid assessment of the environmental impacts of chemical processes [17],
as traditional LCA can take weeks to complete. One prominent avenue is the use of
artificial intelligence (AI) as a valuable tool for mitigating CO2 emissions in the chemical
industry [18]. It is possible to integrate AI data and methods to estimate sustainability
metrics and design for more sustainable chemical processes [19]. One example is the
development of a sustainable closed-loop supply chain (SCLSC) incorporating a non-
dominated sorting genetic algorithm that considers multiple subsystems and enables the
optimization of concrete production to reduce carbon intensity while considering the
complexity of customers, suppliers, production, and recycling stations [20]. In contrast to
large-scale management systems, new technologies such as lab-on-a-chip are becoming
increasingly popular [21].Computer-assisted engineering approaches are also important for
integrating and optimizing existing processes with the aim of reducing emissions, as shown
for example in the oxidative dehydrogenation of propane using CO2 (CO2-ODP) [22,23], a
coal gasification system integrating a commercially available coal gasifier with the Allam
Cycle [24], or optimizing carbon and energy flows in ethylene production [25].

System engineering approaches are relevant to the chemical and process industries, as
well as to individual sectors with specific characteristics. The production of cement is a
significant contributor to global CO2 emissions, accounting for more than 7% of the total
which can be reduced in many ways. Firstly, carbon emissions in Ordinary Portland Cement
(OPC) can be brought down with the use of alkali-activated materials (AAM), which are
traditional binders [26]. Secondly, the proposed option for reducing CO2 emissions in the
cement industry is the use of CO2-containing flue gas and cement kiln dust (CKD) for
producing mineral carbonates that serve as non-reactive fillers for blending cement [27].
Thirdly, the use of alternative supplementary cementitious material (SCM), such as biochar,
obtained by pyrolyzing rice husks at a temperature of 550 ◦C, can be performed [28].

In addition to concrete production, the manufacturing of zeolites calls for more sustain-
able production due to a high energy consumption and substantial CO2 footprint [29]. Sim-
ilarly, achieving the production of high-quality iron at low temperatures is preferred [30].

Steel production is responsible for another 7% of CO2 emissions globally and for
5% of emissions in the EU, which is why the EU steel industry is moving forward with
hydrogen-based steelmaking as a decarbonization strategy [31].

All of the above-mentioned process industries are large consumers of energy; thus,
developing renewable energy sources is crucial to get rid of coal-fired power plants (CFPPs),
which cause significant harm to human health, the environment, and climate change [32].
The industry of synthetic ammonia is the largest energy consumer and CO2 emitter in
China’s chemical industry, and the process was reviewed from the viewpoint of deep emis-
sion reduction in terms of energy-saving and emission reduction potential [33]. However,
the portfolio of low-carbon energy sources also includes hybrid energy systems (HESs) that
provide heat and electricity to industrial processes [34].

In the effort to achieve net-zero greenhouse gas emissions, the use of CO2 as a feed-
stock plays an important role [35,36]. Carbon capture and storage (CCS route, [37]) can
be conducted with various mechanisms such as pre-combustion, post-combustion, oxy-
fuel technologies, direct air capture, chemical looping combustion and gasification, ionic
liquids, biological CO2 fixation, and geological CO2 capture [38]. Furthermore, the uti-
lization of CO2 in value-added chemical products through the electrochemical reduction
method has attracted much attention [39], along with the improvement of existing process
intensification technologies for CO2 capture applications [40].

The sequestration and reduction of CO2 require the development of a portfolio of
technologies [41]. In addition, the integration of various renewable energy sources with
CO2 capture processes [42] and carbon-neutral processes to replace current industrial
processes is urgently needed. Studies have been conducted on the sustainable synthesis of
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ammonia and iron with high value nanocarbon products by electrolysis in molten salt(s)
with the introduction of the Solar Thermal Electrochemical Process (STEP) [41]. There is
also potential for closing the carbon cycle (C-3) for the nation’s carbon-intensive industries,
such as the production of olefins by reducing lignite for power generation in Germany and
the need to increase carbonaceous waste recycling [43].

There is a critical need to further develop cost-effective technologies related to the use
of CO2 as a feedstock, valuable chemical, and material for fuels [41]. A carbon-neutral fuel
is characterized by the utilization of the atmosphere as the primary source of hydrocarbons,
followed by combustion that releases CO2 as a byproduct [44]. In the area of thermo-
catalytic CO2 conversions to clean fuels, the core-shell catalysts for thermo-catalytic CO2
conversion to syngas and fuels have recently received much attention [45]. The U.S.
Department of Energy (DOE) aims to reduce the cost of clean hydrogen to 1 USD/kg in
one decade [46].

In conclusion, addressing the challenges of climate change and creating a sustainable
future for the chemical industry requires a comprehensive and coordinated approach.
Integrating innovative technologies such as carbon capture and utilization, renewable
energy sources, and process optimization is critical to reducing greenhouse gas emissions
and minimizing environmental impact. In addition, accelerating digital transformation,
applying circular economy principles, and conducting life cycle assessments can guide
decision making toward more sustainable practices. To achieve a low-carbon and environ-
mentally sustainable chemical industry, further research, collaboration, and policy support
are essential.

3. Methods

A literature review, foreseeing the engineering developments from international orga-
nizations along with their analyses and syntheses, and personal experience were used as
the methodology. The ChatGPT response was used in the literature overview analysis [47].

4. Results

This section reviews the current situation and methods planned for the net-zero
transition. It is divided into sectors of process industries.

Net zero means cutting greenhouse gas emissions to as close to zero as possible,
with any remaining emissions re-absorbed from the atmosphere by oceans and forests,
for instance. The United Nations has organized a growing coalition of countries, cities,
businesses, and other institutions that are pledging to work towards net-zero emissions [48].
More than 70 countries, including the biggest polluters—China, the United States, and the
European Union—have set a net-zero target, covering about 76% of global emissions. More
than 3000 businesses and financial institutions are working with the Science-Based Targets
Initiative to reduce their emissions in line with climate science. More than 1000 cities, over
1000 educational institutions, and over 400 financial institutions have joined the Race to
Zero, pledging to take rigorous, immediate action to halve global emissions by 2030.

4.1. Sustainable Development Goals

The 17 SDGs with 169 targets are the main action plan of the Paris Agreement [49]. The
chemical and process industries play an essential role in achieving the SDGs by addressing
environmental, social, and economic challenges and making an important contribution to
the global economy by providing critical products and services to various industries. The
pursuit of the SDGs is consistent with promoting clean production methods, optimizing
resource efficiency, and minimizing environmental impact. Industry efforts to reduce GHG
emissions and adopt CCUS techniques are an essential part of global climate action. In
addition to environmental aspects, the chemical and process industries also impact the
social and economic dimensions of sustainable development. By promoting innovation in
materials science, process engineering, and sustainable technologies, the chemical process
industry contributes to inclusive economic growth and job creation.
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The World Business Council for Sustainable Development (WBCSD) has coordinated
an SDG roadmap for the chemical sector proposed by leading chemical companies and
industry associations [50]. Ten goals were identified as a priority of the sector: 2—Zero
hunger, 3—Good health and well-being, 6—Clean water and sanitation, 7—Affordable
and clean energy, 8—Decent work and economic growth, 9—Industry, innovation, and
infrastructure, 11—Sustainable cities and communities, 12—Responsible consumption and
production, 13—Climate action, and 14—Life below water. The roadmap outlines 18 impact
opportunities that can contribute to the 10 priority SDGs. They are grouped into five key
themes: food, water, people and health, energy, infrastructure, and cities. To reach the
goals by 2030, innovation will be needed across products and processes, in cooperation
with partners.

The International Council of Chemical Associations (ICCA) published six themes cross-
referenced to specific SDG indicators: health and well-being; sustainable consumption and
production; energy, environment, and sustainable cities; sustainable economies; learning
and education; and public-private partnerships [51]. The article presented some other links
to several trade associations, and examples of several chemical companies’ approaches.

American Chemical Society (ACS) has identified seven priority SDGs and five addi-
tional SDGs that are foundational to the work of the chemistry community [52]. The ACS
Green Chemistry Institute organized various principles of green chemistry and engineer-
ing and presented them in three groups: (1) maximize resource efficiency; (2) eliminate
and minimize hazards and pollution; (3) design systems holistically and using life cycle
thinking—requiring chemists and chemical engineers to design, measure, be efficient, and
be sustainable [53]. The European Chemical Industry Council (CEFIC) published a report
focusing on four areas of impact: the low-carbon economy, resource efficiency, the circular
economy, and for people and the planet [54].

Concrete and other materials based on cement are the most widely used construction
materials due to their ease of use, flexibility, durability, and low cost [55]. Sustainable
Development Report 2023 mentions cement only in connection with SDG 13-CO2 emis-
sions from fossil fuel combustion [56]. The high-volume fraction of annual CO2 emissions
(7–8%) is due to the large mass of cement-based materials produced—around 30 Gt/a [57].
Moreover, the cement industry has lowered specific emissions of CO2 per mass of cementi-
tious material by 19.2% since 1990 [58]. They knew this was not enough, and the GCCA
committed to supporting its members in achieving carbon-neutral concrete by 2050. They
are also significantly reducing emissions of airborne pollutants, such as dust and NOX, that
directly impact human health [57]. Alternative fuels are a key area in which the cement
industry can significantly contribute to the wider communities in which it operates, as
a sustainable solution to waste management. The use of refuse-derived fuels (RDF) has
reached substitution rates well over 50% in Europe, and companies are pushing them to hit
100%. Cement will be a critical resource in achieving many SDGs.

UN have declared 2022 the »International Year of Glass« (IYOG) to raise awareness
of the significant contribution this material has made over several millennia of human
history, and the important role it will continue to play in the future. In the description
of glass achievements, they mentioned that “Glass melting is being de-carbonized and
glassy products are being safely recycled)” [59]. The aim of the IYOG was to highlight the
important role of the glass in achieving the 17 SDGs [60]. The most important goals will be
SDG 3 (bioactive glasses), 6 (porous and coated glass filters), 7 (covers and reflective mirrors
for photovoltaic systems, glass photobioreactors, glass-reinforced composite materials for
wind turbines), 9 (optical fibers, doped glass, ultra-thin glasses, spherical lenses, prisms,
and beam splitters), 11 (chemically reinforced glass and coated windowpanes), and 12 (high
recycling rates, energy-efficient melting technologies, and optimized glass compositions).

Intensity of association between 10 metal (steel, copper, aluminum, nickel, zinc, gold,
silver, platinum group metals, silicon, and rare-earth elements) producing companies,
estimated from their corporate social responsibility (CSR) reports, sustainability reports,
and integrated reports, was the largest with the SDG 8, followed by SDG 3, SDG 12, and
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SDG 9 [61]. The metals industry review with 152 metal companies places the most focus on
SDGs 8, 3, and 12, but its activities are less associated with SDGs 14, 2, and 1 [62]. The steel
sector is the most important sector in the European process industry. The steel industry
places great weight on SDG 12 and less on SDGs 1 and 2, whereas the copper industry
recognizes the relevance to SDGs 1 and 2.

Worldsteel is focusing on climate action, responsible value chain, life cycle thinking,
circular economy, water management, and air quality [63]. In the area of climate action,
e.g., they are proposing three groups of policy goals and development initiatives:

1. Breakthrough technologies: (a) Using carbon as a reductant while preventing the
emission of fossil CO2, for example using CCUS and/or sustainable biomass, e.g., bio-
charcoal; (b) Using electricity through an electrolysis-based process; (c) Substituting
hydrogen for carbon as a reducing agent, generating H2O instead of CO2.

2. Efficiency and circular economy: (a) Optimal raw material selection and use, (b) In-
creasing energy efficiency and minimizing waste, (c) Improving yield, (d) Improving
process reliability, and (e) Circular economy with four Rs: Reduce, Reuse, Remanufac-
ture, and Recycle.

3. Developing advanced steel products to enable societal transformations: (a) Develop-
ing and manufacturing the advanced steel products necessary to facilitate the required
transformation and adaptation of society and reach carbon neutrality through zero-
energy buildings, renewable energy infrastructures, electrification, etc. (b) Assisting
customers in delivering innovative solutions using steel and introducing new, ad-
vanced steel products.

Environmental standards, e.g., ISO 14000 series on Environmental Management Sys-
tems, Environmental Auditing, Environmental Labeling, Environmental performance, Life
Cycle Assessment, etc. [64], ISO 26000 on social responsibility [65], and EU Eco-labeling
system, e.g., Environmental Product Declaration (EPD) [66] are upholding their importance.

The pulp and paper industry must align its sustainability strategy with the SDGs as
well. In Canada, Resolute Forest Products, committing to ESG principles, identified eight
SDGs that align with its sustainability strategy [67]: SDG 6 (Water management), SDG 7
(Energy), SDG 8 (Employees’ health, safety and wellness), SDG 9 (Economic performance
and infrastructure investments), SDG 12 (Waste management), SDG 13 (Climate change),
SDG 15 (Forest management, fiber sourcing practices, and biodiversity), and SDG 16
(Environmental compliance). In 2021, they surpassed their 2025 GHG emission reduction
target ahead of schedule, and in 2022, the Science-Based Targets initiative (SBTi) validated
their new reduction goals, which include the 41.5% reduction in absolute scope 1 and 2
emissions by 2026 from a 2015 base year, and a 16.5% reduction in scope 3 emissions within
the same timeframe [68]. Over the past two decades, their carbon-reduction initiatives have
cut more than 7.3 Mt/a of GHG, comparable to taking close to 1.6 million cars off the road.

Asia Pulp & Paper (AP&P) prepared a new Sustainability Roadmap Vision 2030 guid-
ing them in fulfilling their commitment to protect forests, support communities, conserve
biodiversity and work towards achieving carbon neutrality across their operations [69].
The earlier Vision 2020 set out ten key impact areas relevant to stakeholders across their
business and wider supply chain: climate change, emissions, solid waste, reforestation,
conservation and biodiversity, human rights and indigenous people, community empower-
ment, employee welfare, fiber sourcing, and water management. AP&P have met most of
the targets set out in the Sustainability Roadmap Vision 2020, e.g., protection and restora-
tion of national forest, 40% fiber was from recycled sources, carbon intensity decreased 29%
compared to a 2012 baseline, energy intensity decreased 14%, water intensity decreased
30%, and solid waste reduction was 47%, etc. Vision 2030 focuses on three main areas:

1. Production—30% reduction of carbon footprint by (a) increased share of renewables
in the energy mix, (b) reduced energy consumption, (c) reduced water consumption,
(d) zero waste to landfill, (e) increase recycled fiber composition, and (f) increased
product biodegradability and resource efficiency.
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2. Forest—over 0.5 Mha of natural forests area conserved by (a) sustainable forest man-
agement, protection, and restoration (of APP property and supplier concessions),
(b) increased fiber productivity. (c) Protecting and conserving the forests, peatlands
and biodiversity that sustain their business; (d) maintain the area impacted by fires at
under 2%.

3. People (improving the lives of millions) by (a) reduction of land conversion for agri-
cultural purposes through the use of fire, (b) improve the welfare of local communities
through capacity building and enhance community access to markets, (c) respect the
rights of local communities and indigenous people thorough increased multistake-
holder engagement, (d) increase the number of women in management positions,
(e) strengthen organizational agility, (f) best practices for fraud reporting and whistle-
blower management, and (g) best practices for ensuring adherence to their Code
of Conduct.

4.2. European Green Deal

EGD plans to transform the EU into a modern, resource-efficient, and competitive
economy, ensuring: (1) no net emissions of greenhouse gases by 2050 (at least 55% reduction
by 2030), (2) economic growth decoupled from resource use, and (3) no person and no
place left behind [70]. The European Green Deal shall improve the well-being and health
of citizens and future generations by providing: (1) fresh air, clean water, healthy soil,
and biodiversity; (2) renovated, energy-efficient buildings; (3) healthy and affordable
food; (4) more public transport; (5) cleaner energy and cutting-edge clean technological
innovation; (6) longer lasting products that can be repaired, recycled, and re-used; (7) future-
proof jobs and skills training for the transition; (8) a globally competitive and resilient
industry. In 2023, the Commission presented an EGD Industrial Plan to enhance the
competitiveness of Europe’s net-zero industry and support the fast transition to climate
neutrality [71]. It is based on four pillars: (1) a predictable and simplified regulatory
environment, (2) speeding up the access to finance, (3) enhancing skills, and (4) open trade
for resilient supply chains.

CEFIC sees the transformation to a climate-neutral and circular economy as a key
driver of European jobs and economic growth [72]. The European chemical industry has
the ambition to become climate neutral by 2050. To reach it, decarbonized and circular
economy solutions shall be developed by the chemical industry. Access to abundant and
competitive low-carbon energy, development of relevant infrastructure, as well as new
market opportunities related to sustainable products, are key conditions to ensure that the
industry stays globally competitive during the transition [73]. Costs and opportunities
of the EGD for the chemical industry for core equipment and the design, construction
and modification of facilities have been estimated to be 400–600 GEUR by Accenture [74].
Chemicals for the EGD are foreseen to be used in (1) Renewable energy, (2) Clean Road
transport, (3) Circular economy, (4) Public health, (5) Electronics, (6) Aerospace, etc.. The
chemical industry is indispensable to Europe’s strong and sustainable economy of the
future, as chemicals are present in almost every strategic value chain [75].

Other sectors of process industries have also been active. The European Cement
Association Cembureau published the Carbon neutrality roadmap to demonstrate that
reaching net-zero emissions along the cement and concrete value chain is achievable by
2050 in key areas: (1) CCUS (42% of the CO2 emissions reduction), (2) Replacement of
fossil fuels by non-recyclable and biomass waste (15% of the emissions reduction), and
(3) Providing low carbon-cements products (13% emissions reduction), etc. [76].

The EU is the world’s biggest glass producer, with a market share of around one-
third of the total world production. Glass production in the EU reached 36.8 Mt in 2020
according to Glass Alliance Europe. It comprises five subsectors: 60.4%—Container glass,
29.2%—Flat glass, 3.2%—Domestic glass, 5.3%—Fibers (reinforcement and insulation), and
2.1%—Special glass [77].
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The pulp and paper industry (P&PI) is the fourth most energy-intensive industry in
Europe. Since 2005, CO2 emissions of the pulp and paper sector have been reduced by
36%. By substituting fossil-based products, the European forest-based industries lowered
the EU’s total emissions by an estimated 410 Mt/a [78]. P&PI is the largest industrial
generator and user of renewable energy—60% of the industry’s total primary annual
energy consumption is biomass-based [79]. In 2019, European P&PI chief executive officers
(CEOs) declared their intention to be at the forefront of supporting the 2050 carbon-neutral
society. In 2020, Cepi 2030 Industry Manifesto responded to the tightening climate change
policy in the EU. Their future is also tackling fiber-based packaging circularity, biorefineries,
emerging bio-based products (e.g., human-made cellulosic fibers), and a shift towards a
low-carbon circular bioeconomy.

In 2024, the EU Corporate Sustainability Reporting Directive (CSRD) will strengthen
the rules concerning the environmental, social, and governance (ESG) information that
large companies with more than 250 employees and 40 MEUR in net turnover or 20 MEUR
in assets [80], and listed companies must report [81]. The CSRD is expected to increase
the number of companies subject to the EU sustainability, as they reported requirements
from 11,700 to approximately 50,000. They will have to report according to the European
Sustainability Reporting Standards (ESRS) and will require external auditing.

The EU has accepted a Green Deal Industrial Plan to enhance the competitiveness of
Europe’s net-zero industry and support the fast transition to climate neutrality. It is based on
four pillars: (1) a predictable and simplified regulatory environment, (2) speeding up access
to finance, (3) enhancing skills, and (4) opening trade for resilient supply chains [82]. The
European Commission published the Transition pathway for the chemical industry [83],
identifying electrification, hydrogen, biomass, waste, Carbon Capture and Utilization
(CCU), Carbon Capture and Storage (CCS), and process efficiency as key technological
contributors to the transition pathway.

Bengtsson et al. have studied more than 20 decarbonization projects in the chemical
industry in 9 developed EU member states [84]. Their CO2 emissions could be reduced
by pursuing steam generation, utilizing residual heat, changing electricity procurement,
and improving energy efficiency. Industrial clusters, also known as “chemical parks”,
could reduce their CO2 emissions by 50–60% until 2030 in the fields of steam generation
(25–30%), heat integration (10–15%), electricity procurement (10–15%), and energy effi-
ciency (1–3%). In steam generation, coal can be substituted by seven carbon-free heat-source
technologies—biomass, solar thermal, hydrogen, biogas, thermal storage, heat pumps, and
e-boilers.

4.3. The Role of Chemical Process Systems’ Engineering

The vision for the chemical industry to achieve net-zero emissions by 2050 exists. The
Center for Global Commons at the Tokyo University & Systemiq, for example, identified
three main strategies: replacing fossil fuels with alternative feedstocks, switching from
fossil to renewable energy sources, carbon capture, storage, and utilization [7]. It highlights
the main chemicals, namely green hydrogen, ammonia, methanol, olefins, and aromatics,
whose synthesis needs to be switched from fossil to non-fossil feedstocks, specifically
hydrogen from the electrolysis of water, nitrogen from the air, and carbon from biomass,
waste, and/or captured CO2. Also listed are seven major production processes for the
carbon-free production of primary chemicals: (i) electrolysis of water to produce green
hydrogen, (ii) reforming of methane, (iii) gasification of biomass and waste to produce
syngas followed by methanol and ethanol synthesis, (iv) CO2 capture and conversion to
methanol with green hydrogen, (v) steam cracking of biomass and waste to produce olefins
and aromatics, (vi) catalyzed conversion of methanol to downstream chemicals (methanol
to X), and (vii) dehydration of ethanol to olefins. Since all these processes are very energy
intensive, it is important that they use renewable energy to get to a net zero. The report
states that in a certain scenario, it would even be possible for the global chemical industry
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to become carbon-negative before 2050 by acting as a CO2 sink and generating economic
value from it.

While the vision and strategies for a net-zero chemical industry are well defined, the
concrete pathways to achieve these goals are less obvious. The introduction of the above
principles will enormously increase the demand for hydrogen, ammonia, and methanol.
Therefore, consumption must also decrease, and this requires a much higher level of circu-
larity than today, when the global circularity level is only 7.2% in 2023 [85]. Does society
have the knowledge, motivation, and resources? Are the know-how and skilled profession-
als available to design net-zero transition technologies? Over the decades, chemical process
systems engineering has developed a remarkable methodological portfolio of methods
and tools for process design and optimization that are key to achieving net-zero transition,
such as efficiency improvement, multi-objective optimization, process integration, and
process intensification.

Increasing efficiency. To reduce resource consumption, the efficiency of bio-based chem-
ical processes must be increased. The conversion of renewable and alternative resources,
e.g., biomass and waste, is often less efficient economically and technologically than the
conversion of fossil resources [86]. There is a need to encourage investment in low-carbon
technologies and carbon capture and storage/utilization through various financial incen-
tives [87]. On the other hand, fossil-based technologies are still economically attractive in
many cases and should be charged accordingly for CO2 emissions. A higher CO2 tax in
process optimization promotes higher reactant conversion, lowers feedstock consumption,
and increases the required investment by encouraging the use of more efficient process
units and higher quality feedstocks [88].

Multi-Objective Process Optimization. The introduction of technologies to move the
chemical industry closer to net-zero production involves many conflicting criteria. Re-
ductions in greenhouse gas emissions are usually associated with reductions in economic
benefits [89]. It was shown by Kasaš et al. that trade-off solutions between economic,
operational, and environmental criteria can be achieved if an appropriate objective function
is used [90]. This is usually the net present value that promotes a balance between the
return on invested funds and the long-term generation of a stable cash flow with moderate
environmental impacts and operational efficiency.

Process Integration. Process integration is one of the main methodological approaches
that contributes significantly to the decarbonization of the chemical industry [84]. It leads
to a lower consumption of heat, energy, and materials, and thus lower emissions [91]. The
use of process integration is expanding to include greenhouse gas emissions’ planning
and reduction [92]. It is a mature approach that includes various methods such as pinch
analysis, mathematical programming, and P-graphs [93]. The most common applications
are the integration of hot and cold streams within the process and in total sites which offer
the possibility of using the excess process heat in residential areas [94]. With the use of heat
pumps, it is possible to recycle even low-temperature waste heat and increase the efficiency
of the generated heat and electricity from renewable sources by coupling a heat pump with
a CHP unit [95].

4.4. Process Industries

The chemical sector is the largest industrial energy consumer and the third largest
industry subsector in terms of direct CO2 emissions [96]. This is largely because around
half of the chemical subsector’s energy input is consumed as feedstock—fuel used as a raw
material input rather than a source of energy. In 2021, direct CO2 emissions from primary
chemical production reached a total of 925 Mt [97]. In the Net-Zero Emissions by 2050
Scenario, CO2 emissions will be reduced by 17% until 2030—both the private and public
sectors will need to achieve technological innovation, efficiency gains and higher recycling
rates. Ammonia production is responsible for the highest fraction of emissions, followed
by high-value chemicals (i.e., ethylene, propylene, benzene, toluene, and mixed xylenes)
and methanol.
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4.4.1. Chemical Industry

Direct CO2 emissions from primary chemical production reached 925 Mt in 2021 [97].
This represents a 5% increase from the previous year, due to higher production levels than
in 2019 [4]. However, the CO2 intensity of primary chemicals has remained relatively stable
at around 1.3, indicating the mass ratio of emitted CO2 to primary chemicals produced.
On a global level, the chemical industry is responsible for about 4% of global greenhouse
gas emissions.

On a more positive note, the chemical industry in the EU has made remarkable
progress in reducing its environmental impact. Despite an increase in the production of
more than 43% since 1990, greenhouse gas emissions from chemical production in the EU-27
have decreased by 55% compared to 1990 [98]. Over the same period, energy consumption
in the EU-27 chemical industry has fallen by 22%, and chemical waste has decreased
by nearly a third since 2007. In addition, the introduction of industrial biotechnology
products promises to further reduce greenhouse gas emissions while maintaining product
performance [98].

Industrial chemicals, such as ammonia, methanol, and ethylene, are crucial feedstocks
for over a dozen different sectors—from healthcare, agriculture, and construction, to
packaging, cars, and textiles [99]. However, the chemical industry is also deeply involved
in many issues related to Planetary Boundaries, such as greenhouse gas emissions, the
discharge of waste plastics into the oceans, deviations from the natural cycle of nitrogen
and phosphorus, and the loss of biodiversity [7].

The chemical industry plays a significant role in global emissions due to its energy-
intensive processes and reliance on fossil fuels. However, several promising and state-of-the-
art technological innovations are emerging to shift the industry towards net-zero emissions.

Carbon Capture, Utilization, and Storage (CCUS) [100,101]. CCUSs capture CO2 emis-
sions from industrial processes and either store CO2 underground by injecting it into
suitable geological formations or utilize it for other purposes [102]. Technologies such
as electrochemical conversion [103,104], catalytic hydrogenation [105], and photocatalytic
conversion of CO2 [106] have the potential to reintegrate captured CO2 into the value chain
by converting it into fuels and chemicals.

Electrification and renewable energy integration. Shifting from fossil fuel-based energy
sources to renewable energy is crucial for decarbonizing the chemical industry. The electri-
fication of processes [107,108], by switching from fossil-powered processes to electricity-
powered processes (e.g., electrical furnaces and boilers, heat pumps) and the integration
of renewable energy sources [109–112], such as solar, wind and biomass, can reduce or
eliminate the need for fossil fuel combustion.

Hydrogen as a feedstock and energy carrier. Hydrogen produced from renewable sources
(green hydrogen) can serve as a clean feedstock and energy carrier in chemical manufactur-
ing processes. It can be produced by biological processes [113,114], e.g., direct, and indirect
photolysis, photo-fermentation, or dark fermentation), by thermochemical processes [115],
e.g., biomass pyrolysis and gasification, or electrolysis of water [116], by electrolysis, e.g.,
proton exchange membrane electrolysis, anion exchange membrane electrolysis [117], or
solid oxide electrolysis [118].

Bio-based feedstocks. The utilization of bio-based feedstocks derived from biomass
can help reduce the industry’s reliance on fossil fuels. Biomass, such as agricultural
residues [119], and food wastes [120], can be converted into bio-based chemicals through
various processes such as fermentation [121], enzymatic conversion [122], or thermochemi-
cal conversion [123].

Process optimization and advanced catalysts. Improving the efficiency of chemical pro-
cesses and developing advanced catalysts [124,125], can reduce energy consumption and
emissions through increased conversion and selectivity and milder operating conditions
with respect to temperature and pressure. Optimization techniques, for example process
intensification [126,127] and heat integration [128], enhance the overall energy efficiency
and sustainability of chemical production.
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Circular economy and recycling. Embracing a circular economy approach within the
chemical industry involves designing products for reusability, recycling, or biodegradabil-
ity [129]. Developing innovative recycling technologies, such as chemical recycling, enables
the recovery of valuable materials and reduces the need for virgin feedstocks [130].

Artificial intelligence (AI) and data analytics. AI and data analytics can be employed to
optimize processes [131], predict and detect anomalies [132], etc. AI and data analytics
will play a major role in boosting new product development, increasing the safety and
reliability of chemical production processes, and enhancing the sustainability of chemical
supply networks.

4.4.2. Pharmaceutical Industry

The pharmaceutical industry plays a vital role in advancing human health, but its
environmental impact cannot be overlooked. The manufacturing processes involved in
pharmaceutical production generate significant GHG emissions [133], contributing to
climate change. The pharmaceutical industry is responsible for an estimated annual direct
emission of approximately 52 Mt of CO2 equivalent worldwide [134]. It is important to
note that this estimation solely accounts for emissions directly generated by pharmaceutical
activities, without taking into consideration the indirect emissions associated with energy
use throughout the entire supply chain. Indirect emissions may arise from various sources
such as the transportation of medicines, lighting and refrigeration in distribution facilities,
and other energy-related processes.

The pharmaceutical industry is exploring various state-of-the-art technological innova-
tions that hold promise for shifting towards net-zero emissions. Several key advancements
have emerged in recent years:

Green Chemistry and Sustainable Synthesis. The adoption of green chemistry principles
and sustainable synthesis methods is gaining traction in pharmaceutical manufacturing.
This approach focuses on minimizing the use of hazardous materials [135], optimizing
chemical processes, and designing more environmentally friendly reactions to reduce waste
generation and energy consumption [136,137].

Process Intensification and Continuous Manufacturing. Process intensification involves
optimizing manufacturing processes to improve efficiency, reduce resource consumption,
and decrease emissions. Continuous manufacturing, as opposed to batch processing, allows
for streamlined operations, reduced waste, and improved energy and material efficiency,
thereby lowering the overall carbon footprint [138–141].

Decentralized Energy Generation and Advanced Energy Management Systems. Utilizing
waste-to-energy systems [142], solar photovoltaic systems, wind turbines, and biomass
energy facilities on-site can significantly reduce reliance on fossil fuels. Advanced energy
management systems integrate energy storage, demand response, and smart grid tech-
nologies. This enables the optimization of energy use, real-time monitoring of energy
consumption, and identification of opportunities to improve energy efficiency.

Circular Economy and Waste Reduction. Implementing circular economy practices
within the pharmaceutical industry can minimize waste generation and resource deple-
tion [143,144]. Recycling and repurposing of materials [145], implementing closed-loop
systems [146], and developing innovative recycling technologies [147] enable the recovery
of valuable resources, reducing the reliance on virgin materials and reducing emissions
associated with raw material extraction and production.

Digitalization and Data Analytics. Leveraging digital technologies, such as artificial
intelligence (AI), machine learning, and data analytics [148,149], can identify novel and
sustainable reaction pathways and thus directly or indirectly optimize processes, improve
energy efficiency, and identify opportunities for emission reduction. Advanced modeling
and simulation tools [150] can also aid in designing more sustainable and environmentally
friendly pharmaceutical manufacturing processes [151,152].

It is important to note that while these technological innovations hold significant
promise, their widespread adoption requires collaboration between industry stakeholders,
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policymakers, and research institutions. Continued research, development, and investment
in these areas are crucial for achieving the pharmaceutical industry’s goal of net-zero
emissions and contributing to global sustainability efforts.

4.4.3. Cement Industry

Around 40% of CO2 emissions from fuel combustion worldwide and 25% of global
GHG emissions are attributed to the built environment [153]. Among these figures, cement
production stands out as one of the most significant contributors, responsible for 6–10% of
global CO2 emissions [154]. Achieving net-zero emissions by 2050 will necessitate the swift
decarbonization of the cement and concrete sector.

The cement and concrete industry can utilize the following strategies to accomplish
their decarbonization objectives.

Reducing the fraction of clinker in cement. The emission from cement production is
predominantly caused by clinker, accounting for roughly 90% of the total [155]. This makes
it imperative for industry stakeholders to prioritize finding solutions for clinker-related
emissions. To decarbonize the industry, cement manufacturers can explore the possibility
of replacing clinker with alternative materials such as fly ash [156,157], granulated blast
furnace slag [158], calcined clays [159] and even red mud, to some extent [160,161].

Reducing energy-related CO2 emissions. To decrease emissions associated with energy
usage, industry participants are actively investigating alternative fuels (biomass and munic-
ipal and industrial wastes and their mixtures) [162,163], developing innovative technologies
such as kiln electrification [164,165], oxy-combustion [166], and heat generation via plasma
technology [167].

Carbon capture, storage, and utilization. The CO2 emissions captured from production
processes [168,169] can be reintegrated into the value chain through various means [170]. For
instance, they can be utilized in the production of recycled clinker (mineralization, [171]) or in-
corporated into fresh concrete (carbon curing, [172]). Moreover, concrete structures can absorb
a substantial amount of CO2 during their lifespan through a process called recarbonation.

4.4.4. Glass Industry

In 2019, the world consumed more than 194 Mt/a of glass, and the demand is forecast
to increase to 256 Mt/a by 2027 [173]. Glass is made in furnaces at extremely high tempera-
tures (up to 1700 ◦C) to melt several minerals, including silica (the main ingredient, in the
form of sand), soda ash, and limestone. Producing it causes 95 Mt/a of GHG emissions
worldwide [174]. The EU has set a timetable for the reduction of GHG emissions, with a
30% reduction target from 1990 levels by 2030 and 40% by 2040, culminating in net zero
by 2050. The main methods forecast are energy efficiency, renewable sources of energy,
minerals’ selection and composition, and circular economy. Globally, fuel emissions (mass
ratio of CO2 and melted glass) were reduced by 69% between 1960 and 2010 [173].

The UK glass industry has increased energy efficiency by 50% in the last 40 years by
using waste heat, Organic Rankine Cycle, or steam turbine to preheat raw materials, fuel,
or oxidants [175]. Oxyfuel combustion is using oxygen instead of combustion air, yielding
energy savings of 10–15% and reduced emissions. Fossil fuels can be replaced by biofuels
with reduced emissions of NOx. All electric furnaces are an established technology in the
glass sector and are more efficient than gas-fired furnaces. The latest development is using
up to 80% electricity with 20% gas energy (hybrid furnaces) with the future opportunity to
consider hydrogen combustion using 100% hydrogen as well as different proportions of
hydrogen blended with natural gas for glass melting.

Process emissions can be reduced by using a higher fraction of recycled glass which
substitutes the carbonate raw material and reduces CO2 emissions [175]. Alternative raw
materials, such as calcium oxide, mineral slags, waste incineration ashes, etc., can replace
carbonate raw material or reduce the melting temperature of the glass and thereby energy
requirements. CCUS may be needed as a final stage for decarbonization.
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Recycled glass reduces the usage of raw materials and GHG emissions as well as air
and water pollution. Saint-Gobain was the first manufacturer in the world to achieve zero
carbon flat glass production using 100% recycled glass (cullet) and 100% green energy,
produced from biogas and decarbonized electricity [176].

4.5. Biotechnology

Industrial biotechnology, based on renewable resources, can save energy and signifi-
cantly reduce CO2 emissions. Bio-based chemicals can replace their fossil-based counter-
parts with significant GHG emissions reductions [177]. Bio-based plastics are potentially
attractive in terms of specific emissions and energy savings. Governmental intervention
can play a significant role in the effort to advance the industrial biotechnology sector to-
ward lower GHG emissions, e.g., emissions trading systems (ETS) or tax for transportation
emissions, pollution costs charged to petrol-based materials, labeling systems for bio-based
materials and biofuels, public procurement supporting bio-based materials and sustainably
produced biofuels [178].

4.6. Metals Production
4.6.1. Iron and Steel

CO2 emissions and energy use in European steel production have already been halved
since 1960 [31]. Presently, the EU steel industry is mainly focusing on hydrogen-based
steelmaking as a decarbonization strategy. Carbon capture and utilization technologies will
be developed in partnership with the chemical industry. Recycled iron and steel waste, and
the electrolytic reduction of iron ore will be used for iron and steel production. Renewable
electricity and transmission networks, hydrogen-related infrastructure or CO2 transport,
and storage infrastructures will be built.

4.6.2. Aluminum

An aluminum net-zero transition strategy will require [179]:

• Power decarbonization is critical: all smelters will need to switch to low carbon power
by 2035, equating to approx. 1000 TW h of low-carbon electricity demand.

• Power decarbonization is necessary but not sufficient to decarbonize the sector; new
technology for low carbon anodes and new refining technologies need to be commer-
cialized by 2030.

• Recycled aluminum plays a critical role, expanding from 33% of supply in 2020 to over
50% by 2050.

• Mobilizing approximately 1 TUSD (1012 USD) of the investment over the next 30 years
will be needed to deliver the transition for the primary aluminum sector, with over
70% of the sum required for supporting infrastructure, most of it for power supply.

4.7. Pulp and Paper

• The pulp and paper industry is among the top five most energy-intensive industries
globally and is the fourth largest industrial energy user. This industry accounts
for approximately 6% of global industrial energy use and 2% of direct industrial
CO2 emissions [180]. As the paper production will increase, greater efforts must be
made to reduce the emissions intensity of production by 2030 by substituting fossil
fuels with renewable energy sources, e.g., biofuels, accelerating the energy efficiency
improvements, and reducing the energy needed for drying [181].

• Substituting more pulp by recycled wastepaper to over 60% by 2030.
• Installation of high-temperature heat pumps using waste heat sources inside the

production process.
• On-site waste heat recovery and co-generation.
• Emerging technologies, e.g., heat recovery from thermomechanical pulping, black

liqueur gasification, microwave drying, supercritical CO2 or deep eutectic solvent.
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EU believes that by 2050 the European pulp and paper industry can reduce its energy
consumption by 14% and greenhouse gas (GHG) emissions by 62% compared to 2015
levels [182]. Carbon capture and storage (CCS) could further reduce GHG emissions.
Biorefinery products from the pulp and paper mills could replace fossil fuels for light duty
vehicles, be used as raw materials in the chemical industry, or as fertilizers.

4.8. Key Technologies Related to Net-Zero Emission

Several technologies, directions, and approaches have been identified as important
for the transition to a net-zero economy. Some of these are tailored to a specific industry,
such as the reduction of the fraction of clinker in cement in the cement industry, while
others are across industries, such as carbon capture, electrification, waste reduction, etc. To
indirectly assess the activity of the development and interest in respective fields as they
pertain to net-zero emissions, a Google search was performed relating some of these to
net-zero emissions. The results are shown in Figure 2.
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Figure 2. Results of Google search on key technologies related to net-zero emissions.

As can be observed from the bar chart in Figure 2, most of the net-zero activities relate
to hydrogen. This is followed by Recycling and Electrification, which are the second and the
third most active areas linked to net-zero emissions. Just below the top of the list are Carbon
Capture, Circular Economy, Artificial Intelligence, Data Analytics, Digitalization, and Waste
Reduction. This representation is by no means conclusive, as it is merely a snapshot of
current trends. In addition, it may possibly be skewed by the search algorithm. However,
it potentially does reveal that to achieve net-zero emissions, several technological solutions
must be developed further and eventually implemented in an integrated framework.
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5. Conclusions and Outlook

The review highlights the important concept of achieving net-zero emissions as more
than just a singular focus on energy production. While the decarbonization of energy
production remains critical, it is imperative to extend this goal to the entire supply and
value chain to achieve a sustainable and carbon-neutral future. The discussion highlighted
that the advancement of renewable energy technologies is a key pillar in the pursuit of
net-zero emissions. We would also like to shed light on the major challenge that fossil-
based feedstocks pose to the chemical industry. Switching to sustainable and renewable
feedstock sources is critical to reducing emissions associated with chemical production
processes. The importance of a comprehensive systems approach to achieve net-zero
emissions was highlighted.

Megatrends are presumptive transformations of a global society, economy, or ecosys-
tem. The most often cited megatrends are climate change with environmental degradation
and resource scarcity, growing consumption, acceleration of technological change and
digitalization, economic shifts, demographic change, rapid urbanization, and social insta-
bility [183]. Three megatrends have been observed in the chemical industry [184]:

1. Sustainability and the circular economy, e.g., bio-based plastics, battery material
recycling, and improving the efficiency of wind turbines.

2. Digitalization, e.g., artificial intelligence (AI) to drive efficiency, sensors, and the
internet of things (IoT) to transform logistics, collaboration with tech giants key to
remain ahead of the curve, and machined to perfection.

3. Innovation and accelerated globalization, e.g., novel manufacturing process, making
composites affordable, and advanced materials for better insulation.

Deloitte has published the following four trends for chemical industry [185]:

1. Sustainability and innovation (integrating innovation and sustainability to move
beyond abatement).

2. Portfolio transformation (near-term portfolio action positions the industry for long-
term transformation).

3. Supply chains (rearchitecting to balance costs, carbon footprint, and resilience).
4. Digital (emerging technologies drive value chain improvements and sustainability).

Four solutions for fuel switching (green hydrogen, electrification, turquoise hydrogen,
and waste heat capture) will be ready in the next decade, but 11 solutions (carbon capture
and utilization, industrial bio-based operations, steam cracker electrification, small modular
nuclear reactor, and electrification) need further development to drive long-term impact.

Net-zero activities are addressing the climate and resource problems. Energy and
resource efficiency, and simple circular economy are addressing the welcomed low hanging
fruits. The European Commission has proposed the Net-Zero Industry Act (NZIA) to pro-
mote the production of clean technologies in the EU and prepare for the transition to clean
energy [186]. It shall significantly contribute to decarbonization by developing batteries,
biogas/biomethane, carbon capture, and sustainable and alternative fuel technologies. The
proposal was not accepted by the industry—Cefic (European Chemical Industry Council),
described it as a “Zero Industry Act” [187].

Achieving net-zero emissions in the chemical process industries necessitates a holistic
approach that combines technological advancements, supplies chain considerations, and
societal transformation. While challenges exist, the CPI sector has the potential to signif-
icantly contribute to global emission reduction efforts. Collaboration, innovation, and a
transition towards sustainable lifestyles are crucial for turning net-zero emissions into a
tangible reality.

Yet, transitioning towards zero emissions will not be possible unless significant
changes in the way human society functions occur. De-growth in developed countries and
slower growth in developing ones is needed. OECD published a framework to decarbonize
the economy [188]. Key aspects include:

1. Emission pricing policy instruments;
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2. Standards and regulations;
3. Complementary policies to facilitate the reallocation of capital, labor, and innova-

tion towards low-carbon activities and to offset the adverse distributional effects of
reducing emissions.

In conclusion, recognizing the complex interlinkages between sectors and understand-
ing that emissions need to be addressed holistically across the value chain are crucial
aspects to successfully achieving this ambitious goal. Furthermore, the roadmap toward
net-zero emissions must encompass not only net-zero energy production, but also net-zero
feedstock production. By ensuring that raw materials are sustainably sourced and do
not contribute to net emissions, we can significantly reduce the carbon impact of various
industries. In this effort, we emphasize the importance of highly selective conversions
and striving for high recycling rates of products and equipment. By optimizing processes
and reducing waste, we can minimize emissions throughout the life cycle of products and
contribute to a more sustainable economy. However, making the transition to net-zero
emissions a reality requires concrete strategies, innovative approaches, and effective poli-
cies. Joint efforts by governments, businesses, and consumers will play a crucial role in
bringing about meaningful change. The roadmap to achieving net-zero targets requires a
comprehensive, collaborative, and multifaceted approach. By considering all aspects of the
economy, from energy production to raw materials and the life cycle of products, we can
effectively navigate the path towards a sustainable future for generations to come.
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