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Abstract: Lacustrine shale has garnered significant attention due to its significant resource potential.
The Jurassic shale in the Sichuan Basin is an important target for lacustrine shale exploration in
China. However, previous studies have predominantly focused on the Da’anzhai member of the
Ziliujing Formation, and little attention has been paid to the shale of other strata. This paper
aims to address this gap by investigating the Jurassic Dongyuemiao member in the Sichuan Basin.
The study systematically characterizes the geological properties of the Dongyuemiao shale system,
reconstructs the paleosedimentary environment, identifies the key factors influencing organic matter
(OM) enrichment and physical properties, and assesses its resource potential through comparative
analysis. Our results show that the Dongyuemiao shale was deposited in an oxic and semi-humid
sedimentary environment characterized by intense weathering conditions. The enrichment of OM
in the shale is primarily controlled by redox conditions and salinity, with redox conditions playing
the most crucial role in OM accumulation. In terms of pore system characterization, clay mineral-
associated pores dominate the pore types in the Dongyuemiao shale, while two types of organic
matter-associated pores are also widely observed. The development of framework grain-associated
pores is limited and only present in certain siliceous and carbonate minerals. The shales of the
Dongyuemiao member and the Da’anzhai member exhibit slight differences in TOC content. However,
the kerogen in the Dongyuemiao member displays higher hydrocarbon generation potential, and the
Dongyuemiao shale exhibits more favorable pore structure parameters. Overall, the Dongyuemiao
shale does not exhibit any significant disadvantages compared to the Da’anzhai shale. Therefore, it
deserves greater attention in future exploration endeavors. The research findings presented in this
paper provide a solid theoretical foundation for expanding the exploration scope of lacustrine shale
in the Sichuan Basin.

Keywords: lacustrine shale; sedimentary environment; organic matter accumulation mechanism;
Dongyuemiao member

1. Introduction

In China, significant achievements have been made in the exploration of lacustrine
shale, with notable examples including the Paleogene Shahejie Formation in the Bohai
Bay Basin, the Permian Lucaogou Formation in the Junggar Basin, the Cretaceous Qing-
shankou Formation in the Songliao Basin, and the Jurassic Ziliujing Formation in the
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Sichuan Basin [1–13]. While marine shale formations such as the Longmaxi Formation have
yielded significant industrial success [14–18], lacustrine shale formations exhibit stronger
heterogeneity. Therefore, determining favorable exploration targets becomes a primary
challenge for efficient exploration in lacustrine shale reservoirs.

Shale reservoirs are characterized as self-generating and self-storing reservoirs [19].
Consequently, the exploration potential of shale reservoirs primarily depends on the quality
of the source rock and reservoir. The paleosedimentary environment plays a crucial role in
organic matter (OM) enrichment, mineral composition, and pore system features. Conse-
quently, the reconstruction of paleosedimentary environments holds significant importance
for comprehending the mechanisms governing shale oil accumulation and identifying
promising exploration targets [10,20–22]. In geological history, the Jurassic emerges as a
paradigmatic greenhouse period characterized by warm and humid conditions. During
this period, several organic-rich shale formations were deposited in China’s petroliferous
basins, including the Beipiao Formation of the Jinyang Basin, the Dameigou Formation
of the Qaidam Basin, the Badaowan and Xishanyao Formations of the Junggar Basin,
and the Ziliujing and Qianfoya Formations of the Sichuan Basin [23,24]. However, for
different basins, the paleoenvironments and OM accumulation mechanisms of the Juras-
sic organic-rich shale are obviously different. Therefore, comprehensive and systematic
research endeavors remain indispensable in elucidating these disparities.

The Jurassic Ziliujing Formation in the Sichuan Basin of southwestern China has
obtained remarkable achievements, such as the YB21 well, which obtained a daily natural
gas production of 50.7 × 104 m3 in the Da’anzhai member of the Ziliujing Formation in the
Yuanba oilfield [25]. However, the primary focus has been on the Da’anzhai member [26],
while other strata have received limited attention. The Ziliujing Formation is characterized
by two distinct lake basin expansion periods, resulting in the formation of two sets of black
shale, namely the Da’anzhai member and the Dongyuemiao member [27]. The Da’anzhai
shale has been extensively studied due to its large depositional area and abundant OM.
However, the Dongyuemiao member may have an even larger depositional area than
the Da’anzhai member, suggesting considerable potential for unconventional petroleum
exploration [26]. To expand the exploration of Jurassic shale oil in the Sichuan Basin, this
study focuses on the Dongyuemiao member in the Langzhong area. We use total organic
carbon (TOC) analysis, X-ray diffraction (XRD), major and trace element analysis, field
emission scanning electron microscopy (FE-SEM), and nitrogen adsorption (NA) analysis
to characterize the core shale samples of the Dongyuemiao member. The research aims to
systematically characterize the geological features of the Dongyuemiao shale, reconstruct
the paleosedimentary environment, elucidate the mechanisms of OM enrichment, and
identify the main controlling factors for physical properties. Additionally, a comparison
is made with the Da’anzhai shale, and the resource prospects of the Dongyuemiao shale
system are further discussed. The findings of this study will provide a theoretical basis for
expanding the exploration scope of lacustrine shale in the Sichuan Basin.

2. Geological Setting

The Sichuan Basin, covering an area of approximately 18 × 104 km2, is one of the
most important petroliferous basins in SW China, with significant natural gas geological re-
sources estimated at around 21.7 × 1012 m3 [28,29]. In terms of tectonics, the Sichuan Basin
is encircled by fold-thrust belts that encompass the Micang Shan and Daba Shan belts to the
north, the Longmen Shan belt to the west, the east Sichuan belt to the east, and the south-
west Sichuan belt to the south [30,31]. The Sichuan Basin was influenced by several tectonic
movements, including the Caledonian (Late Ediacaran-Silurian), Hercynian (Devonian-
Permian), Indosinian (Triassic), Yanshanian (Jurassic-Late Cretaceous), and Himalayan
(Paleo-Quaternary) movements [32]. The Indosinian orogeny took place due to the conver-
gence of the Indochina and South China blocks during the Triassic period as part of the
tectonic process linked to the closure of the eastern branch of the Paleo-Tethyan [30,33,34].
The Sichuan Basin is located in the western sector of the South China block [31]. Following
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the Indosinian movement, the Sichuan Basin underwent a transformation from a foreland
basin in the Early Triassic to an intracontinental depression, and during the Jurassic period,
lacustrine sedimentary systems prevailed. The Ziliujing Formation consists of four mem-
bers, from bottom to top: the Zhenzhuchong, Dongyuemiao, Ma’anshan, and Da’anzhai
members, with thicknesses of approximately 200–500 m [27]. The Dongyuemiao member
represents a semi-deep to deep lake environment, characterized by the presence of black
shale interbedded with thin bioclastic limestone and sandstone layers (Figure 1b). The
source rocks within the Dongyuemiao member generally exhibit a thickness of 10–30 m.
Given its extensive distribution and high TOC content, the Dongyuemiao shale presents a
promising target for lacustrine shale exploration. The study area focuses on the Langzhong
area, located in the central part of the Sichuan Basin.
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Figure 1. Comprehensive geological figure showing the location of the study area and features
of strata column; (a) The location of the Langzhong area in the Sichuan Basin (modified from
reference [8]); (b) The column of the Dongyuemiao member in the study area.

3. Data and Method
3.1. Data

The core samples used in this study were collected from the Dongyuemiao member
in the LY1 well at the center of the Langzhong area. The LY1 well was drilled in 2020
to characterize the geological features of the Jurassic strata and provide guidance for
exploration in the Jurassic lacustrine shale. In this study, we only selected the shale and
mudstone samples in the borehole. Various experiments were conducted to investigate the
geochemical and physical properties of the samples. The experiments involved include:
TOC content, X-ray diffraction (XRD), helium porosity test, field emission scanning electron
microscopy (FE-SEM) observation, nitrogen adsorption (NA) test, high pressure mercury
injection (MIP), and major and trace element analysis. All experiments were conducted at
the SINOPEC Wuxi Institute of Petroleum Geology.

For quantifying the TOC content, 21 samples were crushed to 200 mesh and treated
with hydrochloric acid. After the inorganic carbon was removed, the samples were tested by
a Leco CS-230 analyzer for TOC content. Major and trace element analysis was performed
on 15 selected samples. Prior to the analysis, the OM was removed in a high-temperature
oven, and a Rigaku 100E X-ray fluorescence spectrometer (XRF) was used for major element
measurements. Trace element analysis was conducted using an Agilent 7500A inductively
coupled plasma-mass spectrometry (ICP-MS) instrument after the samples were dissolved
in a mixture of polytetrafluoroethylene, HCIO4, HF, and HNO3.

XRD measurements were conducted on 21 crushed samples, and the XRD data were
obtained in an Ultima IV diffractometer operating at 40 kV and 40 mA. In order to reveal
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physical properties and the pore system, 21 samples were Ar-ion polished for FE-SEM obser-
vation and helium porosity analysis. The FE-SEM observation instrument was a NanoFab
ORION microscope. Subsequently, the samples were subjected to NA and MIP experiments
by AutoPore 9520 and Micromeritics Tristar II 3020 surface area analyzers, respectively.

3.2. Methods

In this study, the paleoenvironment is primarily reconstructed by geochemical proxies.
For most proxies, the principle is that the various elements tend to accumulate in sediments
under different conditions. The element enrichment factor is a commonly used index to
characterize the paleosedimentary environment, and the method to obtain this value is
shown in Equation (1).

EFX = (X/Al)sample/(X/Al)PAAS (1)

where X and Al represent the elemental contents of X and Al, respectively, and PAAS is the
content of each element in post-Archean Australian shale [35]. The enrichment factors of
different elements can be calculated using Equation (1).

The chemical index of alteration (CIA) has been proposed for quantifying the chemical
weathering condition; the principle of this index is that elements show various accumu-
lation features under different weathering conditions [36]. The calculation method of the
CIA is shown in Equation (2).

CIA = [(Al2O3)/(Al2O3 + Na2O + K2O + CaO∗)] (2)

where CaO* in Equation (2) is the CaO content in silicate minerals [37], and CaO* can be
obtained by Equation (3) and Equation (4) [38]. The content of CaO* is consistent with the
content of Na2O if the content of CaO# is larger than Na2O; otherwise, the content of CaO*
equals the content of CaO#.

CaO# = CaO − 10 × P2O5/3 (3)

CaO∗ =

{
Na2O, CaO# > Na2O
CaO#, CaO# < Na2O

(4)

Based on the fundamental concept that diverse elements exhibit varying degrees of
enrichment in sedimentary deposits under distinct climatic conditions, specific elements
such as Fe, Mn, and Cr are predominantly enriched in settings characterized by higher
humidity. Conversely, elements such as Ca, Mg, and Sr are commonly enriched in arid
climatic conditions. Previous studies have introduced the concept of the C-value as a
quantitative indicator for characterizing paleoclimate [39]. The calculation method is
shown in Equation (5).

C − value = ∑(Fe + Mn + Cr + Ni + V + Co)/∑(Ca + Mg + Sr + Ba + K + Na) (5)

where Fe, Mn, Cr, Ni, V, Co, Ca, Mg, Sr, Ba, K, and Na are the elemental contents in
sediment (ppm).

4. Results
4.1. Mineral Composition and OM Content

The mineral composition of the Dongyuemiao shale in the study area is depicted
in Figure 2. Clay minerals are the dominant component, accounting for a distribution
range of 29.3% to 63.1% and an average of 47.5%. Siliceous minerals, including quartz and
feldspar, make up a slightly lower proportion compared to clay minerals. The content of
siliceous minerals ranges from 21.1% to 55.6%, with an average of 42.5%. Quartz is the main
siliceous mineral, while feldspar, specifically plagioclase, is present in lower quantities.
The carbonate content in the Dongyuemiao shale is relatively low, with a range from trace
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amounts (less than 1.0%) to 26.5% (average = 6.6%). The primary carbonate minerals
identified are calcite (average = 4.4%) and siderite (average = 2.1%), while dolomite is rarely
detected. The TOC content of Dongyuemiao shale exhibits strong heterogeneity, ranging
from 0.15% to 2.90%, with an average of 0.99%.
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Figure 2. Ternary diagram showing the mineral composition of the Dongyuemiao shale of the
study area.

4.2. Major and Trace Elements

The primary compound in the Dongyuemiao shale is SiO2, with a distribution range
of 42.4% to 63.9% (average = 54.6%). Al2O3 ranks as the second most abundant compound,
ranging from 16.6% to 20.9% (average = 18.5%). Notably, the CaO content shows significant
variation, ranging from 0.2 to 11.7% (average = 3.4%). Additionally, the contents of MgO
(average = 1.7%), K2O (average = 3.1%), and Fe2O3 (average = 5.9%) are generally greater
than 1%. While the contents of Na2O (average = 0.5%), P2O5 (average = 0.2%), and MnO
(average = 0.1%) are generally less than 1% (Table 1).

Table 1. Major element data of the Dongyuemiao shale.

Depth
(m)

TOC
(%)

SiO2
(%)

Al2O3
(%)

MgO
(%)

Na2O
(%)

K2O
(%)

P2O5
(%)

TiO2
(%)

CaO
(%)

TFe2O3
(%)

MnO
(%)

3034.16 1.55 52.48 20.74 1.89 0.53 3.66 0.20 0.78 2.65 6.00 0.04
3034.72 1.58 54.91 17.16 1.83 0.55 2.90 0.32 0.91 4.60 5.28 0.06
3036.55 1.71 56.84 18.49 1.77 0.60 2.91 0.13 0.90 3.11 5.49 0.04
3036.85 1.25 48.50 17.09 1.74 0.50 2.59 0.14 0.88 5.75 8.35 0.13
3037.12 1.85 57.60 19.17 1.81 0.61 2.86 0.18 0.97 1.66 5.50 0.05
3037.30 2.53 55.54 17.61 1.73 0.65 2.79 0.13 0.93 3.10 6.10 0.07
3038.00 2.72 58.87 17.42 1.75 0.63 2.82 0.32 0.93 1.38 6.22 0.07
3038.45 2.90 55.18 18.61 1.88 0.62 3.11 0.12 0.92 2.59 6.20 0.06
3040.00 1.06 55.10 18.56 1.82 0.55 3.13 0.19 0.92 1.78 6.72 0.08
3042.28 0.80 42.42 17.18 1.68 0.38 3.03 0.27 0.72 11.66 5.51 0.05
3042.93 1.56 49.10 20.60 1.92 0.42 3.70 0.27 0.88 4.34 5.94 0.04
3044.38 0.91 54.23 19.98 1.93 0.53 3.36 0.32 0.96 1.64 6.44 0.05
3051.05 1.06 53.88 16.56 1.60 0.58 2.51 0.31 0.91 5.87 6.10 0.12
3059.99 1.15 63.88 18.05 1.43 0.29 2.96 0.06 1.01 0.21 5.13 0.02
3064.14 0.11 61.11 20.86 1.17 0.42 3.74 0.05 0.92 0.20 3.41 0.01
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Table 2 presents the trace element contents of the Dongyuemiao shale. The redox-
sensitive elements, such as Mo and U, exhibit relatively low contents, typically below
5 ppm. Elements that characterize paleoproductivity, such as Ni, Cu, and Zn, show higher
contents. Among them, Zn has the highest content, ranging from 86.7 ppm to 117.9 ppm
(average = 102.8 ppm).

Table 2. Trace element data of the Dongyuemiao shale.

Depth
(m)

TOC
(%)

V
(ppm)

Cr
(ppm)

Co
(ppm)

Ni
(ppm)

Cu
(ppm)

Zn
(ppm)

Sr
(ppm)

Mo
(ppm)

Ba
(ppm)

U
(ppm)

Th
(ppm)

3034.16 1.55 165.17 130.28 15.71 48.54 44.18 97.08 158.53 0.55 685.12 1.60 11.61
3034.72 1.58 136.13 122.15 15.05 44.06 44.73 86.68 148.09 0.70 566.06 2.05 14.35
3036.55 1.71 139.65 130.64 19.28 48.97 42.65 102.82 153.61 0.63 617.94 1.76 20.98
3036.85 1.25 130.72 126.10 21.39 58.83 40.44 94.85 180.55 0.79 547.72 1.97 13.87
3037.12 1.85 143.74 148.56 15.69 43.37 43.93 92.06 127.51 0.96 617.90 2.26 16.03
3037.30 2.53 136.38 122.05 14.98 38.67 37.80 94.34 151.39 1.04 661.35 1.92 11.56
3038.00 2.72 145.78 132.94 21.55 49.19 40.01 104.65 132.52 0.82 661.17 2.01 15.81
3038.45 2.90 148.42 127.95 18.58 50.32 42.73 112.96 143.60 0.83 656.58 2.28 13.86
3040.00 1.06 156.66 145.13 20.18 54.79 46.31 117.88 133.59 1.07 740.55 2.23 14.43
3042.28 0.80 135.53 119.74 14.86 44.63 44.71 110.55 294.23 0.62 656.79 1.91 10.49
3042.93 1.56 158.79 138.64 16.80 52.63 50.76 117.25 164.85 0.72 742.70 1.87 11.94
3044.38 0.91 164.65 145.42 22.67 60.76 54.80 114.90 137.38 0.75 707.80 1.94 15.00
3051.05 1.06 139.43 133.05 20.60 46.34 40.09 100.61 124.77 0.89 609.45 2.49 14.08
3059.99 1.15 135.40 134.21 14.55 47.28 31.31 103.87 82.20 0.47 479.49 2.37 14.89
3064.14 0.11 169.09 148.17 15.60 44.73 37.25 92.09 109.93 0.71 576.44 4.42 19.03

4.3. Pore System Characteristics
4.3.1. Pore System

To accurately depict the features of the pore system, we adopted the pore classification
scheme proposed by previous studies [40,41]. The pore system of the Dongyuemiao shale
is characterized by three main categories: organic matter-associated pores (OMPs), frame-
work grain-related pores (FMPs), and clay mineral-related pores (CMPs). The geometric
characteristics of these pores, which were characterized based on FE-SEM observations, are
shown in Figure 3.
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In the Dongyuemiao shale, the pore system exhibits distinct features for different
pore types. CMPs are primarily intergranular pores and fractures associated with clay
minerals (primarily chlorite and illite). These pores are well-observed in the samples and
typically have a nanoscale size with irregular shapes (Figure 3(a1,a2)). FMPs are also
nanoscale in size and are mainly developed in calcareous and feldspar minerals. However,
most of these pores are isolated and not interconnected with each other (Figure 3(b1,b2)).
Two types of OMPs are identified. The first type is intragranular pores within the OM
particles (Figure 3(c1)), which are typically nanoscale in size and exhibit irregular shapes.
The second type of OMP is manifested as shrinkage fractures at the contact edges between
OM particles and other minerals (Figure 3(c2)). These shrinkage fractures have larger pore
sizes compared to intragranular pores but are relatively less abundant. In general, CMPs
dominate the pore system, while two types of OMPs can also be observed. FMPs are poorly
developed and are only found in some siliceous and carbonate minerals.

4.3.2. Physical Properties

The physical properties of the Dongyuemiao shale reservoir were quantitatively char-
acterized using NA and MIP experiments. The results provide insights into the porosity,
pore volume (PV), and specific surface area (SSA) of the shale.

The typical MIP and NA curves are shown in Figure 4. In the MIP test, the dis-
placement pressure ranges from 43.04 to 43.06 MPa (average = 43.05 MPa). The mercury
saturation initially increases slowly when the pressure is below a threshold of approxi-
mately 30 MPa. However, once the pressure exceeds the threshold, the mercury saturation
rises rapidly. During the pressure decrease, the mercury withdrawal efficiencies of shale
samples are generally not high and vary from 39.3 to 65.9% (average = 46.6%). In the NA
experiment, the N2 adsorption isotherm curve belongs to the type IV curve. When the
relative pressure exceeds 0.8, the N2 adsorption capacity increases rapidly. The curve also
shows a hysteresis loop, which belongs to a mixed type of H2 and H3. This represents the
presence of ink bottle- and slit-shaped pores.
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Figure 4. Typical MIP curve and NA adsorption–desorption curve of the Dongyuemiao shale. (a) The
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Based on the two experiments, the PV ranges of the Dongyuemiao shale in the study
area range from 0.0052 to 0.0170 cm3/g (average = 0.0118 cm3/g), and the SSA varies from
1.29 to 7.12 m2/g (average = 3.79 m2/g). According to the helium porosity test, the porosity
ranges from 1.4 to 5.3%, with an average of 3.7%.
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5. Discussion
5.1. Paleosedimentary Environment and Organic Matter Accumulation Mechanism
5.1.1. Paleoclimate and Weathering Conditions

The paleoclimate and weathering conditions of the Dongyuemiao shale can be as-
sessed through several geochemical proxies, including the CIA value, K2O/Rb ratio, Ln
(Al2O3/Na2O) ratio, and C-value [26,38,42]. The CIA values falling within the ranges of
80–100, 70–80, and 50–70 correspond to strong, moderate, and weak weathering, respec-
tively [37,43]. The C-values falling below 0.2, within the range of 0.2 to 0.4, 0.4 to 0.6, 0.6
to 0.8, and exceeding 0.8 are indicative of paleoclimatic environments characterized as
arid, semi-arid, semi-arid to semi-humid, semi-humid, and humid, respectively [39]. The
CIA value ranges from 81.1 to 84.7 (average = 82.1), and the C-value varies from 0.32 to
0.97 (average = 0.69). The CIA values suggest that the weathering intensity of the shale
remains relatively consistent, indicating a strong weathering condition during the depo-
sition period of the Dongyuemiao member. Furthermore, the C-value corroborates this
interpretation, highlighting a semi-humid depositional setting (Figure 5). When integrating
these proxies, it becomes evident that the Dongyuemiao shale was deposited in a semi-
humid environment with strong weathering. Notably, an improvement in K2O/Rb and
Ln (Al2O3/Na2O) ratios reflects the intensified weathering condition [38,42]. The ranges
of K2O/Rb and Ln (Al2O3/Na2O) ratios within the Dongyuemiao member are 170.3 to
194.2 (average = 183.8) and 3.3 to 4.1 (average = 3.6), respectively. These values collectively
underscore the relatively stable and sustained nature of the weathering conditions during
the Dongyuemiao period.
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Dongyuemiao shale.

5.1.2. Redox Conditions

The redox condition is a crucial factor influencing the OM accumulations [44]. The
contents and ratios of redox-sensitive elements are reliable proxies for representing redox
conditions. The Mo element, for example, is generally enriched in sediments under anoxic
conditions. Mo contents less than 25 ppm, between 25 and 100 ppm, and greater than
100 ppm are indicative of oxic, dysoxic, and anoxic environments, respectively [45]. Simi-
larly, a high MoEF often indicates a relatively reductive environment. Additionally, ratios
of redox-sensitive elements (such as V/Cr, Ni/Co, and U/Th) [46] are effective proxies
for assessing redox conditions. The Mo content ranges from 0.47 to 1.07 (average = 0.77),
and the MoEF varies from 0.34 to 0.76 (average = 0.54), indicating that the Dongyuemiao
shale was predominantly deposited in an oxic environment. The ratios of redox-sensitive
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elements, including V/Cr, Ni/Co, and U/Th, range from 0.97 to 1.27 (average = 1.10),
2.25 to 3.25 (average = 2.77), and 0.08 to 0.23 (average = 0.15), respectively. These ratios fur-
ther support the interpretation of an oxic depositional environment for the Dongyuemiao
member (Figure 6). The Cu/Zn ratio can be used as a reliable proxy for characterizing the
redox condition [47]. The Cu/Zn ratio of the shale of the Dongyuemiao member ranges
from 0.30 to 0.52 (average = 0.42), which reflects the oxic condition during the sedimentary
process. Previous studies have shown that Corg/P values less than 50, between 50 and
100, and greater than 100 represent oxic, suboxic, and anoxic depositional environments,
respectively [48]. The Corg/P value of the Dongyuemiao shale ranges from 12.5 to 142.7
(average = 54.6), indicating significant fluctuations in the redox conditions and a transition
from oxic to anoxic environments. This discrepancy with the results obtained from the ra-
tios and content of redox-sensitive elements suggests that using fixed criteria for evaluating
redox conditions based on geochemical proxies may have limitations [49]. Considering
multiple geochemical proxies, we conclude that the Dongyuemiao shale in the study area
was primarily deposited in an oxic sedimentary environment.
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5.1.3. Salinity Condition

The differing solubilities of BaSO4 and SrSO4 render the Sr/Ba ratio a valuable indica-
tor of paleo-salinity. Wei and Algeo [50] suggest the Sr/Ba ratios less than 0.2, 0.2 to 0.5,
and greater than 0.5 reflect freshwater, brackish water, and marine salinities, respectively.
However, it is essential to note that the accuracy of the Sr/Ba ratio as a salinity proxy may
be compromised in samples containing over 4% CaO. In the case of the Dongyuemiao shale,
the CaO content spans from 0.2 to 11.7 (average = 3.4), prompting the exclusion of five
samples from the Sr/Ba ratio analysis. This adjustment yields an average CaO content of
1.8% for the remaining samples. The Sr/Ba ratio of the Dongyuemiao shale ranges from
0.17 to 0.25 (average = 0.21), which reflects that the shale of the Dongyuemiao member was
deposited in a brackish to freshwater condition. The MgO/Al2O3 ratio has been widely
used as a proxy for estimating salinity in sedimentary environments. A higher MgO/Al2O3
ratio indicates higher salinity conditions, while a lower ratio suggests lower salinity con-
ditions [26]. The MgO/Al2O3 ratio of the Dongyuemiao shale ranges from 0.06 to 0.11
(average = 0.09). In comparison with earlier data, this finding further corroborates the
conclusion derived from the Sr/Ba ratio [26].

5.1.4. Terrigenous Debris Influx and Primary Productivity

Certain lithogenic elements, including Al, Si, Ti, and Zr, serve as robust proxies of
terrigenous debris influx [51,52]. Zr is commonly associated with the heavy mineral zir-
con, while Al is primarily found in clay mineral fractions. Ti is present in both silt- and
sand-sized particles as well as in clay fractions. Similarly, Si is present in quartz and clay
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minerals [35]. Consequently, ratios such as Si/Al, Zr/Al, and Ti/Al can provide insights
into the clastic sediment component. An elevation in Zr/Al and Ti/Al ratios signifies
increased eolian detrital input, while an increase in Si/Al ratio reflects enhanced fluvial
delivery of clastic material [52,53]. The distribution ranges for the Si/Al, Zr/Al, and Ti/Al ra-
tios within the Dongyuemiao shale are 2.10 to 3.12 (average = 2.61), 5.5 × 10−4 to 10.0 × 10−4

(average = 7.6 × 10−4), and 0.043 to 0.063 (average = 0.055), respectively. Importantly, these
three parameters exhibit notable correlations (Figure 7), reflecting that the Dongyuemiao
member experienced a consistent weathering condition and sediment provenance [42].
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Figure 7. Cross plot showing the correlations of proxies representing the terrigenous debris influx of
the Dongyumiao shale. (a) The relationships between Si/Al and Zr/Al; (b) The relationships between
Si/Al and Ti/Al; (c) The relationships between Ti/Al and Zr/Al.

Cu, Ni, and Zn contents serve as indicators to assess primary productivity pat-
terns [42,52,54]. These elements are essential micro-nutrients participating in biologi-
cal metabolism, and they are transported to sediments in conjunction with sedimen-
tary OM in the form of organometallic complexes [52,54]. To eliminate the impact of
terrigenous debris influx, we employ the Al-normalized Ni, Cu, and Zn values of the
Dongyuemiao shale to characterize primary productivity levels. Generally, elevated Cu/Al,
Ni/Al, and Zn/Al ratios signify high primary productivity [42,52]. The ranges of the
Cu/Al, Ni/Al, and Zn/Al ratios of the Dongyuemiao shale are 3.3 × 10−4 to 5.2 × 10−4

(average = 4.4 × 10−4), 8.3 × 10−4 to 12.1 × 10−4 (average = 10.5 × 10−4), and 4.0 × 10−4

to 6.5 × 10−4 (average = 5.0 × 10−4), respectively. Similarly, these proxies exhibit strong
correlations (Figure 8), but display no significant correlations with TOC content (Figure 9).
These findings suggest relatively low primary productivity during the deposition of the
Dongyuemiao period. Moreover, considering the Cu/Al ratio as an example, the Cu/Al
ratio in the Dongyuemiao shale is notably lower than that of the PAAS (0.0005) [35]. This
observation further supports the inference of relatively low primary productivity in the
Dongyuemiao shale.
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5.1.5. OM Accumulation Mechanisms

The correlation analysis between TOC content and paleoenvironmental proxies is pre-
sented in Figure 9. Among the proxies indicative of redox conditions, the most pronounced
correlation is observed with TOC content, underscoring the pivotal role of redox conditions
in governing OM accumulation in the Dongyuemiao shale. Despite the Dongyuemiao
shale generally exhibiting a salinity range indicative of freshwater to brackish conditions,
potentially insufficient to induce substantial water column stratification, salinity also
demonstrates a positive correlation with TOC content.

Terrigenous debris influx exerts a dual influence on OM accumulation. On the one
hand, the terrestrial debris influx has the capacity to adsorb OM from the water column,
facilitating its rapid transport to the seafloor. This process effectively reduces OM loss
during the deposition process [55,56]. Conversely, if the supply of OM remains constant, an
augmentation in terrigenous debris influx could lead to the dilution of primary productivity,
resulting in a reduction in OM content [57]. In the present study, a clear correlation between
the proxy reflecting terrigenous debris influx and the TOC content within the Dongyuemiao
shale is not readily apparent. This lack of a straightforward relationship may arise from
the interplay of both positive (improves deposition rate) and negative (dilutes primary
productivity) factors. Notably, the negative correlation observed between the Si/Al ratio
and the Cu/Al ratio (Figure 10) suggests that the influx of terrigenous debris might indeed
contribute to the attenuation of primary productivity. Consequently, the intricate interplay
of these opposing influences gives rise to a complex situation where the correlation between
terrigenous debris influx and TOC content remains less evident.
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Figure 9. OM accumulation mechanisms of the Dongyuemiao shale. (a) The relationships between
MoEF value and TOC content; (b) The relationships between Corg/P ratio and TOC content; (c) The
relationships between Sr/Ba and TOC content; (d) The relationships between MgO/Al2O3 and TOC
content; (e) The relationships between Si/Al and TOC content; (f) The relationships between Cu/Al
and TOC content; (g) The relationships between Zn/Al and TOC content; (h) The relationships
between Ni/Al and TOC content.
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Figure 10. Correlations between the terrigenous debris influx proxy and the primary productivity
proxy of the Dongyuemiao shale.

The weak correlation observed between the proxy representing primary productivity
and TOC content in the Dongyuemiao shale suggests that primary productivity is not a
significant factor influencing OM enrichment. This can be attributed to the relatively limited
variability observed in the proxies representing primary productivity compared to those
representing redox conditions. In conclusion, the enrichment of OM in the Dongyuemiao
shale is primarily controlled by redox conditions and salinity. The redox condition plays
the most critical role in OM enrichment, while primary productivity has minimal influence
on the TOC content.

5.2. Controlling Factors for Physical Properties

We adopted the pore size classification proposed by Yang et al. [58] specifically for
lacustrine shale, as the pore sizes observed in the Dongyuemiao shale varied significantly.
The classification includes micropores (1–10 nm), transitional pores (10–100 nm), mesopores
(100–1000 nm), and macropores (more than 1000 nm). The pore structure parameters
corresponding to different pore sizes are shown in Table 3. Micropores contribute the most
to SSA, accounting for a range of 56.8 to 84.8% (average = 73.2%), while transitional pores
contribute the most to PV, ranging from 42.6 to 60.9% (average = 51.2%). Mesopores and
macropores have relatively low influences on pore structure parameters.

Table 3. Pore structure parameters of the Dongyuemiao shale.

Parameters Micropre
(1–10 nm)

Proportion
(%)

Transitional Pore
(10–100 nm)

Proportion
(%)

Mesopore
(100–1000 nm)

Proportion
(%)

Macropore
(>1000 nm)

Proportion
(%)

PV (cm3/g) 0.0007–0.0048
(0.0027)

11.5–33.3
(23.0)

0.0022–0.0092
(0.0061)

42.2–60.9
(51.2)

0.0015–0.0031
(0.0022)

13.3–28.2
(19.3)

0.0005–0.0015
(0.0007)

3.6–11.3
(6.5)

SSA (m2/g) 0.7357–6.0336
(2.8237)

56.8–84.8
(73.2)

0.3088–1.4340
(0.9144)

14.6–39.5
(25.3)

0.0308–0.0774
(0.0481)

0.7–3.6
(1.5)

0.0004–0.0014
(0.0007) <0.1

The main controlling factors for the physical properties of the Dongyuemiao shale
reservoir are depicted in Figure 11. There is a significant positive correlation between
clay mineral content and physical properties, indicating the dominant role of CMPs in the
pore system. Additionally, TOC content also exhibits a positive correlation with physical
properties, suggesting the OMP plays an important role in the pore system. However,
there is generally a significant negative correlation between brittle mineral content and
physical properties. This can be attributed to several reasons. First, FMPs are poorly
developed in the Dongyuemiao shale, and an increase in brittle mineral content does not
significantly contribute to the pore system through FMPs. Second, the increase in brittle
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mineral content is inevitably accompanied by a decrease in clay mineral content, leading
to a loss of the material basis for CMP development. Finally, although a higher content of
brittle minerals typically improves the compaction resistance of the reservoir, in the case of
the Dongyuemiao shale, the low content of brittle minerals prevents the formation of an
effective solid framework to protect the pores. Consequently, there is a negative correlation
between brittle mineral content and physical properties in the Dongyuemiao shale.
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Figure 11. Controlling factors for the physical properties of the Dongyuemiao shale. (a) The rela-
tionships between brittle mineral content and porosity; (b) The relationships between clay mineral
content and porosity; (c) The relationships between TOC content and porosity; (d) The relationships
between brittle mineral content and SSA; (e) The relationships between clay mineral content and SSA;
(f) The relationships between TOC content and SSA; (g) The relationships between brittle mineral
content and PV; (h) The relationships between clay mineral content and PV; (i) The relationships
between TOC content and PV.

To analyze the main pore types at different pore sizes, we examined the correlation
between PV and SSA at various pore sizes (Figures 12 and 13). Brittle mineral content
shows a negative correlation with the pore structure parameters of all pore sizes, indicating
a weak contribution of FMPs to the pore system. Clay mineral content exhibits a significant
correlation with pore structure parameters, suggesting a wide distribution range of CMPs
across various pore sizes (nano-sized to micro-sized). OMPs show correlations with pore
structure parameters of transitional pores and mesopores, as indicated by relatively high
determination coefficients. This indicates that OMPs predominantly contribute to pore
sizes ranging from 10 to 1000 nm. It is worth noting that the determination coefficients
between TOC content and pore structure parameters of micropores are smaller compared to
transitional pores and mesopores. This suggests that the number of OMPs with pore sizes
in the range of 1 to 10 nm is limited in the Dongyuemiao shale, in contrast to the marine
Longmaxi shale. This observation implies that the development of OMPs is controlled by
kerogen type.
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Figure 12. Correlations of mineral compositions and TOC content with PVs of different sizes of pores.
(a1–a3) show the relationships between PVs of micropores and mineral composition (TOC content);
(b1–b3) show the relationships between PVs of transitional pores and mineral composition (TOC content);
(c1–c3) show the relationships between PVs of mesopores and mineral composition (TOC content);
(d1–d3) show the relationships between PVs of macropores and mineral composition (TOC content).
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(a1–a3) show the relationships between SSAs of micropores and mineral composition (TOC content);
(b1–b3) show the relationships between SSAs of transitional pores and mineral composition (TOC
content); (c1–c3) show the relationships between SSAs of mesopores and mineral composition (TOC
content); (d1–d3) show the relationships between SSAs of macropores and mineral composition
(TOC content).

5.3. Comparison of Geological Features of Lacustrine Shale Petroleum Systems

To better understand the exploration potential of the Jurassic Dongyuemiao member
in the Sichuan Basin, we compared the geological characteristics of the Dongyuemiao and
Da’anzhai shales. The data for the Da’anzhai shale is referenced from Wang et al. [59]. The
key findings regarding geological features are summarized in Table 4.

Table 4. Geological feature comparison of the different shale petroleum systems of the Langzhong area.

Member TOC (%)
Paleoenvironment Pore System

Weathering Salinity
Condition

Redox
Condition Porosity PV SSA Pore Type

Dongyuemiao 0.11–2.90
(1.51)

Strong
(average
CIA 82.1)

Freshwater
to brackish

(average
Sr/Ba 0.21)

Oxic
environment

(average
MoEF 0.54)

1.4–5.3 (3.7)
0.0052–
0.0170

(0.0118)

1.29–7.12
(3.79)

Mainly CMPs,
OMPs have an

impact on
physical properties.

Da’anzhai 0.1–3.63
(1.56)

Moderate to
strong

(average
CIA 81.7)

Freshwater
to brackish

(average
Sr/Ba 0.21)

Oxic
environment

(average
MoEF 0.80)

1.3–6.5 (4.5)
0.0057–
0.0157

(0.0110)

0.79–5.50
(2.40)

Mainly CMPs, the
development of

OMPs is obviously
different and has

no obvious
influence on

physical properties.

Note: Minimum-maximum (average value).

The TOC content ranges of the Dongyuemiao and Da’anzhai shales are 0.11 to 2.90%
(average = 1.51%) and 0.10 to 3.63 (average = 1.56%), respectively. The Da’anzhai shale
exhibits a wider distribution range and a slightly higher average TOC content compared to
the Dongyuemiao shale. One of the significant differences between the two shale members
lies in their paleosedimentary environments, leading to variations in the mechanisms of
OM enrichment. Specifically, salinity plays contrasting roles in the two members. As
discussed earlier, high salinity favors OM preservation in the Dongyuemiao shale. In
contrast, salinity has an adverse effect on OM accumulation in the Da’anzhai member, likely
influenced by the Toarcian Oceanic Anoxic Event (T-OAE) that impacted the sedimentary
environment [59]. These findings suggest that the same factors can have different impacts
on OM enrichment due to variations in the sedimentary background.
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From the perspective of the pore system, the porosity distributions of the Dongyuemiao
and Da’anzhai shales range from 1.4 to 5.3% (average = 3.7%) and 1.3 to 6.5% (average = 4.5%),
respectively. The porosity of the Da’anzhai shale is slightly higher than that of the
Dongyuemiao shale. However, when considering pore structure parameters such as PV
and SSA, the Dongyuemiao shale exhibits slightly higher values compared to the Da’anzhai
shale. These differences in physical properties are attributed to variations in pore types.
While CMPs dominate the pore system in both shales, the contribution of OMPs to the
physical properties should not be overlooked. The Dongyuemiao shale’s kerogen con-
tains a higher hydrogen component compared to the Da’anzhai member [60]. As a result,
the development of OMPs in the Dongyuemiao shale is more pronounced, leading to
higher SSA.

In summary, from the perspective of source rocks, the TOC content of the Dongyuemiao
member and the Da’anzhai member exhibit slight differences due to variations in sedimen-
tary environments. However, the kerogen in the Dongyuemiao shale contains a higher
hydrogen component, indicating higher hydrocarbon generation potential. From the per-
spective of the pore system, although the porosity of the Dongyuemiao member is slightly
lower than that of the Da’anzhai member, it possesses better pore structure parameters.
Therefore, the Dongyuemiao shale does not show any significant disadvantages compared
to the Da’anzhai shale, and it deserves more attention in future exploration efforts.

6. Conclusions

In this study, the lacustrine shale of the Dongyuemiao member in the Langzhong area
of the Sichuan Basin was investigated. The geological characteristics of the Dongyuemiao
shale system were thoroughly examined, including the reconstruction of the paleosedimen-
tary environment and the identification of the main controlling factors for OM enrichment
and physical properties. Finally, a comparison was made to assess the petroleum explo-
ration potential of the Dongyuemiao shale. The main conclusions derived from this study
are as follows:

1. The Dongyuemiao shale was deposited in an oxic and semi-humid environment with
strong weathering. The enrichment of OM in the shale is primarily influenced by
the redox condition and salinity. The redox condition plays the most critical role in
OM accumulation.

2. Based on the analysis of pores and minerals, three types of pores were identified in
the Dongyuemiao shale: CMPs, OMPs, and FMPs. CMPs are the dominant pore type,
while two types of OMPs were also observed. FMPs, on the other hand, are poorly
developed and limited to certain siliceous and carbonate minerals.

3. Although the TOC content of the Da’anzhai shale is slightly higher than that of the
Dongyuemiao shale, the kerogen in the Dongyuemiao shale contains a higher hydro-
gen component, indicating greater hydrocarbon generation potential. Additionally,
the Dongyuemiao shale exhibits better pore structure parameters. Therefore, the
Dongyuemiao shale does not possess any significant disadvantages compared to the
Da’anzhai shale, and it should be given more attention in future exploration efforts.
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