
Citation: Cai, Z.; Feng, Y.; Yang, S.;

Yang, J. A State Transition Diagram

and an Artificial Physarum

polycephalum Colony Algorithm for

the Flexible Job Shop Scheduling

Problem with Transportation

Constraints. Processes 2023, 11, 2646.

https://doi.org/10.3390/pr11092646

Academic Editor: Michael C.

Georgiadis

Received: 3 August 2023

Revised: 28 August 2023

Accepted: 1 September 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A State Transition Diagram and an Artificial
Physarum polycephalum Colony Algorithm for the Flexible Job
Shop Scheduling Problem with Transportation Constraints
Zhengying Cai * , Yihang Feng, Shanshan Yang and Jia Yang

Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipments,
College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China
* Correspondence: master_cai@163.com

Abstract: In many flexible job shop scheduling problems, transportation scheduling problems are
involved, increasing the difficulty in problem-solving. Here, a novel artificial Physarum polycephalum
colony algorithm is proposed to help us address this problem. First, the flexible job shop scheduling
problem with transportation constraints is modeled as a state transition diagram and a multi-objective
function, where there are ten states in total for state transition, and the multi-objective function
considers the makespan, average processing waiting time, and average transportation waiting time.
Second, a novel artificial Physarum polycephalum colony algorithm is designed herein with two main
operations: expansion and contraction. In the expansion operation, each mycelium can cross with
any other mycelia and generate more offspring mycelia, of which each includes multiple pieces of
parental information, so the population expands to more than twice its original size. In the contraction
operation, a fast grouping section algorithm is designed to randomly group all mycelia according to
the original population size, where each group selects the best fitness one to survive, but the other
mycelia are absorbed to disappear, so the population size recovers to the original size. After multiple
iterations, the proposed algorithm can find the optimal solution to the flexible job shop scheduling
problem. Third, a series of computational experiments are conducted on several benchmark instances,
and a selection of mainstream algorithms is employed for comparison. These experiments revealed
that the proposed method outperformed many state-of-the-art algorithms and is very promising in
helping us to solve these complex problems.

Keywords: flexible job shop scheduling; transportation scheduling; state transition diagram; swarm
intelligence; artificial Physarum polycephalum colony

1. Introduction

At present, the flexible job shop scheduling (FJSS) problem with transportation con-
straints is gaining more and more attention [1,2], with it comprising many machines and
vehicles, where a series of jobs have to be arranged and a series of transportation tasks
have to be handled. This kind of system is very popular in modern industry and smart
logistics systems [3]. Until now, all kinds of vehicles, especially automated guided vehicles
(AGVs) [4] and mobile robots (MRs) [5], have been widely applied to support flexible job
shop scheduling systems and are integrated with them. Such vehicles can help transport
raw materials or products from a dock to a storage facility or help transport all kinds of
materials between different areas in a warehouse or on the production line [6]. In this
environment, jobs are kept for transporting between different areas to be handled until all
transportations are finished. Due to the deep involvement of vehicles, the flexible job shop
scheduling problem with transportation constraints has become increasingly important.

In a flexible job shop scheduling problem with transportation constraints, there are
two subproblems, namely, the job shop scheduling problem (JSSP) and the transportation
scheduling problem (TSP) [7]. These two problems are interrelated and inseparable, and

Processes 2023, 11, 2646. https://doi.org/10.3390/pr11092646 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11092646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-5337-2965
https://doi.org/10.3390/pr11092646
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11092646?type=check_update&version=1

Processes 2023, 11, 2646 2 of 24

in studying one of them in isolation, one cannot obtain the optimal solution to the entire
problem [8]. Some scholars choose to divide this complex problem into two simpler sub-
problems to solve them separately, thereby reducing the difficulty of solving the problem.
For example, the job shop scheduling task is solved first without transportation constraints,
and then, the vehicle transportation tasks are sequentially addressed [9]. However, this
also leads to the loss of reference value in the solution results since a separate solution to
this problem involves two kinds of scheduling operations where the separated scheduling
tasks are closely interrelated.

The flexible job shop scheduling problem with transportation constraints is NP-hard
since its two subproblems are NP-hard, i.e., the job shop scheduling problem (JSSP) and the
vehicle scheduling problem (VSP) [10]. The latter is also called a transportation scheduling
problem or a load/unload problem. Many researchers have proposed all kinds of artificial
intelligence algorithms to solve these kinds of complex problems, i.e., genetic algorithms
(GAs) [2,4], particle swarm optimization (PSO) [6], simulated annealing (SA) [6], ant colony
optimization (ACO) [8], fuzzy logic (FL) [11], deep learning (DL), artificial neural networks
(ANNs) [12], artificial bee colony (ABC) [13], and adaptive memetic algorithms (AMAs) [14].
The experimental results of these studies revealed that these artificial intelligence algorithms
can obtain satisfactory results in job shop scheduling problems. In recent years, a unicellular
organism has given us great inspiration, Physarum polycephalum [15]. It can generate
thousands of mycelia to search for food and shrink into the most refined mycelium structure
after finding food. Therefore, we attempted to design an artificial Physarum polycephalum
colony algorithm to help us solve the FJSS problem.

The main contributions of this work are as follows:
First, the flexible job shop scheduling problem with transportation constraints is mod-

eled as a state transition diagram and a multi-objective function, where there are ten states
in total for state transition, and the job shop scheduling problem and transportation schedul-
ing problem are integrated by mixed integer linear programming. The main objectives
consider the minimization of the makespan, the minimization of the average processing
waiting time, and the minimization of the average transportation waiting time. The ob-
jective function integrates the job scheduling performance and transportation scheduling
performance. The constraints provide restrictive conditions among the scheduling jobs,
machines, and vehicles and ensure that the products are efficiently transported to the
final users.

Second, based on the swarm intelligence of natural Physarum polycephalum, a novel
artificial Physarum polycephalum colony (APPC) is designed to help us solve this kind of
complex flexible job shop scheduling problem with transportation constraints. Our pro-
posed algorithm utilizes two main operations: expansion and contraction. In the expansion
operation, each mycelium can cross with any other mycelia and generate more offspring,
with each one including multiple parental information, so the population expands to more
than twice its original size. In the contraction operation, a fast grouping section algorithm
is designed to randomly group all mycelia according to the original population size, where
each group selects the best fitness one to survive, but the other mycelia are absorbed to
disappear, so the population size recovers to the original size. Therefore, the expansion
operation increases the global search ability, and the contraction operation increases the
quick convergence ability. After multiple iterations, the proposed algorithm can find the
optimal solution to the flexible job shop scheduling problem.

Third, a series of numerical examples are tested, and some mainstream artificial
intelligence methods are compared. The proposed APPC algorithm is good at searching
for optimal solutions and outperforms many state-of-the-art algorithms in terms of time
performance and space performance.

The remainder of this paper is organized as follows: Section 2 presents a brief literature
review of the research progress on the FJSS problem; Section 3 illustrates the mathematical
model of the flexible job shop scheduling problem with transportation constraints; in
Section 4, a novel APPC algorithm is explored; in Section 5, a series of computational

Processes 2023, 11, 2646 3 of 24

experiments are implemented to test the proposed APPC algorithm and compare it to other
algorithms; and finally, in Section 6, some interesting conclusions are drawn and future
research directions are presented.

2. Literature Review

Traditional job shop scheduling problems often neglect the travel times or assume
that unlimited transport resources are available. These cases are often inconsistent with
engineering practice because vehicle transportation tasks are very common in the FJSS
problem. If the vehicle transportation problem cannot be fully considered, the optimal
solution to the job scheduling problem will not be obtained. The job shop scheduling
problem with transportation constraints needs to decide the machine scheduling, vehicle
scheduling, and transportation assignment. Ref. [2] designed a multistart biased random
key genetic algorithm for the flexible job shop scheduling problem with transportation.
Solving these interrelated problems is helpful in improving the operational performance
of the job scheduling system. Refs. [4,16] proposed an integrated scheduling method of
machines and automated guided vehicles in a flexible job shop environment based on
genetic algorithms.

The use of mobile robots also brings transportation issues. The authors of [5] modeled
the job shop scheduling problem as a mixed integer linear programming (MILP) model
and considered the routing problem of mobile robots. A mixture of job shop scheduling
systems and transportation scheduling systems also increases the factors considered during
scheduling. Ref. [7] produced a job shop scheduling joint consideration of production,
transport, and storage/retrieval systems. Ref. [9] addressed the energy-efficient job shop
scheduling problem with transport resources, considering speed-adjustable resources.
These works revealed that the benefits of integrating job shop scheduling and transportation
scheduling can greatly improve the job completion time and operational performance.

Many research works often independently study job shop scheduling problems and
vehicle transportation problems, such as dynamic job shop scheduling [12,17], interval job
shop [13], energy-efficient distributed flexible job shop scheduling [14], limited waiting
time constraint on a hybrid flowshop [18], embedded environment [19], and flexible job
shop scheduling [20]. Ref. [21] presented a dynamic configuration method of flexible
workshop resources based on an imperialist competitive algorithm hybrid neighborhood
search (IICA-NS). Although doing so can reduce the difficulty of solving a problem, it leads
to a lack of coordination since sub-optimal solutions and cannot reach global optimization.
Recent research progress indicates that neglecting transportation scheduling in job shop
scheduling may result in serious consequences [22], such as low resource utilization,
unexpected bottlenecks, high intermediate inventories and operational costs, and low
user satisfaction.

The integration of job shop scheduling and vehicle scheduling makes the scheduling
problem more challenging since the multi-objective decisions and constraints become more
complex [17]. Ref. [23] employed a multi-agent system simulation-based approach for
collision avoidance in an integrated job shop scheduling problem with transportation tasks.
Many researchers have demonstrated that there are a lot of conflicting factors in coordinat-
ing job shop scheduling and transportation scheduling. For example, ref. [24] introduced
an approach to the integrated scheduling of flexible job shop scheduling, considering
conflict-free routing problems. In engineering practice, a flexible job shop scheduling task
often transports materials from one workstation to another or from a load/unload area to
another, which are inevitably involved in vehicle transportation scheduling [25].

Now, current mainstream scientists consider this kind of FJSS problem to be multi-
objective with many conflicting factors and NP-hard, so traditional, exact approaches can
only be applied to solve small-sized cases [1]. It is very important and challenging to design
efficient algorithms to address it in large-sized cases, such as simulated annealing (SA) [6]
and fuzzy logic (FL) [11]. Among them, swarm intelligence (SI) algorithms have received
great attention [23,26], i.e., genetic algorithms (GAs) [2,4,16], particle swarm optimiza-

Processes 2023, 11, 2646 4 of 24

tion (PSO) [6,19], ant colony optimization (ACO) [8], deep learning (DL), artificial neural
networks (ANNs) [12,27], artificial bee colony (ABC) [13], adaptive memetic algorithms
(AMAs) [14], migrating birds optimization [17], grey wolf optimization (GWO) [20], quan-
tum cat swarm optimization [22], artificial slime mold [28], artificial Physarum swarm [29],
coronavirus herd immunity [30], artificial plant community [31,32], whale optimization [33],
artificial algae [34], and the Jaya algorithm [35]. However, these swarm intelligence algo-
rithms are also prone to fall into local optimization prematurely, and some scholars have
tried to improve algorithm performance using hybrid algorithms [6,36].

In recent years, a unique creature has given us new inspiration. Natural Physarum
polycephalum can generate countless mycelia for expansion and then shrink into the op-
timal network structure after finding food [15]. Some researchers have tried to simulate
their search behavior [28,29], but the current research works have not fully explored the
core functions of the Physarum polycephalum colony, i.e., swarm learning, expanding the
population size to increase the search ability, and shrinking the population size to optimize
solution results.

The following research gaps currently exist:

1. Traditional artificial intelligence algorithms and swarm intelligence algorithms both
use a fixed population size, while the population size of Physarum polycephalum varies
significantly during expansion and contraction, and the increased population size
also enhances its global search ability.

2. Traditional artificial intelligence and swarm intelligence algorithms typically use pair-
wise learning, where two individuals learn from each other to produce a pair of new
individuals. The Physarum polycephalum allows each mycelium to cross with multiple
other mycelia to produce offspring containing information from a lot of parents.

3. Traditional artificial intelligence and swarm intelligence modify the values of all
individuals in each iteration, making it easy to lose the optimal solution. However,
the Physarum polycephalum allows for the preservation of the optimal solution for
each iteration.

If we can design an efficient algorithm based on its search behavior, it may help us
solve many difficult problems. This is the motivation for this research work.

3. Problem Modeling

Based on the benchmark tests in [37,38], this section describes the flexible job shop
scheduling problem with transportation constraints, including a state transition diagram, a
multi-objective function, and constraints.

In a flexible job shop scheduling problem with transportation constraints, the main
components are composed of a production system and a transportation system. The
production system comprises a series of machines and a series of independent jobs, where
every job contains a series of ordered operations and has its own independent machine
order. Any ordered operation must be handled on a committed machine in a predefined
processing period without interruption. At the same time, every machine can only handle
one operation at a time, and every job can only be processed on one machine at a time.
Hence, this part is a classic job shop scheduling problem.

The transportation system incorporates a number of identical vehicles with the same
speed and load capacity, which can execute any transportation task. In a flexible job shop
scheduling problem, every vehicle can only carry one job at a time. It is often assumed
that the layout and the travel times between any two nodes are predetermined, and
transportation scheduling is non-preemptive. To simplify the analysis, carpooling [39] and
platooning [40] are not considered here.

3.1. Symbol Definitions

This section provides the symbol definitions used in the next sections, as shown
in Table 1.

Processes 2023, 11, 2646 5 of 24

Table 1. Symbol definitions.

Symbol Definition

J Job set
j Job number

jmax Maximum job number
M Machine set
m Machine number

mmax Maximum machine number
Oj Operation set of job j
Oji Operation number of job j

Ojmax Maximum operation number of job j
Pji Required processing time of operation Oji
Tji Required transportation time of operation Oji
V Vehicle set
v Vehicle number

vmax Maximum vehicle number
AMm(Oji) Binary variable of machine assignment
AVv(Oji) Binary variable of vehicle assignment

TMstart
m

(
Oji

)
Start time of an operation Oji on the machine m

TMend
m

(
Oji

)
End time of an operation Oji on the machine m

TMproc
m

(
Oji

)
Actual processing time of an operation Oji on the machine m

TMstart
m (∑) The earliest start time of all operations on the machine m

TMend
m (∑) The last end time of all operations on the machine m

TMproc
m (∑) The total processing time of all operations on the machine m

TVstart
v

(
Oji

)
Start time of an operation Oji on the vehicle v

TVend
v

(
Oji

)
End time of an operation Oji on the vehicle v

TVtran
v

(
Oji

)
Actual transportation time of an operation Oji on the vehicle v

TVstart
v (∑) The earliest start time of all operations on the vehicle v

TVend
v (∑) The last end time of all operations on the vehicle v

TVtran
v (∑) The total transportation time of all operations on the vehicle v
SP Makespan

WM Average processing waiting time
WV Average transportation waiting time
Ite An iteration counter

Ite_max The maximum iterations
S The population size of APPC
s The APPC number
x A feasible solution of APPC
ps The social-learning possibility
pf The free-learning possibility
e The iterative error

eth The predefined error threshold

For a flexible job shop scheduling problem with transportation constraints, there is
a job set J with, at most, jmax of jobs, a machine set M with, at most, mmax of machines,
and a vehicle set V with, at most, vmax of vehicles. In each job j, there is an operation set
{Oj}, where the maximum number of jobs j is Ojmax. Each operation can be assigned to any
machine for operation or any vehicle for transportation. There are two binary variables
for machine assignment and vehicle assignment in job shop scheduling, i.e., AMm(Oji)
and AVv(Oji). The binary variable of machine assignment AMm(Oji) indicates that the
machine m is assigned to the operation Oji of the job j. The binary variable of vehicle
assignment AVv(Oji) indicates that the vehicle v is assigned to the operation Oji of the job j.

For the flexible job shop problem, the integer programming method is used to define
a feasible solution variable x. In each iterative computation, the APPC will use a multi-
objective function to search for the optimal solutions, and the iteration counter Ite is used

Processes 2023, 11, 2646 6 of 24

to count the iterative computation of the APPC. The self-learning is fixed, and the social-
learning possibility ps and free-learning possibility pf are probabilistic to instruct the swarm
searching process. If the solution error e reaches the error threshold eth, or the iteration
counter Ite amounts to the maximum value Ite_max, then the iterative computation can be
terminated to output the optimal solution.

3.2. A State Transition Diagram

In a flexible job shop scheduling problem with transportation constraints, a transporta-
tion task requires a pair of loading and unloading operations. The load operation requires
an empty vehicle for transportation, and the unload operation requires an empty unloading
area waiting for the vehicle to arrive. To illustrate this complex scheduling problem, we
have designed a state transition diagram for FJSS jobs, as shown in Figure 1. There are ten
states in total for each job, corresponding to the ten ellipses in the figure. In addition, the
arrows between the ellipses indicate the direction of the state transition, and the text on the
arrows indicates the machine or vehicle action that corresponds to the state transition. The
ten states are illustrated as follows:

• New: This is the first state. If a job enters a production system, it should be created first,
where all machines are not occupied and each vehicle is located in the load/unload
areas from the beginning.

• Processing ready: This is the second state. After creation, if a job enters the production
system, or every job is transported by a vehicle from the load/unload areas and
unloaded to a production system, it is in a ready state. This means that a job is ready
for the machine for the processing operation.

• Machine processing: Although the job is ready, the machine may not be ready. If
a machine is idle, then the machine can be assigned and the machine processing
operation starts immediately. During the machine processing operation, the machine
cannot be used for other purposes.

• Processing waiting: If the job is ready, but the machine is busy, then the assignment
cannot be made and the job waits in the input buffer. Processing waiting will not end
until there are idle machines to be assigned, and the job will enter the machine for
processing operation.

• Processing completion: Whenever a processing operation is completed, the job is
transferred to the machine output buffer and waits for the arrival of a vehicle for
loading. The machine is ready for the next processing operation.

• Transportation ready: If a job is already available for transportation, it is ready for
loading by an assigned vehicle.

• Vehicle transportation: Although the job is ready, the vehicle may not be ready. If a
vehicle is idle, then the vehicle can be assigned to the job. Then, the job is loaded by
the vehicle and transportation starts immediately. During this transportation process,
the vehicle cannot be used for other purposes.

• Transportation waiting: If the job is ready, but the vehicle is busy or late for the
assignment, the transportation has to wait. Transportation waiting will not end until
there are idle vehicles to be assigned, and the job will be loaded for transportation.

• Transportation completion: When the vehicle arrives at the load/unload areas for the
next processing operation, the transportation task is completed, and then, the job is
unloaded to a machine and becomes ready for processing.

• Exit: This is the last state. If all job processing operations have been completed and all
transportation tasks have been finished, the job is returned to the load/unload areas
to leave the production system.

Processes 2023, 11, 2646 7 of 24

Processes 2023, 11, x FOR PEER REVIEW 7 of 25

Transportation waiting: If the job is ready, but the vehicle is busy or late for the as-

signment, the transportation has to wait. Transportation waiting will not end until

there are idle vehicles to be assigned, and the job will be loaded for transportation.

Transportation completion: When the vehicle arrives at the load/unload areas for the

next processing operation, the transportation task is completed, and then, the job is

unloaded to a machine and becomes ready for processing.

Exit: This is the last state. If all job processing operations have been completed and

all transportation tasks have been finished, the job is returned to the load/unload ar-

eas to leave the production system.

Figure 1. The state transition diagram of the flexible job shop scheduling problem with transporta-

tion constraints.

The ten states must be strictly transitioned in the direction of the arrows. In the pro-

cessing ready state, as soon as the vehicle reaches the machine, it unloads the job and waits

for the next transportation assignment. At the same time, the job is ready for machine

processing. Once a processing operation of a job is completed on a machine, an idle vehicle

will be assigned to load the job from the machine and transport the job to another machine

for the next processing operation.

In the first schedule, a job is created as a new state, and the vehicles are required to

transport jobs from the load/unload area to the machine processing area. The first sched-

ule is slightly different from the subsequent schedules, where the first job requires a vehi-

cle to transport it into a load/unload area before entering the production system. In this

case, a job with n operations needs n transportation tasks. To simplify the analysis, all

vehicles are assumed to have stopped there from the beginning. However, the entangle-

ment between job scheduling and transportation scheduling still makes problem model-

ing more difficult.

In subsequent schedules, other than the first one or the last one, in most cases, it only

considers the job scheduling with transportation between machine operations, so a job

with n operations needs n − 1 transportation tasks. The job shop scheduling starts with the

machine processing operation and ends with the last machine operation, but each opera-

tion requires waiting for the transportation task to be completed before proceeding.

In the last schedule, there may be an additional transportation task and the job will

be in the exit state. In this case, a job with n operations needs n transportation tasks. This

may result in asynchronous and additional transport tasks if the last job needs to be trans-

ferred to the load/unload areas when all operations have been completed. To diminish

asynchronous transport tasks, a nope operation with zero processing time can be defined

to handle the job at the load/unload areas. A nope operation is a virtual operation that

does not consume any machine or vehicle resources nor does it take up any time. When a

job is returned to the load/unload areas, a nope operation can be added to help the job be

Figure 1. The state transition diagram of the flexible job shop scheduling problem with transporta-
tion constraints.

The ten states must be strictly transitioned in the direction of the arrows. In the
processing ready state, as soon as the vehicle reaches the machine, it unloads the job and
waits for the next transportation assignment. At the same time, the job is ready for machine
processing. Once a processing operation of a job is completed on a machine, an idle vehicle
will be assigned to load the job from the machine and transport the job to another machine
for the next processing operation.

In the first schedule, a job is created as a new state, and the vehicles are required to
transport jobs from the load/unload area to the machine processing area. The first schedule
is slightly different from the subsequent schedules, where the first job requires a vehicle to
transport it into a load/unload area before entering the production system. In this case, a
job with n operations needs n transportation tasks. To simplify the analysis, all vehicles are
assumed to have stopped there from the beginning. However, the entanglement between
job scheduling and transportation scheduling still makes problem modeling more difficult.

In subsequent schedules, other than the first one or the last one, in most cases, it only
considers the job scheduling with transportation between machine operations, so a job
with n operations needs n − 1 transportation tasks. The job shop scheduling starts with the
machine processing operation and ends with the last machine operation, but each operation
requires waiting for the transportation task to be completed before proceeding.

In the last schedule, there may be an additional transportation task and the job will
be in the exit state. In this case, a job with n operations needs n transportation tasks.
This may result in asynchronous and additional transport tasks if the last job needs to
be transferred to the load/unload areas when all operations have been completed. To
diminish asynchronous transport tasks, a nope operation with zero processing time can be
defined to handle the job at the load/unload areas. A nope operation is a virtual operation
that does not consume any machine or vehicle resources nor does it take up any time.
When a job is returned to the load/unload areas, a nope operation can be added to help
the job be transported to a determined machine or a load/unload area. The completion
time of a job will not be affected by the nope operation before the job is returned to the
load/unload areas.

3.3. A Multi-Objective Function

Here, a mixed integer linear programming model is introduced to build a multi-
objective function for the job shop scheduling problem. The main objectives include the
minimization of makespan, the processing waiting time, and the transportation waiting
time. The three objectives consider the job performance of all processing operations on
machines and the transportation performance on all vehicles. If any of the two waiting
times are long, this means low scheduling efficiency and a great waste of time, where

Processes 2023, 11, 2646 8 of 24

all processing operations and all transport tasks require more time to wait to return the
jobs into or out of the load/unload areas. In this case, the performance of the production
operation will be adversely affected.

Objective function = {min{SP}, min{WM}, min{WV}} (1)

Subject to:
AMm

(
Oji
)
= {0, 1}, AVv

(
Oji
)
= {0, 1} (2)

TMstart
m

(
Oji
)
, TMend

m
(
Oji
)
, TMproc

m
(
Oji
)
≥ 0 (3)

TVstart
v

(
Oji
)
, TVend

v
(
Oji
)
, TVtran

v
(
Oji
)
≥ 0 (4)

∑j ∑i ∑m AMm
(
Oji
)
≤ mmax (5)

∑j ∑i ∑m AVv
(
Oji
)
≤ vmax (6)

TMend
m
(
Oji
)
≥ Pji + max{[TM end

m
(
Oj−1,i

)
+ Tj−1,i], [TM end

m
(
Oj,i−1

)
+ Tj,i−1]} (7)

TVend
v
(
Oji
)
≥ TMend

m
(
Oji
)
+ Tji (8)

TMstart
m

(
Oji
)
≥ max{TMend

m
(
Oj−1,i

)
, TMend

m
(
Oj,i−1

)
} (9)

TMend
m
(
Oji
)
≤ min

{
TMstart

m
(
Oj+1,i

)
, TMstart

m
(
Oj,i+1

)}
(10)

TMstart
m

(
Oji
)
≥ TMstart

m−1
(
Oj,i−1

)}
(11)

TVstart
v

(
Oji
)
≥ max

{
TVstart

v
(
Oj−1,i

)
, TVstart

v
(
Oj,i−1

)}
(12)

TVstart
v

(
Oji
)
≥ max{TV start

v−1
(
Oj,i−1

)
, max{TV start

v−1
(
Oj−1,i

)
} (13)

TMstart
m (O11) = 0 (14)

TMend
m
(
Ojmax,imax

)
≥ max

{
TMend

m
(
Oji
)∣∣∣i ≤ Ojimax; j ≤ jmax; m ≤ mmax

}
(15)

The objective function in Equation (1) is to minimize the makespan, average process-
ing waiting time, and average transportation waiting time. The three objectives may be
conflicted in many cases, so simply pursuing the minimization of a goal cannot guarantee
the efficiency of the entire job shop scheduling.

The following equations after Equation (1) are constraints, and their values limit the
minimization of the objective function.

Constraint 1 in Equation (2) indicates that the binary variable AMm(Oji) of the machine
assignment and the binary variable AVv(Oji) of the vehicle assignment can only take values
of 0 or 1.

Constraint 2 in Equation (3) indicates that the machine start time TMstart
m

(
Oji
)
, pro-

cessing time TMproc
m
(
Oji
)
, and end time TMend

m
(
Oji
)

are all non-negative.
Constraint 3 in Equation (4) indicates that the vehicle start time TVstart

v
(
Oji
)
, trans-

portation time TVtran
v
(
Oji
)
, and end time TVend

v
(
Oji
)

are all non-negative.
Constraint 4 in Equation (5) indicates that all scheduling machines at a time cannot

exceed the total number mmax of machines.

Processes 2023, 11, 2646 9 of 24

Constraint 5 in Equation (6) indicates that all vehicles scheduled at once shall not
exceed the total number vmax of vehicles.

Constraint 6 in Equation (7) indicates that the end time of the job processing should
not be less than the required machine processing time, the required vehicle transportation
time, or the last machine end time of the previous job or operation.

Constraint 7 in Equation (8) indicates that the end time of the job transportation on
different machines should not be less than the last machine processing time or required
transportation time.

Constraint 8 in Equation (9) indicates that the start time TMstart
m

(
Oji
)

of the machine m
cannot be earlier than the previous end time TMend

m
(
Oj−1,i

)
or TMend

m
(
Oj,i−1

)
.

Constraint 9 in Equation (10) indicates that on a machine m, different operations are
processed in a first-come-first-served way to ensure that the operations arriving first can be
processed immediately.

Constraint 10 in Equation (11) indicates that on different machines, different operations
of the same job j should be carried out in order to ensure that the operations are processed
immediately upon arrival.

Constraint 11 in Equation (12) indicates that on a vehicle v, different jobs are as-
signed in a first-come-first-served way to ensure that the jobs that arrive first can be
transported immediately.

Constraint 12 in Equation (13) indicates that on different vehicles, different operations
for the same job j or different jobs for the same operation should be carried out in a
sequential manner to ensure that they are transported immediately upon arrival.

Constraint 13 in Equation (14) indicates the immediate start of the first operation O11
of the first job.

Constraint 14 in Equation (15) indicates that the last job ends immediately.

3.4. Resolution Approach

In this section, the resolution for the multi-objective function in the previous section
is illustrated. The resolution is to search for the optimal binary variable AMm

(
Oji
)

of
the machine assignment and the binary variable AVv

(
Oji
)

of the vehicle assignment and
generate the optimal objective function in Equation (1).

As for the makespan, there are two cases. In Case 1, if the job at first starts from the
load/unload area and directly enters into the production system, no vehicle transportation
is required before entering the production system, and the job is completed after the last
transportation. Then, the makespan can be calculated as

SP = max
i,j,m,v
{TV end

v
(
Oji
)
} − min

i,j,m,v

{
TMstart

m
(
Oji
)}

(16)

Equation (16) states that the makespan of all operations depends on the difference
between the latest vehicle transportation end time max

i,j,m,v
{TV end

v
(
Oji
)
} and the earliest

machine start time min
i,j,m,v

{
TMstart

m
(
Oji
)}

.

In Case 2, if the job at first starts from a vehicle transportation before entering the
production system, and the job completes after the last transportation, then the makespan
can be calculated as

SP = max
i,j,m,v
{TV end

v
(
Oji
)
} − min

i,j,m,v

{
TVstart

v
(
Oji
)}

(17)

Equation (17) states that the makespan of all operations depends on the difference
between the latest vehicle transportation end time max

i,j,m,v
{TV end

v
(
Oji
)
} and the earliest

vehicle transportation start time min
i,j,m,v

{
TVstart

v
(
Oji
)}

.

Processes 2023, 11, 2646 10 of 24

For the average processing waiting time, WM is decided by the total number
∑j ∑i ∑m AMm

(
Oji
)

of machines, and the difference between the required processing time
and the actual processing time of an operation on each machine. The earliest start time of
all operations on the machine m can be calculated as follows:

TMstart
m

(
∑
)
= min

{
AMm

(
Oji
)
× TMstart

m
(
Oji
)}

(18)

The last end time of all operations on the machine m can be calculated as follows:

TMend
m
(
∑
)
= max

{
AMm

(
Oji
)
× TMend

m
(
Oji
)}

(19)

The actual processing time TMproc
m
(
Oji
)

of an operation Oji on the machine m equals
the difference between the machine start time TMstart

m
(
Oji
)

and the machine end time
TMend

m
(
Oji
)
. That is:

TMproc
m
(
Oji
)
= TMend

m
(
Oji
)
− TMstart

m
(
Oji
)

(20)

The actual transportation time TVtran
v
(
Oji
)

of an operation Oji on the vehicle v equals the
difference between the vehicle start time TVstart

v
(
Oji
)

and the vehicle end time TVend
v
(
Oji
)
.

That is:
TVtran

v
(
Oji
)
= TVend

v
(
Oji
)
− TVstart

v
(
Oji
)

(21)

Hence, the total actual processing time of all operations on the machine m can be
calculated as follows:

TMproc
m
(
∑
)
= ∑jmax

j=1 ∑Ojimax
i=1

[
AMm

(
Oji
)
× TMproc

m
(
Oji
)]

(22)

Notice the actual processing time of an operation Oji on the machine m is not the
required processing time Pji of operation Oji. The difference between them is the processing
waiting time, so the average processing waiting time WM can be obtained through:

WM =
1

∑j ∑i ∑m AMm
(
Oji
)∑mmax

m=1

{
TMproc

m
(
∑
)
−∑jmax

j=1 ∑Ojimax
i=1

[
AMm

(
Oji
)
× Pji

]}
(23)

Similarly, the average transportation waiting time WV is decided by the total number
∑
j

∑
i

∑
v

AVv
(
Oji
)

of vehicles and the difference between the required transportation time

and the actual transportation time of an operation on each vehicle. The earliest start time of
all operations on the vehicle v can be calculated as follows:

TVstart
v

(
∑
)
= min

{
AVv

(
Oji
)
× TVstart

v
(
Oji
)}

(24)

The last end time of all operations on the vehicle v can be calculated as follows:

TVend
v
(
∑
)
= max

{
AVv

(
Oji
)
× TVend

v
(
Oji
)}

(25)

The total actual transportation time of all operations on the vehicle v can be calculated
as follows:

TVtran
v
(
∑
)
= ∑jmax

j=1 ∑Ojimax
i=1 [AV v

(
Oji
)
× TVtran

v
(
Oji
)
] (26)

Notice the actual transportation time of an operation Oji on the vehicle v is not the
required transportation time Tji of operation Oji. The difference between them is the
transportation waiting time, so the average transportation waiting time WV can be given by:

WV =
1

∑j ∑i ∑v AVv
(
Oji
)∑vmax

v=1 {TVtran
v
(
∑
)
−∑jmax

j=1 ∑Ojimax
i=1 [AV v

(
Oji
)
×Tji

]
} (27)

Processes 2023, 11, 2646 11 of 24

Based on the makespan in Equations (16) or (17), the average processing waiting time
WM in Equation (23), and the average transportation waiting time WV in Equation (27),
the optimal binary variable AMm

(
Oji
)

of the machine assignment and the binary variable
AVv

(
Oji
)

of the vehicle assignment can be searched for the optimal solutions to the job
shop problem.

As we can see from Equations (1)–(27), there are a lot of constraints for machines and
vehicles, so the multi-objective function of the FJSS problem with transportation constraints
is more complex than the traditional job shop problem. In the next section, a novel APPC
algorithm is proposed to help us solve this problem.

4. An APPC Algorithm for FJSS

Drawing on the advantages and disadvantages of traditional swarm intelligence
algorithms and considering the unique behavioral characteristics of a natural
Physarum polycephalum colony, an APPC algorithm was explored to simulate the novel
swarm intelligence. The proposed artificial Physarum polycephalum colony can use a lot
of mycelia to expand and contract to search for the optimal solution to FJSS problem in
Equations (1)–(15), that is, its population size is variable.

4.1. Artificial Physarum Polycephalum Colony

Ref. [15] surveyed the learning mechanism in the single-cell organism Physarum
polycephalum. A natural Physarum polycephalum is a fan-shaped structure composed of
numerous mycelia, as shown in Figure 2, where it can generate thousands of mycelia
through expansion operations to search for external food or establish the most efficient
path for digesting food through contraction operations. Multiple Physarum polycephalum
constitute a colony, and different Physarum polycephalum can use a lot of mycelia to cross
each other to exchange information, improving the efficiency of expansion and contraction.
More mycelia in expansion can enhance its global searching and local searching, and the
population size increases. Fast selection in contraction improves its local fast convergence
ability, and the population size decreases. Different from a natural Physarum polycephalum
colony, the proposed artificial Physarum polycephalum colony can only run on a personal
computer. The whole APPC algorithm includes three main components, i.e., an artificial
Physarum polycephalum colony, food sources, and a fitness function.

Processes 2023, 11, x FOR PEER REVIEW 11 of 25

�� =
1

∑� ∑� ∑� ���(���)

���� ���� ������

� {���
����(∑) − � � [���(���) × ���]

��� ��� ���
} (27)

Based on the makespan in Equations (16) or (17), the average processing waiting time

WM in Equation (23), and the average transportation waiting time WV in Equation (27), the

optimal binary variable ���(���) of the machine assignment and the binary variable

���(���) of the vehicle assignment can be searched for the optimal solutions to the job

shop problem.

As we can see from Equations (1)–(27), there are a lot of constraints for machines and

vehicles, so the multi-objective function of the FJSS problem with transportation con-

straints is more complex than the traditional job shop problem. In the next section, a novel

APPC algorithm is proposed to help us solve this problem.

4. An APPC Algorithm for FJSS

Drawing on the advantages and disadvantages of traditional swarm intelligence al-

gorithms and considering the unique behavioral characteristics of a natural Physarum pol-

ycephalum colony, an APPC algorithm was explored to simulate the novel swarm intelli-

gence. The proposed artificial Physarum polycephalum colony can use a lot of mycelia to

expand and contract to search for the optimal solution to FJSS problem in Equations (1)–
(15), that is, its population size is variable.

4.1. Artificial Physarum Polycephalum Colony

Ref. [15] surveyed the learning mechanism in the single-cell organism Physarum pol-

ycephalum. A natural Physarum polycephalum is a fan-shaped structure composed of numer-

ous mycelia, as shown in Figure 2, where it can generate thousands of mycelia through

expansion operations to search for external food or establish the most efficient path for

digesting food through contraction operations. Multiple Physarum polycephalum constitute

a colony, and different Physarum polycephalum can use a lot of mycelia to cross each other

to exchange information, improving the efficiency of expansion and contraction. More

mycelia in expansion can enhance its global searching and local searching, and the popu-

lation size increases. Fast selection in contraction improves its local fast convergence abil-

ity, and the population size decreases. Different from a natural Physarum polycephalum col-

ony, the proposed artificial Physarum polycephalum colony can only run on a personal com-

puter. The whole APPC algorithm includes three main components, i.e., an artificial

Physarum polycephalum colony, food sources, and a fitness function.

Figure 2. The main architecture of the artificial Physarum polycephalum colony [15].

First, an artificial Physarum polycephalum colony is a swarm of APPC mycelia, and

each mycelium can be encoded as a feasible solution to the FJSS problem. The traditional

swarm intelligence algorithms often use a fixed population size, but the population size

of the proposed APPC is variable. Its swarm learning mechanism contains self-learning,

social learning, and free learning. All Physarum polycephalum mycelia can produce new

Figure 2. The main architecture of the artificial Physarum polycephalum colony [15].

First, an artificial Physarum polycephalum colony is a swarm of APPC mycelia, and each
mycelium can be encoded as a feasible solution to the FJSS problem. The traditional swarm
intelligence algorithms often use a fixed population size, but the population size of the
proposed APPC is variable. Its swarm learning mechanism contains self-learning, social
learning, and free learning. All Physarum polycephalum mycelia can produce new mycelia or
absorb other mycelia. Hence, its population size increases in expansion and decreases in
contraction operations. This special swarm learning mechanism ensures that the APPC has
a strong global search ability and local fast convergence ability.

Processes 2023, 11, 2646 12 of 24

Second, the food sources constitute a virtual solution space for an artificial Physarum
polycephalum colony to live in. They are randomly distributed in the solution space, and
the artificial Physarum polycephalum colony can search for food sources as feasible solutions
to the FJSS problem. An artificial Physarum polycephalum mycelia connecting the food
sources with high fitness will survive, otherwise, it will be absorbed or merged. An
artificial Physarum polycephalum colony can search for the optimal solutions to share external
food sources.

Third, a fitness function was used to evaluate the fitness of the artificial Physarum
polycephalum colony, i.e., the FJSS model in Equations (1)–(15). The artificial Physarum
polycephalum colony uses a lot of mycelia to expand and contract and tries its best to search
for the optimal solutions. If an artificial Physarum polycephalum mycelium has a high fitness,
it can be seen as a feasible solution.

Based on the above three components, the artificial Physarum polycephalum colony has
two basic operations, i.e., expansion and contraction.

The expansion operation is the process of increasing the population size. The APPC
utilizes three kinds of learning mechanisms to expand, i.e., self-learning, social learning,
and free learning. Hence, there are three corresponding parts of mycelia after expansion, i.e.,
self-learning, social-learning, and free-learning mycelia. In the initialization, the artificial
Physarum polycephalum colony obtains an original population size of S, where all mycelia
are randomly encoded solutions. In the successive expansion operation, the self-learning
mycelia keep a population size of S inherited from the previous iteration. Then, two
new parts of mycelia are generated. The self-learning mycelia can cross with any other
mycelia and generate a population size S of social-learning offspring mycelia, of which
each includes a lot of parental information. However, another new part of free-learning
mycelia is randomly produced by a free-learning possibility. Hence, the population size of
the APPC after the expansion operation is twice greater than the original value S. This is
helpful to improve the global searching capability.

The contraction operation is a process of decreasing the population size. The APPC
will use a fast grouping section algorithm to randomly group all the mycelia according to
the original population size S, where each group selects the best fitness one to survive, but
the other mycelia are absorbed to disappear, so the population size recovers to the original
size S. The multi-objective function is used to evaluate the fitness of the mycelia and instruct
the APPC to select the best mycelium. The APPC will absorb a lot of mycelia with low
fitness, and many mycelia will disappear after the contraction operation. The selection
strategy can help preserve the best mycelia in iterative computing and improve the local
convergence ability. With the repeated use of the expansion and contraction operations, the
APPC can find the optimal solutions to the FJSS problem.

4.2. Algorithm Flow of the APPC

This section shows the algorithm flow of the APPC to the FJSS problem, as shown
in Figure 3. The whole algorithm flow includes four main stages, namely initialization,
expansion, contraction, and end judgment.

In the initialization stage, there are three main parts, i.e., the FJSS problem, the APPC,
and the simulation system. The initialization of the FJSS problem defines the jobs, ma-
chines, vehicles, and the multi-objective function in Equations (1)–(15). The initialization
produces the initial mycelia of the APPC, and some important simulation parameters are
also defined here.

In the expansion stage, the APPC will produce more mycelia to search for the optimal
solutions to the FJSS. The self-learning, social learning, and free learning are implemented
here, so the population size increases after expansion. The expansion process is a parallel
search algorithm where three learning mechanisms are parallel and do not interfere with
each other. The priority of these three learning processes does not affect the final solution,
so there is no compulsory rule about choosing a direction or priority.

Processes 2023, 11, 2646 13 of 24

Processes 2023, 11, x FOR PEER REVIEW 13 of 25

each other. The priority of these three learning processes does not affect the final solution,

so there is no compulsory rule about choosing a direction or priority.

Figure 3. The algorithm flow of the APPC for the FJSS.

In the contraction stage, the APPC will evaluate the fitness of the mycelia and select

the best S of the mycelia for the next iterative computation. The mycelia with low fitness

are absorbed and disappear, so the population size decreases to the original value S.

The end judgment determines whether to continue or terminate the iterative compu-

tation. After many iterations of expansion and contraction, a predefined error threshold

eth or the maximum of iterations Ite_max is employed for end justification before the opti-

mal solutions to the FJSS problem are output.

The algorithm flow simulates the swarm intelligence of a natural Physarum poly-

cephalum colony well and reveals its special search mechanism. Based on the algorithm

flow in Figure 3, the following sub-sections further illustrate how to use the APPC to solve

the FJSS problem and discuss the algorithm steps of our APPC algorithm, i.e., initializa-

tion, expansion, contraction, and end judgment. Then, it is helpful to observe that there is

a great difference between our algorithm and traditional swarm ones.

4.3. Step 1: Initialization

The first initialization stage is to set the main parameters and the objective function

to be solved, including the three main parts, i.e., the FJSS problem, the artificial Physarum

polycephalum colony, and the simulation system.

First, the initialization of the FJSS problem includes setting the parameters of the jobs,

operations, machines, and vehicles. There are three parts of the initialization parameters

for the FJSS problem, i.e., a job set J with, at most, jmax of jobs, a machine set M with, at

most, mmax of machines, and a vehicle set V with, at most, vmax of vehicles. In each job j, it is

necessary to initialize the parameters of the operation set {Oj}, where the maximum oper-

ation number of job j is Ojmax, and each operation can be assigned in any machine for op-

Figure 3. The algorithm flow of the APPC for the FJSS.

In the contraction stage, the APPC will evaluate the fitness of the mycelia and select
the best S of the mycelia for the next iterative computation. The mycelia with low fitness
are absorbed and disappear, so the population size decreases to the original value S.

The end judgment determines whether to continue or terminate the iterative computa-
tion. After many iterations of expansion and contraction, a predefined error threshold eth
or the maximum of iterations Ite_max is employed for end justification before the optimal
solutions to the FJSS problem are output.

The algorithm flow simulates the swarm intelligence of a natural Physarum poly-
cephalum colony well and reveals its special search mechanism. Based on the algorithm
flow in Figure 3, the following sub-sections further illustrate how to use the APPC to solve
the FJSS problem and discuss the algorithm steps of our APPC algorithm, i.e., initialization,
expansion, contraction, and end judgment. Then, it is helpful to observe that there is a
great difference between our algorithm and traditional swarm ones.

4.3. Step 1: Initialization

The first initialization stage is to set the main parameters and the objective function
to be solved, including the three main parts, i.e., the FJSS problem, the artificial Physarum
polycephalum colony, and the simulation system.

First, the initialization of the FJSS problem includes setting the parameters of the jobs,
operations, machines, and vehicles. There are three parts of the initialization parameters
for the FJSS problem, i.e., a job set J with, at most, jmax of jobs, a machine set M with, at
most, mmax of machines, and a vehicle set V with, at most, vmax of vehicles. In each job j,
it is necessary to initialize the parameters of the operation set {Oj}, where the maximum
operation number of job j is Ojmax, and each operation can be assigned in any machine for
operation or any vehicle for transportation. There are two binary variables for machine
assignment and vehicle assignment in job shop scheduling, i.e., AMm(Oji) and AVv(Oji). The
binary variable of machine assignment AMm(Oji) indicates that the machine m is assigned

Processes 2023, 11, 2646 14 of 24

to the operation Oji of the job j. The binary variable of vehicle assignment AVv(Oji) indicates
that the vehicle v is assigned to the operation Oji of the job j.

Second, the initialization of the APPC is to set the main parameters related to the
artificial Physarum polycephalum colony, including the population size S, the social-learning
possibility ps, and the free-learning possibility pf. Each artificial APPC mycelium can be
randomly initialized as a binary string x for AMm(Oji) and AVv(Oji), and the corresponding
fitness can be initialized as zero. The multi-objective function in Equations (1)–(15) can be
employed to evaluate the fitness. As a swarm intelligence algorithm, the initial values of {x}
and their initial fitness values have nothing to do with the FJSS problem solving, and the
APPC will ultimately find the optimal solution to the problem through repeated iterations.

Third, the initialization of the simulation system is required to provide a simulation
environment. An iteration counter Ite should be defined and preset as zero. All the objective
values in Equations (1)–(15) and the corresponding error e are initialized and cleared to
zero. The end judgment for the iterative computation is initialized, i.e., the maximum
iterations Ite_max, and the iteration error threshold eth. These parameters will determine
whether the iterative calculation of the APPC ends or continues. This part of initialization
determines when the simulation system starts and ends.

4.4. Step 2: Expansion

The expansion operation is the second stage of the APPC, where the population of
the APPC expands and more mycelia are generated for swarm search. In the expansion
operation, each mycelium can cross with any other mycelia and generate more offspring
mycelia, which each include multiple pieces of parental information, so the population
expands to more than twice its original size. The expanded mycelia {x} contain three parts,
i.e., the self-learning mycelia {xself}, the social-learning mycelia {xsocial}, and the free-learning
mycelia {xfree}.

{x(Ite)} = {xsel f (Ite), xsocial(Ite), x f ree(Ite)} (28)

First, the self-learning mycelia {xself(Ite)} completely inherit the solution from the
previous calculation. It may be the initialization mycelia in the first iteration, or the optimal
mycelia produced in the previous contraction stage. Note that this part of the mycelia is
different between the first iteration and subsequent iterations. This part of the self-learning
mycelia in the first iteration is random with corresponding random fitness values, so
the optimal solution cannot be determined. The self-learning mycelia in the subsequent
iterations are inherited from the optimal solutions in the previous contraction stages, so
they have the optimal fitness in the last iteration.

Second, the social-learning mycelia {xsocial(Ite)} is generated by the self-learning mycelia
{xself(Ite)} with the same population size S. It simulates the swarm learning of the natu-
ral Physarum polycephalum colony and each parent mycelium can exchange a piece of
information with others to generate offspring mycelia. The social-learning mechanism is
determined by a social-learning possibility ps, where division and cooperation will help
the mycelia to expand the search space. Since the natural Physarum polycephalum colony
undergoes single-cell asexual reproduction, it does not require pairing. Social learning can
occur with any mycelia, and the possibility ps decides the ratio of information exchanging.
The part of ps comes from a main parent mycelium and another part of 1-ps comes from
any other parent mycelia, so each offspring mycelium includes multiple pieces of parental
information. The larger the ps, the more experience comes from self-learning. On the
contrary, the smaller the ps, the more experience comes from social learning. This helps
improve the algorithm’s local convergence ability.

Third, the free-learning mycelia {xfree(Ite)} are randomly produced and are new solu-
tions completely unrelated to the parent generation. The free-learning mycelia {xfree(Ite)}
have nothing to do with the self-learning mycelia {xself(Ite)} and the social-learning mycelia
{xsocial(Ite)}. Hence, the free-learning mycelia increase the global search capability. The
population size is determined by the possibility pf, that is, the population size is S × pf.
The smaller the pf, the more information comes from self-learning and social learning, the

Processes 2023, 11, 2646 15 of 24

stronger the local convergence ability, and the faster its convergence speed. On the contrary,
the larger the pf, the less information comes from self-learning and social learning, and the
stronger the global search ability but the slower the convergence speed.

According to the self-learning population size of S, the social-learning population
size of S, and the free-learning population size of Spf, the total population size increases
to (2 + pf)S after expansion. The expansion operation endows the APPC algorithm with
strong global search capabilities and strong local search capabilities. It can help the APPC
algorithm solve the complex FJSS problem.

Here, the pseudo code of the expansion operation is presented here, as shown in
Algorithm 1, where the top line is the title, and line 14 is Algorithm 2. It can be seen that
the expansion operation has two cycles, so the time and spatial performance are linearly
correlated with the maximum iterations and the population size of the APPC. Since the
problem parameters are embedded in the APPC mycelia, such as the job set, operation
set, machine set, and vehicle set, the problem scale has nothing to do with the solving
performance. This can provide the APPC algorithm with good computational performance,
which will not deteriorate sharply when the scale of the FJSS problem increases.

Algorithm 1: Expansion operation

1: Input: the FJSS problem, job set J = {Oji}, machine set M, vehicle set V
2: Input: APPC parameters, S, ps, pf
3: Define: fitness function in Equations (1)–(15)
4: Input: Ite_max, eth
5: Initialization: random mycelia {x} = {AMm(Oji), AVv(Oji)}
6: For iteration counter Ite = 1 to Ite_max
7: For APPC mycelia s = 1 to S
8: Self learning of {xself(Ite)} = {x(Ite − 1)}
9: Social-learning of {xsocial(Ite)} by ps
10: Free-learning of {xfree(Ite)} by pf
11: End for
12: To update the APPC mycelia {x} = {xself(Ite), xsocial(Ite), xfree(Ite)}
13: To calculate the fitness according to Equations (1)–(15)
14: // Algorithm 2: Contraction operation
15: End for

Due to the population size of the artificial Physarum polycephalum colony being S and
the maximum iterations being Ite_max, the time performance of expansion can be obtained
as O(S × Ite_max), and the space complexity is O(S). In the two cycles of expansion, the
APPC uses the total number of mycelia S to search for the total number of jobs jmax, the
total number of machines mmax, and the total number of vehicles vmax and obtains (2 + pf)S
solutions to the FJSS problem. The APPC expansion algorithm can acquire good search
capabilities and good computational efficiency as well.

4.5. Step 3: Contraction

Contraction is the third stage for selecting the best S of mycelia from the expanded
colony. In the contraction operation, a fast grouping section algorithm is designed to
randomly group all mycelia according to the original population size, where each group
selects the best fitness one to survive, but the other mycelia are merged to disappear, so the
population size recovers to the original size. The colony calculates the fitness according
to the multi-objective function in Equations (1)–(15) and uses a fast grouping section
algorithm to select the optimal solutions to the FJSS problem. In the contraction stage,
only the mycelia with high fitness can survive, but most mycelia with low fitness will be
absorbed to disappear. The population size of the APPC is (2 + pf)S before contraction, but
then, it decreases to S. This simulates the swarm learning of a natural Physarum polycephalum
colony well and enhances the local convergence performance.

Processes 2023, 11, 2646 16 of 24

Here, a pseudo-code of the contraction operation is shown in Algorithm 2, where the
top line is the title, and the first line is Algorithm 1. Algorithm 2 is reduced into line 14
in Algorithm 1, and the two algorithms each constitute two sub-algorithms of a complete
APPC algorithm. An expansion operation and a contraction operation constitute a complete
cycle. Here, a fast grouping section algorithm is employed to randomly divide the entire
population into S groups, where it chooses the best mycelium for each group. Therefore,
(2 + pf) mycelia can be randomly selected into a group, so a total of S optimal individuals
will be selected from all groups, but the remaining individuals will be discarded or absorbed
and disappear. Since the number of mycelia in each group can only be integers, the number
of group members can be int(2 + p f) or int(2 + p f) + 1, where int() is an integer operator,
and the decimals after the decimal point will be directly discarded regardless of their values.
Due to p f ∈ [0, 1], the number of group members can be two or three.

The optimal solutions in each iterative computation can be selected from all S of
mycelia:

fitnss(x∗(Ite)) = maxs{fitness(x(Ite))|s = 1, 2, 3, . . . , S} (29)

The calculation error is calculated as follows:

e =|fitnss(x∗(Ite))− fitnss(x∗(Ite− 1))| (30)

Algorithm 2: Contraction operation

1: // Algorithm 1: Expansion operation
2: For APPC mycelia s = 1 to S
3: To randomly divide the APPC into S groups
4: To compare the fitness by Equations (1)–(15)
5: To choose the best mycelia from each group, each group has 2 or 3 mycelia
6: To store the temporary optimal fitness fitness(x*(Ite)) = max{fitness(x(Ite))}
7: To store the temporary optimal solution x*
8: To calculate the iterative error e = |fitness(x*(Ite)) − fitness(x*(Ite − 1))|
9: if e > eth
10: select the best S of mycelia
11: return to expansion algorithm
12: Else
13: Exit
14: End for
15: // Ite_max
16: output the optimal solution x*
17: output the optimal fitness fitness(x*)

In Algorithm 2, the contraction algorithm has two cycles and is embedded in the
iteration cycle. Due to the population size of the artificial Physarum polycephalum colony
being S and the maximum iterations being Ite_max, the time performance of contraction
can be obtained as O(S × Ite_max), and the space complexity is O(S). In the two cycles of
contraction, the APPC uses the total number of mycelia S to search for the total number
of jobs jmax, the total number of machines mmax, and the total number of vehicles vmax and
determines the S of the optimal solutions to the FJSS problem. Hence, the fast grouping
section algorithm can provide the APPC algorithm with good computational performance,
which will not deteriorate sharply when the scale of the FJSS problem increases.

4.6. Step 4: End Judgment

The end judgment is the last stage to judge whether the solving process is completed
and to then output the optimal solutions to the FJSS problem. The end conditions can select
a predefined error threshold eth or the maximum of iterations Ite_max. If the end conditions
are not satisfied, the best S of the mycelia after the contraction operation will return to the
expansion operation for the next round of calculations. The expansion in Section 4.4 and

Processes 2023, 11, 2646 17 of 24

the contraction in Section 4.5 will be repeated until the end conditions are met. Finally, the
optimal solution to the FJSS problem and the corresponding fitness will be output.

5. Numerical Experiments and Discussion
5.1. Experimental Environment

This section presents a series of benchmark experiments for performance testing
and algorithm comparison. The experimental environment is based on the benchmark
tests in [6,37,38], where [6] proposed a hybrid particle swarm optimization and simulated
annealing algorithm for the job shop scheduling problem with transport resources, and its
benchmark tests were based on references [37,38]. Reference [37] provided a generalized
job shop problem for a benchmark test where the objective is to determine an optimal
schedule with minimization of the makespan, and all the jobs should be transported
between the machines by a mobile robot. Ref. [37] considered the transportation times
for the jobs and empty moving times for the robot. Ref. [38] proposed a medium-scale
benchmark instance for the simultaneous scheduling of production and material transfer.
The simultaneous scheduling approach in a job shop environment has been widely applied
to warehouse operations, where transbots pick up jobs and deliver them to pick-machines,
and machine processing is involved. Due to the high reliability of the two benchmark cases,
the performance and efficiency of the proposed APPC algorithm are assessed on them, and
the experimental results are compared to some mainstream state-of-the-art algorithms.

These benchmark tests can help us verify the proposed artificial Physarum polycephalum
colony (APPC) algorithm in solving the FJSS problem. The main parameters of the APPC
were preset, with the population size S = 40, the social-learning probability ps = 0.9, and
the free-learning probability pf = 0.2. The end conditions included the maximum iterations
Ite_max = 200 and the error threshold eth = 0.1%. In each experiment, the APPC kept these
parameters unchanged. The experimental platform included an AMD Ryzen 3 4300U with
Radeon Graphics 2.70 GHz CPU, 8.00 GB RAM, a 64-bit Windows 10 operating system,
and Matlab R2018a simulation software.

In our experiments, the proposed APPC was compared with a genetic algorithm
(GA) [2,4,16], particle swarm optimization (PSO) [6,19], ant colony optimization (ACO) [8],
deep learning (DL) [12,27], and an artificial bee colony (ABC) [13]. It was assumed that all
algorithms employed the same population size S and iteration steps Ite_max to solve the
same flexible job shop scheduling problem with transportation constraints.

For the GA [2,4,16], the population size was set to S = 40, the chromosome length
was Lind = 20, the crossover probability was px = 0.7, and the mutation probability was
pm = 0.01. For the PSO [6,19], the population size was set to S = 40, the location limitation
was 0.5, the speed limitation was [−0.5, 0.5], the self-learning factor was c1 = 1.0, and the
social-learning factor was c2 = 1.0. The parameters of the ACO [7,11] included a population
size S = 40 ants, a pheromone importance of 1.0, a heuristic factors importance of 5.0,
and a pheromone volatilization factor of 0.1. The parameters of the DL [12,27] were a
convolutional neural network with six convolution cores, six input channels (cin = 6), and
six output channels (cout = 6). The learning rate of the offset item was twice that of the weight.
The extension edge was set to 0, the weight was initialized to Gaussian, and the value of
the constant offset item was 0. For the ABC [13], the population size S was set to = 40, the
searching capability was set to limit = 100, and the neighborhood size was set to NI = 10.

5.2. Case 1: 25 Benchmark Instances without Load/Unload Areas

Case 1 contained 25 instances by modifying the previous P1 and P2 benchmark
instances, where all instances only considered a single vehicle [6]. Ref. [37] proposed the
benchmark in 2001 with 30 instances. Here, we selected nine P1 instances and sixteen
P2 instances in total from [37], where every P1 instance had 6 jobs, 6 operations, and
6 machines, and every P2 instance had 10 jobs, 10 operations, and 10 machines. In the
P1 and P2 instances, the maximum operation number of each job equaled the maximum
machine number. The first operation of every job initially originated from the machine

Processes 2023, 11, 2646 18 of 24

processing and was completed by the last operation. Every job was only transported
between machines, so the instances did not consider the load/unload areas.

In Case 1, for nine P1 instances, jmax = 6, mmax = 6, and Ojmax = 6; for sixteen
P2 instances, jmax = 10, mmax = 10, and Ojmax = 10. All instances only considered a sin-
gle vehicle [6], that is, vmax = 1. The required processing time Pji of operation Oji on the
machine m was randomly generated from the interval [1, 10] for P1 instances and from the
interval [1, 100] for P2 instances. The required transportation time Tji of an operation Oji
on vehicle v was arbitrarily generated from the interval [1, 10].

Table 2 presents the experimental results for these 25 instances. The “Ref” column in
Table 2 gives the benchmark values from [37], which are weak lower-bound values obtained
only with constraint propagation. The solving errors were calculated as in Equation (30).
As can be seen from the results in Table 2, the APPC can outperform most algorithms with
better solutions and a shorter computation time. In addition, its solving error deviation
is small.

Table 2. Optimal solutions in Case 1.

Instances jmax mmax Ojmax Ref APPC GA PSO ACO DL ABC

P1-tjkl-tkl.1 6 6 6 126 124 127 131 129 125 126
P1-tjkl-tkl.2 6 6 6 121 112 113 116 115 117 119
P1-D1-d1 6 6 6 70 74 80 77 74 79 78
P1-D1-t1 6 6 6 70 74 77 76 78 80 79
P1-D2-d1 6 6 6 134 137 144 141 145 139 143
P1-D3-d1 6 6 6 200 215 216 218 214 205 219
P1-tkl.1 6 6 6 123 108 112 119 107 129 110
P1-T2-t1 6 6 6 63 61 64 61 70 66 65
P1-T3-t0 6 6 6 92 79 81 86 84 80 88
P2-D1-d1 10 10 10 880 921 936 974 965 951 943
P2-D1-t0 10 10 10 880 921 923 942 952 935 951
P2-D1-t1 10 10 10 880 921 964 954 980 923 970
P2-D2-d1 10 10 10 892 923 985 923 931 924 977
P2-D3-d1 10 10 10 906 940 978 986 974 923 935
P2-D5-t2 10 10 10 1167 1215 1200 1260 1251 1243 1202
P2-T1-t1 10 10 10 874 800 832 818 825 802 847
P2-T2-t1 10 10 10 880 808 832 821 819 814 824
P2-T5-t2 10 10 10 898 811 823 826 838 819 812
P2-tkl.1 10 10 10 888 808 835 810 826 840 821
P2-tkl.2 10 10 10 896 809 810 829 837 811 843

P2-0.5D1-d1 10 10 10 482 512 532 537 530 518 531
P2-0.5D1-t1 10 10 10 482 512 521 523 524 526 519
P2-0.5D2-d1 10 10 10 497 522 537 527 518 520 516
P2-0.5D2-t0 10 10 10 497 516 518 530 535 522 537
P2-0.5D2-t1 10 10 10 497 516 537 535 520 525 529

As for the solving error, the proposed APPC algorithm can search for 7 of the optimal
solutions in 9 of the P1 instances and 13 of the optimal solutions in 16 of the P2 instances,
both higher than most algorithms. At the same time, the APPC algorithm can obtain an
average deviation of 0.47% compared to the Ref in [37], lower than other algorithms. In
comparison, the APPC found the best solutions for 20 instances among all 25 instances, and
the average deviation to the Ref in [37] was lower than the other algorithms in most cases.
When the problem scale increased from P1 to P2, the proposed APPC algorithm exhibited
great stability and was verified to be effective in finding optimal solutions at a greater scale
of FJSS problems through its special expansion and contraction operations.

To observe the time performance of these algorithms, the convergence curves are
compared in Figure 4, including the proposed APPC, the genetic algorithm (GA) [2,4,16],
particle swarm optimization (PSO) [6,19], ant colony optimization (ACO) [8], deep learn-
ing (DL) [12,27], and artificial bee colony (ABC) [13]. The maximum iterations were
Ite_max = 200 and the error threshold was eth = 0.1%.

Processes 2023, 11, 2646 19 of 24

Processes 2023, 11, x FOR PEER REVIEW 19 of 25

P2-0.5D2-d1 10 10 10 497 522 537 527 518 520 516

P2-0.5D2-t0 10 10 10 497 516 518 530 535 522 537

P2-0.5D2-t1 10 10 10 497 516 537 535 520 525 529

As for the solving error, the proposed APPC algorithm can search for 7 of the optimal

solutions in 9 of the P1 instances and 13 of the optimal solutions in 16 of the P2 instances,

both higher than most algorithms. At the same time, the APPC algorithm can obtain an

average deviation of 0.47% compared to the Ref in [37], lower than other algorithms. In

comparison, the APPC found the best solutions for 20 instances among all 25 instances,

and the average deviation to the Ref in [37] was lower than the other algorithms in most

cases. When the problem scale increased from P1 to P2, the proposed APPC algorithm

exhibited great stability and was verified to be effective in finding optimal solutions at a

greater scale of FJSS problems through its special expansion and contraction operations.

To observe the time performance of these algorithms, the convergence curves are

compared in Figure 4, including the proposed APPC, the genetic algorithm (GA) [2,4,16],

particle swarm optimization (PSO) [6,19], ant colony optimization (ACO) [8], deep learn-

ing (DL) [12,27], and artificial bee colony (ABC) [13]. The maximum iterations were

Ite_max = 200 and the error threshold was eth = 0.1%.

(a) (b)

Figure 4. The convergence curves in Case 1: (a) P1 instances and (b) P2 instances.

As we can see in Figure 4, in most cases, the proposed APPC made it easy to find the

optimal solution through less iterative computation, and it entered into the error thresh-

old 0.1% earlier. All swarm intelligence algorithms heuristically searched for the optimal

solution, and the convergence curves varied. Because the scale of the P2 instances was

greater than the P1 instances, all algorithms tended to need more iterative computation

before finding the optimal solutions. With the help of a variable population size, the APPC

acquired more stable performance when the problem scale increased.

5.3. Case 2: 10 Large-Sized Benchmark Instances

Case 2 was composed of 10 large-sized benchmark instances (SWV01–SWV10) for the

job shop scheduling problem, where there are 20 jobs, 2 sets of machines, and 2 fleets

[6,38]. Each job had 10 or 15 production operations. In all instances, the maximum opera-

tion number of each job equaled the maximum machine number. The benchmark pro-

vided two arbitrarily generated travel time matrices, where there were 10 and 15 machines

in each machine set and 3 and 5 vehicles in each fleet [38]. Hence, Case 2 was a more

serious challenge.

In Case 2, for the SWV01-SWV05 instances, jmax = 20, mmax = 10, and Ojmax = 10; for the

SWV06-SWV10 instances, jmax = 20, mmax = 15, and Ojmax = 15. There were two fleets, and

three and five vehicles in each fleet, that is, vmax = 3 or 5. The required processing time Pji

of operation Oji on the machine m was randomly generated from the interval [1, 100], and

Figure 4. The convergence curves in Case 1: (a) P1 instances and (b) P2 instances.

As we can see in Figure 4, in most cases, the proposed APPC made it easy to find the
optimal solution through less iterative computation, and it entered into the error threshold
0.1% earlier. All swarm intelligence algorithms heuristically searched for the optimal
solution, and the convergence curves varied. Because the scale of the P2 instances was
greater than the P1 instances, all algorithms tended to need more iterative computation
before finding the optimal solutions. With the help of a variable population size, the APPC
acquired more stable performance when the problem scale increased.

5.3. Case 2: 10 Large-Sized Benchmark Instances

Case 2 was composed of 10 large-sized benchmark instances (SWV01–SWV10) for the
job shop scheduling problem, where there are 20 jobs, 2 sets of machines, and 2 fleets [6,38].
Each job had 10 or 15 production operations. In all instances, the maximum operation
number of each job equaled the maximum machine number. The benchmark provided
two arbitrarily generated travel time matrices, where there were 10 and 15 machines
in each machine set and 3 and 5 vehicles in each fleet [38]. Hence, Case 2 was a more
serious challenge.

In Case 2, for the SWV01-SWV05 instances, jmax = 20, mmax = 10, and Ojmax = 10; for
the SWV06-SWV10 instances, jmax = 20, mmax = 15, and Ojmax = 15. There were two fleets,
and three and five vehicles in each fleet, that is, vmax = 3 or 5. The required processing time
Pji of operation Oji on the machine m was randomly generated from the interval [1, 100],
and the required transportation time Tji of an operation Oji on the vehicle v was arbitrarily
generated from the interval [0, 42].

Tables 3 and 4 show the optimal solutions for the 10 large-sized benchmark instances,
where Table 3 has three vehicles and Table 4 has five vehicles. The “Ref” columns in
Tables 3 and 4 give the benchmark values from [38], which are the results of the constraint
programming (CP2) integrating the pick-up and drop-off into a single-transfer task.

Table 3. Optimal solutions in Case 2 (vmax = 3).

Instances jmax mmax Ojmax Ref APPC GA PSO ACO DL ABC

SWV01 20 10 10 2021 2063 2078 2096 2097 2074 2082
SWV02 20 10 10 1939 1981 2027 1991 2001 1994 2015
SWV03 20 10 10 1930 1968 1961 1992 2008 1983 1989
SWV04 20 10 10 1944 1980 2018 1995 2006 2032 2027
SWV05 20 10 10 1952 1992 2013 2014 2022 2005 2031
SWV06 20 15 15 2771 2831 2840 2867 2859 2828 2853
SWV07 20 15 15 2796 2825 2876 2868 2844 2851 2880
SWV08 20 15 15 2796 2846 2881 2899 2875 2857 2864
SWV09 20 15 15 2851 2895 2917 2906 2882 2913 2890
SWV10 20 15 15 2750 2809 2823 2834 2850 2869 2846

Processes 2023, 11, 2646 20 of 24

Table 4. Optimal solutions in Case 2 (vmax = 5).

Instances jmax mmax Ojmax Ref APPC GA PSO ACO DL ABC

SWV01 20 10 10 1631 1671 1682 1719 1694 1687 1701
SWV02 20 10 10 1667 1705 1718 1720 1743 1700 1756
SWV03 20 10 10 1674 1712 1695 1747 1709 1739 1718
SWV04 20 10 10 1711 1748 1763 1794 1778 1802 1759
SWV05 20 10 10 1654 1694 1731 1706 1745 1728 1709
SWV06 20 15 15 2109 2152 2167 2175 2206 2190 2213
SWV07 20 15 15 2022 2067 2116 2072 2081 2103 2104
SWV08 20 15 15 2230 2250 2290 2283 2307 2261 2272
SWV09 20 15 15 2147 2186 2224 2231 2209 2196 2245
SWV10 20 15 15 2219 2243 2305 2280 2253 2298 2267

From the results in Tables 3 and 4, it can be seen that the proposed APPC algorithm
outperformed most swarm intelligence algorithms in 10 large-sized benchmark instances.
The APPC made it easy to search for the optimal solutions from seven instances in Table 3
and eight instances in Table 4 among the 10 large-sized benchmark instances with three and
five vehicle fleets, respectively. At the same time, the APPC algorithm obtained average
deviations of 1.88% in Table 3 and 1.96% in Table 4 compared to Ref in [38] with three and
five vehicle fleets, respectively, lower than other algorithms.

For the computation times, the proposed APPC algorithm needed less time to search
for the optimal solutions. The APPC had great robustness in large-sized problem instances,
where the total number of operations of all jobs increased from 6 × 6 and 10 × 10 in Case
1 to 20 × 15 and 20 × 15 in Case 2. The problem scale increased up to 8.33 times at most,
while the average deviations of the APPC compared to the Ref in [37,38] were stable, with
minimization of the makespan, processing waiting time, and the transportation waiting
time. The rapid expansion of the problem scale did not lead to a sharp deterioration in the
performance of the APPC algorithm.

To observe the time performance of these algorithms, the convergence curves are
compared in Figure 5, including the proposed APPC, GA [2,4,16], PSO [6,19], ACO [8],
DL [12,27], and ABC [13]. The maximum iterations were Ite_max = 200, and the error
threshold was eth = 0.1%. As we can see in Figure 5, in most cases, the proposed APPC
made it easy to find the optimal solution through less iterative computation, and it can
enter into the error threshold 0.1% earlier.

Processes 2023, 11, x FOR PEER REVIEW 21 of 25

to find the optimal solution through less iterative computation, and it can enter into the

error threshold 0.1% earlier.

(a) (b)

Figure 5. The convergence curves in Case 1: (a) SWV05 instance and (b) SWV10 instance.

Compared to the results in Figure 4, all swarm intelligence algorithms in Figure 5

required more iterative computation to search for the optimal solutions since the instances

in Case 2 were large-sized and more complex than those of Case 1. Although the conver-

gence curves varied, all algorithms tended to need more time in SWV10 than in SWV05

due to the greater problem scale of the SWV10 instances. With the help of the expansion

and contraction operations, the APPC tended to be more stable than most algorithms

when the problem scale increased. Other algorithms were also excellent to solve the FJSS

problem, i.e., DL [12,27], but its computational time in each iteration was far longer than

all algorithms. When the problem scale rapidly expanded, the solving time of DL [12,27]

significantly increased.

5.4. Discussion and Comparison

For further analysis, a comparison of the average iterative errors and time perfor-

mance are shown in Table 2. The comparison indexes include the solution error (%),

makespan error (%), the error (%) of average processing waiting time WM, the error (%) of

the average transportation waiting time WV, and the solving time (s). The proposed APPC

was compared with a genetic algorithm (GA) [2,4,16], particle swarm optimization (PSO)

[6,19], ant colony optimization (ACO) [8], deep learning (DL) [12,27], and artificial bee

colony (ABC) [13].

As we can see in Table 5, these swarm intelligence algorithms obtained close average

iterative errors on the main objectives, including the solution error (%), makespan error

(%), the error (%) of the average processing waiting time WM, and the error (%) of the

average transportation waiting time WV. The proposed APPC algorithm outperforms the

other algorithms in most indexes. Here, the scale of the FJSS problem can be described as

the product of three variables, i.e., the total number of jobs, machines, and vehicles. Case

1 selected nine P1 instances, sixteen P2 instances, and one fleet in total. Every P1 instance

had 6 jobs, 6 operations, and 6 machines, and every P2 instance had 10 jobs, 10 operations,

and 10 machines. The fleets in the P1 and P2 instances only considered a single vehicle.

Case 2 selected 10 large-sized benchmark instances, where there were 20 jobs, each job

had 10 or 15 production operations, 10 or 15 machines, and two fleets with 3 and 5 vehi-

cles. Therefore, the problem scale in Case 1 was 6 × 6 × 1 = 36 of P1 and 10 × 10 × 1 = 100 of

P2, and the problem scale in Case 2 was 20 × 10 × 3 = 600, 20 × 10 × 5 = 1000, 20 × 15 × 3 =
900, and 20 × 15 × 5 = 1500. Since the scale of the problems in Case 2 was greater than those

in Case 1, the iterative error and computational time of all algorithms in Case 2 was worse

than those in Case 1. For a swarm intelligence algorithm, the time performance is linearly

related to its population size S and the scale of the job shop scheduling problem, including

Figure 5. The convergence curves in Case 1: (a) SWV05 instance and (b) SWV10 instance.

Compared to the results in Figure 4, all swarm intelligence algorithms in Figure 5
required more iterative computation to search for the optimal solutions since the instances in
Case 2 were large-sized and more complex than those of Case 1. Although the convergence
curves varied, all algorithms tended to need more time in SWV10 than in SWV05 due
to the greater problem scale of the SWV10 instances. With the help of the expansion
and contraction operations, the APPC tended to be more stable than most algorithms

Processes 2023, 11, 2646 21 of 24

when the problem scale increased. Other algorithms were also excellent to solve the FJSS
problem, i.e., DL [12,27], but its computational time in each iteration was far longer than
all algorithms. When the problem scale rapidly expanded, the solving time of DL [12,27]
significantly increased.

5.4. Discussion and Comparison

For further analysis, a comparison of the average iterative errors and time perfor-
mance are shown in Table 2. The comparison indexes include the solution error (%),
makespan error (%), the error (%) of average processing waiting time WM, the error (%)
of the average transportation waiting time WV, and the solving time (s). The proposed
APPC was compared with a genetic algorithm (GA) [2,4,16], particle swarm optimization
(PSO) [6,19], ant colony optimization (ACO) [8], deep learning (DL) [12,27], and artificial
bee colony (ABC) [13].

As we can see in Table 5, these swarm intelligence algorithms obtained close average
iterative errors on the main objectives, including the solution error (%), makespan error (%),
the error (%) of the average processing waiting time WM, and the error (%) of the average
transportation waiting time WV. The proposed APPC algorithm outperforms the other
algorithms in most indexes. Here, the scale of the FJSS problem can be described as the
product of three variables, i.e., the total number of jobs, machines, and vehicles. Case 1
selected nine P1 instances, sixteen P2 instances, and one fleet in total. Every P1 instance
had 6 jobs, 6 operations, and 6 machines, and every P2 instance had 10 jobs, 10 operations,
and 10 machines. The fleets in the P1 and P2 instances only considered a single vehicle.
Case 2 selected 10 large-sized benchmark instances, where there were 20 jobs, each job had
10 or 15 production operations, 10 or 15 machines, and two fleets with 3 and 5 vehicles.
Therefore, the problem scale in Case 1 was 6 × 6 × 1 = 36 of P1 and 10 × 10 × 1 = 100 of P2,
and the problem scale in Case 2 was 20× 10× 3 = 600, 20× 10× 5 = 1000, 20× 15× 3 = 900,
and 20 × 15 × 5 = 1500. Since the scale of the problems in Case 2 was greater than those in
Case 1, the iterative error and computational time of all algorithms in Case 2 was worse than
those in Case 1. For a swarm intelligence algorithm, the time performance is linearly related
to its population size S and the scale of the job shop scheduling problem, including the
maximum number of jobs, the maximum number of operations, the maximum number of
machines, and the maximum number of vehicles. However, our proposed APPC algorithm
acquired more stable performance when the problem scale increased. Although DL [12,27]
has great searching capability, it consumes more computational time than most swarm
intelligence algorithms since the time performance of DL [12,27] is related to the scale of
the FJSS problem, the population size of the convolution cores, the number cin of input
channels, and the number cout of output channels.

Table 5. Performance comparison of multi-objective function.

Algorithms Case Solution Error (%) Makespan Error (%) WM Error (%) WV Error (%) Solving Time (s)

APPC Case 1 1.10 1.42 1.30 0.59 95
Case 2 1.95 1.41 2.15 2.28 304

GA Case 1 2.12 2.37 2.34 1.66 101
Case 2 3.07 2.43 3.52 3.26 367

PSO Case 1 2.21 1.12 3.76 1.75 126
Case 2 3.42 2.64 4.19 3.43 323

ACO Case 1 2.23 1.49 2.87 2.34 112
Case 2 3.36 3.86 2.70 3.51 359

DL Case 1 1.98 2.05 1.28 2.62 558
Case 2 2.74 2.18 3.54 2.49 936

ABC Case 1 2.30 1.80 2.73 2.37 134
Case 2 3.28 3.43 3.81 2.60 363

Processes 2023, 11, 2646 22 of 24

According to the benchmark experimental results, it was verified that the proposed
APPC algorithm has some merits in solving the FJSS problem with transportation constraints.

First, the proposed APPC algorithm can use the multi-objective function in
Equations (1)–(15) to solve the FJSS problem with transportation constraints, rather than
solving the job shop scheduling problem (JSSP) and transportation scheduling problem
(TSP) separately. The APPC can use the multi-objective function as the fitness function to
search for the optimal solutions.

Second, the variable population size of the proposed APPC algorithm can effectively
improve its search performance. In the expansion operation, more mycelia are produced to
search for more feasible solutions by self-learning, social learning, and free learning. Three
parts of the mycelia can enhance global searching and local searching, and the population
size increases.

Third, the optimal solutions are easy to preserve in the contraction of the proposed
APPC algorithm so as to improve its convergence performance. In each iteration, the APPC
uses a fast grouping section algorithm to select the best mycelium with high fitness, and
the population size recovers. The contraction operation effectively protects the optimal
solutions after expansion operation, but the other swarm intelligence algorithms are more
likely to lose the optimal solution in each iteration. The expansion and contraction opera-
tions solve the problem well whereas for the traditional swarm intelligence algorithm, it is
easy to fall into the local optimal solution prematurely.

Fourth, the FJSS problem with transportation constraints is an NP-hard problem, and
traditional swarm intelligence algorithms tend to deteriorate rapidly with the expansion
of the problem scale. Although the difficulty of integrating two subproblems is higher
than solving them separately, the APPC algorithm can acquire a good balance between the
solving accuracy and solving time. The time performance and space performance of the
APPC are linearly correlated with the problem scale and computational parameters, so it is
not easy for the solution performance to deteriorate as the scale of the problem increases.

Hence, the FJSS problem with transportation constraints can be well solved by the
APPC algorithm, and the APPC algorithm has great potential for application in other
NP-hard problems.

6. Conclusions

This paper addresses the flexible job shop scheduling problem with transportation
constraints, which is more challenging than classic job scheduling problems. The problem
involves two subproblems, i.e., the machine scheduling problem and the vehicle scheduling
problem. Splitting the two subproblems may reduce the difficulty of solving them, but it
cannot optimize the overall solution. This article attempts to integrate and optimize two
subproblems at the same time. Since these two scheduling problems are NP-hard, their inte-
grated problem is also NP-hard. Here, we built a state transition diagram, a multi-objective
function, and constraints for the flexible job shop scheduling problem with transportation
constraints. To effectively solve the complex FJSS problem, we proposed a novel artificial
Physarum polycephalum colony algorithm based on the advantages and disadvantages of
traditional swarm intelligence algorithms. The proposed APPC algorithm successfully
simulates the unique behavioral characteristics of a natural Physarum polycephalum colony.
It has a variable population size and searches for the optimal solutions to the FJSS problem
by expansion and contraction operations. The benchmark experimental results on bench-
mark instances [6,37,38] revealed that the proposed APPC algorithm can achieve better
performance than most traditional swarm intelligence algorithms.

The shortcomings of this work are that the problem only considered the minimization
of the makespan, average processing waiting time, and average transportation waiting
time. More engineering application indicators and real-world data have not been consid-
ered in this work, and many uncertain factors in scheduling are also lacking considera-
tion, i.e., collision, deadlock, congestion, etc. To simplify the experiment, carpooling [39]
and platooning [40] were not considered here so that the experiment could be completed

Processes 2023, 11, 2646 23 of 24

more smoothly. Of course, these factors will make the problem more complex and dif-
ficult to solve, which will be one of our next research directions. In addition, natural
Physarum polycephalum colonies can produce tens of thousands of mycelia to search the sur-
rounding environment, which is difficult to simulate on personal computers, as it may cause
computers to crash. How to better simulate the behavior of a Physarum polycephalum colony
on personal computers is another research direction. Other interesting and meaningful
issues may include mobile robots, electric vehicles, automatic routing, and so forth.

Author Contributions: Conceptualization, Z.C. and Y.F.; methodology, Z.C., Y.F. and S.Y.; validation,
Y.F., S.Y. and J.Y.; writing—original draft preparation, Y.F.; writing—review and editing, Z.C., Y.F., S.Y.
and J.Y.; supervision, Z.C. and Y.F.; project administration, Z.C. and Y.F.; funding acquisition, Z.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
71471102), Major Science and Technology Projects in Hubei Province of China (Grant No. 2020AEA012),
and the Yichang University Applied Basic Research Project in China (Grant No. A17-302-a13).

Institutional Review Board Statement: This study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors give thanks to all of the anonymous reviewers for their hard work
in helping to improve the quality of this submission.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abderrahim, M.; Bekrar, A.; Trentesaux, D.; Aissani, N.; Bouamrane, K. Bi-local search based variable neighborhood search for

job-shop scheduling problem with transport constraints. Optim. Lett. 2022, 16, 255–280. [CrossRef]
2. Homayouni, S.M.; Fontes, D.B.M.M.; Goncalves, J.F. A multistart biased random key genetic algorithm for the flexible job shop

scheduling problem with transportation. Int. Trans. Oper. Res. 2023, 30, 688–716. [CrossRef]
3. Homayouni, S.M.; Fontes, D.B.M.M. Production and transport scheduling in flexible job shop manufacturing systems. J. Glob.

Optim. 2021, 79, 463–502. [CrossRef]
4. Meng, L.L.; Cheng, W.Y.; Zhang, B.; Zou, W.Q.; Fang, W.K.; Duan, P. An improved genetic algorithm for solving the multi-AGV

flexible job shop scheduling problem. Sensors 2023, 23, 3815. [CrossRef]
5. Yao, Y.J.; Liu, Q.H.; Li, X.Y.; Gao, L. A novel MILP model for job shop scheduling problem with mobile robots. Robot. Comput.

Integr. Manuf. 2023, 81, 102506. [CrossRef]
6. Fontes, D.B.M.M.; Homayouni, S.M.; Goncalves, J.F. A hybrid particle swarm optimization and simulated annealing algorithm

for the job shop scheduling problem with transport resources. Eur. J. Oper. Res. 2023, 306, 1140–1157. [CrossRef]
7. Fontes, D.B.M.M.; Homayouni, S.M.; Resende, M.G.C. Job-shop scheduling-joint consideration of production, transport, and

storage/retrieval systems. J. Comb. Optim. 2022, 44, 1284–1322. [CrossRef]
8. Thiruvady, D.; Nguyen, S.; Shiri, F.; Zaidi, N.; Li, X.D. Surrogate-assisted population based ACO for resource constrained job

scheduling with uncertainty. Swarm Evol. Comput. 2022, 69, 101029. [CrossRef]
9. Fontes, D.B.M.M.; Homayouni, S.M.; Fernandes, J.C. Energy-efficient job shop scheduling problem with transport resources

considering speed adjustable resources. Int. J. Prod. Res. 2023. [CrossRef]
10. Yunusoglu, P.; Yildiz, S.T. Solving the flexible job shop scheduling and lot streaming problem with setup and transport resource

constraints. Int. J. Syst. Sci. Oper. Logist. 2023, 10, 2221072. [CrossRef]
11. Hajibabaei, M.; Behnamian, J. Fuzzy cleaner production in assembly flexible job-shop scheduling with machine breakdown and

batch transportation: Lagrangian relaxation. J. Comb. Optim. 2023, 45, 112. [CrossRef]
12. Yang, Z.; Bi, L.; Jiao, X.G. Combining reinforcement learning algorithms with graph neural networks to solve dynamic job shop

scheduling problems. Processes 2023, 11, 1571. [CrossRef]
13. Diaz, H.; Palacios, J.J.; Gonzalez-Rodriguez, I.; Vela, C.R. An elitist seasonal artificial bee colony algorithm for the interval job

shop. Integr. Comput. Aided Eng. 2023, 30, 223–242. [CrossRef]
14. Li, R.; Gong, W.Y.; Wang, L.; Lu, C.; Zhuang, X.Y. Surprisingly popular-based adaptive memetic algorithm for energy-efficient

distributed flexible job shop scheduling. IEEE Trans. Cybern. 2023. early access. [CrossRef]
15. Kippenberger, S.; Pipa, G.; Steinhorst, K.; Zoller, N.; Kleemann, J.; Ozistanbullu, D.; Ozistanbullu, D.; Scheller, B. Learning in the

single-cell organism Physarum polycephalum: Effect of propofol. Int. J. Mol. Sci. 2023, 24, 6287. [CrossRef]
16. Chaudhry, I.A.; Rafique, A.F.; Boudjemline, A. Integrated scheduling of machines and automated guided vehicles (AGVs) in

flexible job shop environment using genetic algorithms. Int. J. Ind. Eng. Comput. 2022, 13, 343–362. [CrossRef]

https://doi.org/10.1007/s11590-020-01674-0
https://doi.org/10.1111/itor.12878
https://doi.org/10.1007/s10898-021-00992-6
https://doi.org/10.3390/s23083815
https://doi.org/10.1016/j.rcim.2022.102506
https://doi.org/10.1016/j.ejor.2022.09.006
https://doi.org/10.1007/s10878-022-00885-8
https://doi.org/10.1016/j.swevo.2022.101029
https://doi.org/10.1080/00207543.2023.2175172
https://doi.org/10.1080/23302674.2023.2221072
https://doi.org/10.1007/s10878-023-01046-1
https://doi.org/10.3390/pr11051571
https://doi.org/10.3233/ICA-230705
https://doi.org/10.1109/TCYB.2023.3280175
https://doi.org/10.3390/ijms24076287
https://doi.org/10.5267/j.ijiec.2022.2.002

Processes 2023, 11, 2646 24 of 24

17. Wei, L.X.; He, J.X.; Guo, Z.Y.; Hu, Z.Y. A multi-objective migrating birds optimization algorithm based on game theory for
dynamic flexible job shop scheduling problem. Expert Syst. Appl. 2023, 227, 120268. [CrossRef]

18. Shim, S.O.; Jeong, B.; Bang, J.Y.; Park, J. Scheduling jobs with a limited waiting time constraint on a hybrid flowshop. Processes
2023, 11, 1846. [CrossRef]

19. Zarrouk, R.; Ben Daoud, W.; Mahfoudhi, S.; Jemai, A. Embedded PSO for Solving FJSP on embedded environment (Industry 4.0
Era). Appl. Sci. 2022, 12, 2829. [CrossRef]

20. Kong, X.H.; Yao, Y.H.; Yang, W.Q.; Yang, Z.L.; Su, J.Z. Solving the flexible job shop scheduling problem using a discrete improved
grey wolf optimization algorithm. Machines 2022, 10, 1100. [CrossRef]

21. Su, X.; Zhang, C.Y.; Ji, W.X. Dynamic configuration method of flexible workshop resources based on IICA-NS algorithm. Processes
2022, 10, 2394. [CrossRef]

22. Song, H.C.; Liu, P. A study on the optimal flexible job-shop scheduling with sequence-dependent setup time based on a hybrid
algorithm of improved quantum cat swarm optimization. Sustainability 2022, 14, 9547. [CrossRef]

23. Sanogo, K.; Benhafssa, A.M.; Sahnoun, M.; Bettayeb, B.; Abderrahim, M.; Bekrar, A. A multi-agent system simulation based
approach for collision avoidance in integrated job-shop scheduling problem with transportation tasks. J. Manuf. Syst. 2023,
68, 209–226. [CrossRef]

24. Sun, J.C.; Xu, Z.F.; Yan, Z.H.; Liu, L.L.; Zhang, Y.X. An approach to integrated scheduling of flexible job-shop considering
conflict-free routing problems. Sensors 2023, 23, 4526. [CrossRef]

25. Liu, Q.H.; Wang, N.J.; Li, J.; Ma, T.T.; Li, F.P.; Gao, Z.J. Research on flexible job shop scheduling optimization based on segmented
AGV. CMES-Comput. Model. Eng. Sci. 2023, 134, 2073–2091. [CrossRef]

26. Cai, Z.; Zhang, Y.; Wu, M.; Cai, D. An entropy-robust optimization of mobile commerce system based on multi-agent system.
Arab. J. Sci. Eng. 2016, 41, 3703–3715. [CrossRef]

27. Inal, A.F.; Sel, C.; Aktepe, A.; Turker, A.K.; Ersoz, S. A multi-agent reinforcement learning approach to the dynamic job shop
scheduling problem. Sustainability 2023, 15, 8262. [CrossRef]

28. Cai, Z.; Xiong, Z.; Wan, K.; Xu, Y.; Xu, F. A node selecting approach for traffic network based on artificial slime mold. IEEE Access
2020, 8, 8436–8448. [CrossRef]

29. Cai, Z.; Yang, Y.; Zhang, X.; Zhou, Y. Design a robust logistics network with an artificial Physarum swarm algorithm. Sustainability
2022, 14, 14930. [CrossRef]

30. Ma, X.D.; Bi, L.; Jiao, X.G.; Wang, J.J. An efficient and improved coronavirus herd immunity algorithm using knowledge-driven
variable neighborhood search for flexible job-shop scheduling problems. Processes 2023, 11, 1826. [CrossRef]

31. Cai, Z.; Jiang, S.; Dong, J.; Tang, S. An artificial plant community algorithm for the accurate range-free positioning of wireless
sensor networks. Sensors 2023, 23, 2804. [CrossRef] [PubMed]

32. Cai, Z.; Ma, Z.; Zuo, Z.; Xiang, Y.; Wang, M. An image edge detection algorithm based on an artificial plant community. Appl. Sci.
2023, 13, 4159. [CrossRef]

33. Zhang, S.J.; Gu, X.S. A discrete whale optimization algorithm for the no-wait flow shop scheduling problem. Meas. Control 2023.
[CrossRef]

34. Sahman, M.A.; Korkmaz, S. Discrete artificial algae algorithm for solving job-shop scheduling problems. Knowl. Based Syst. 2022,
256, 109711. [CrossRef]

35. Xie, F.W.; Li, L.L.; Li, L.; Huang, Y.P.; He, Z.X. A decomposition-based multi-objective Jaya algorithm for lot-streaming job shop
scheduling with variable sublots and intermingling setting. Expert Syst. Appl. 2023, 228, 120402. [CrossRef]

36. Wen, X.Y.; Fu, Y.Z.; Yang, W.C.; Wang, H.Q.; Zhang, Y.Y.; Sun, C.Y. An effective hybrid algorithm for joint scheduling of machines
and AGVs in flexible job shop. Meas. Control 2023. [CrossRef]

37. Hurink, J.L.; Knust, S. Tabu search algorithms for job-shop problems with a single transport robot. Eur. J. Oper. Res. 2005,
162, 99–111. [CrossRef]

38. Ham, A. Transfer-robot task scheduling in job shop. Int. J. Prod. Res. 2020, 59, 813–823. [CrossRef]
39. Carrino, F.; Vaucher, Q.; Pasquier, R.; Bourquin, V.; Khaled1, O.A.; Mugellini, E.; Gobron, S. Bombuscar: Gamification design

of a carpolling-based freight transport. In Proceedings of the GSGS’20: 5th Gamification & Serious Game Symposium, Online,
24 September–5 November 2020.

40. Wiseman, Y. Intelligent transportation systems along with the COVID-19 pandemic will significantly change the transportation
market. Open Transp. J. 2021, 15, 11–15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2023.120268
https://doi.org/10.3390/pr11061846
https://doi.org/10.3390/app12062829
https://doi.org/10.3390/machines10111100
https://doi.org/10.3390/pr10112394
https://doi.org/10.3390/su14159547
https://doi.org/10.1016/j.jmsy.2023.03.011
https://doi.org/10.3390/s23094526
https://doi.org/10.32604/cmes.2022.021433
https://doi.org/10.1007/s13369-015-1927-z
https://doi.org/10.3390/su15108262
https://doi.org/10.1109/ACCESS.2020.2964002
https://doi.org/10.3390/su142214930
https://doi.org/10.3390/pr11061826
https://doi.org/10.3390/s23052804
https://www.ncbi.nlm.nih.gov/pubmed/36905008
https://doi.org/10.3390/app13074159
https://doi.org/10.1177/00202940231180622
https://doi.org/10.1016/j.knosys.2022.109711
https://doi.org/10.1016/j.eswa.2023.120402
https://doi.org/10.1177/00202940231173750
https://doi.org/10.1016/j.ejor.2003.10.034
https://doi.org/10.1080/00207543.2019.1709671
https://doi.org/10.2174/1874447802115010011

	Introduction
	Literature Review
	Problem Modeling
	Symbol Definitions
	A State Transition Diagram
	A Multi-Objective Function
	Resolution Approach

	An APPC Algorithm for FJSS
	Artificial Physarum Polycephalum Colony
	Algorithm Flow of the APPC
	Step 1: Initialization
	Step 2: Expansion
	Step 3: Contraction
	Step 4: End Judgment

	Numerical Experiments and Discussion
	Experimental Environment
	Case 1: 25 Benchmark Instances without Load/Unload Areas
	Case 2: 10 Large-Sized Benchmark Instances
	Discussion and Comparison

	Conclusions
	References

