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Abstract: In this study, based on existing heavy oil extraction technology, combined with the mineral
composition in a reservoir, the synergistic catalytic effect of reservoir minerals and exogenous catalysts
under the reaction system of a hydrogen-rich environment not only reduces the viscosity of thick
oil but also reduces the extraction cost and further improves the recovery rate of heavy oil. In this
study, the impacts of different reservoir minerals and exogenous catalysts on the aquathermolysis of
heavy oil were investigated. The research results showed that the sodium montmorillonite within
the reservoir minerals exhibited an optimal catalytic effect, and the synergistic catalytic effect of
sodium montmorillonite and catalyst C-Fe (catechol iron) resulted in a viscosity reduction rate of
60.47%. Furthermore, the efficiency of different alcohols as hydrogen donors was screened, among
which ethanol had the best catalytic effect. Under the optimal reaction conditions, the viscosity
reduction rate after the addition of ethanol was 75.25%. Infrared spectroscopy, elemental analysis,
thermogravimetry, and differential scanning calorimetry were used to study the changes in heavy
oil before and after hydrothermal cracking. Element analysis showed that the synergistic catalytic
effect of sodium-based montmorillonite and catalyst C-Fe increased the hydrocarbon ratio from 0.116
to 0.117, and the content of S and N elements decreased. This fully confirms the catalytic effect of
sodium-based montmorillonite and C-Fe catalyst for he hydrogenation reaction of the unsaturated
carbon in heavy oil.

Keywords: reservoir minerals; heavy oil; catalytic aquathermolysis; synergistic

1. Introduction

The global demand for oil will rise by more than 40% by 2025. About 70% of the
world’s total oil reserves are made up of heavy oil, extra heavy oil, and bituminous
heavy oil, all of which have geological reserves that are significantly bigger than those
of regular crude oil [1]. China has reserves of more than 4 billion tons in more than
70 heavy oil fields. The majority of these heavy oil reservoirs are located in the Liaohe,
Huanxiling, Xinjiang Karamay, and Shengli Oilfields. Conventional heavy oil is rich
in compounds with high boiling points and viscosities, resulting in the poor fluidity of
heavy oil, which poses great difficulties for heavy oil exploitation [2]. Common heavy
oil viscosity reduction methods include thermal viscosity reduction, chemical viscosity
reduction, microbial viscosity reduction, and dilute viscosity reduction. Among the various
thermal viscosity reduction methods, steam stimulation (CSS), steam flooding (SF), steam-
assisted gravity drainage (SAGD), and steam-injection-based combustion of oil layers are
the primary techniques [3], but these technologies lead to high energy consumption and
have a high environmental impact. Chemical viscosity reduction mainly includes emulsion
dispersion viscosity reduction, oil-soluble viscosity reducer viscosity reduction, etc. [4,5],
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which are highly selective but costly and complicated to operate. Microbial viscosity
reduction technology is environmentally friendly and low cost, but the treatment time is
long; dilution viscosity reduction technology is simple and the effect is immediate, but it is
energy-dependent and may lead to the degradation in oil quality.

Catalytic modification and viscosity reduction is a typical combination of thermal
viscosity reduction and chemical viscosity reduction, a heavy oil modification and viscosity
reduction technology. By injecting the catalyst into a heavy oil reservoir, the combined
effect of high temperature and the catalyst removes the impurities in the heavy oil and
cracks the heavy constituents into light constituents, which reduces the apparent viscosity
of the heavy oil [6,7]. In addition, the structure of gums and asphaltenes contains many
functional groups that can form hydrogen bonds, and the hydrothermal cracking reaction
causes a hydrogenation reaction, cracking reaction, and ring-opening reaction [8,9]. When
the catalyst and hydrogen donor ethanol are added, the metal ions fully act on the S
atoms to catalyze the acid polymerization and hydrogas shift reactions, resulting in the
formation of free radicals by breaking the C-S bonds. In order to improve the recovery rate
of heavy oil, the majority of research efforts have been directed towards developing crude
oil fluidity improvers [10–13] and heavy oil aquathermolysis catalysts [14,15]. Currently,
transition metal catalysts are mainly categorized into water-soluble catalysts and oil-soluble
catalysts [16]. Water-soluble catalysts are some of the commonly used chemicals in the
petroleum industry. Maity et al. [17] used the metals Ru and Fe as catalysts in asphaltene
reforming experiments with desulfurization effects of 21% and 18%, respectively. The
results showed that the first-row transition metals and AL3+ ions have high catalytic
activity for thiophene and tetrahydrothiophene, and these metals convert large molecules
into small molecules by breaking the C-S bond. Zhong et al. [18] studied the changes in
viscosity and average molecular weight of heavy oil in the presence of eight metal ions, such
as Fe2+, Co2+, Ni2+, and so on, and the results showed that the metal ions all have certain
viscosity-reducing effects on heavy oil. Clark et al. [19,20] investigated the application of
several catalysts in hydrothermal cracking reactions, pointing out that transition metal salts
can break C-S bonds in heavy oil components, accelerate the removal of organic sulfur in
heavy oil, and generate light hydrocarbons, CO2, H2, and H2S, resulting in an irreversible
decrease in the viscosity of heavy oil. Subsequently, a large number of applied studies have
been carried out at home and abroad [21,22]. Among them, Chen et al. synthesized a series
of catalysts with transition metal ions as the center, and these catalysts had a good catalytic
viscosity reduction effect. Oil-soluble catalysts can more fully contact with the oil phase, but
the implementation conditions of this technology are harsh, and the extraction cost is high.
Zhao et al. [23] succeeded in reducing the viscosity of Liaohe thick oil by more than 90%
using nickel- and cobalt-based catalysts as well as petroleum sulfonates as emulsifiers at a
lower temperature of 180 ◦C. Muneer et al. [24] used oil-soluble transition-metal catalysts
(Fe, Co, Ni) to catalyze hydrothermal decomposition of heavy oil during steam injection.
The catalytic performance of these catalysts is good at 300 ◦C, and they can be used to
improve the quality of thick oil and reduce the viscosity of thick oil, among which Ni has
the best catalytic performance.

As shown in the oil production profile in Figure 1, heavy oil has the most contact with
minerals in the reservoir [25,26]. Minerals have great potential to participate in chemical
reactions during the injection of high-temperature steam into the reservoir. So far, there
has been no research on the aquathermolysis reaction that is catalyzed by foreign catalysts
and in situ minerals. In this work, we explored the possibility of heavy oil aquathermolysis
synergistically catalyzed through the application of exogenous catalysts in conjunction
with in situ minerals. The synergistic catalytic effect of different reservoir minerals and
exogenous catalysts and the effect of the addition of ethanol on aquathermolysis were
studied under optimum reaction conditions. The compositional changes in the heavy oil
before and after the reaction were characterized using elemental analysis, DSC, and TGA.
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Figure 1. Schematic diagram of oil field recovery.

2. Materials and Methods
2.1. Materials

Commercially available chemical reagents of analytical grade were utilized in this
experiment without undergoing additional purification processes prior to their usage. The
reservoir minerals used in the experiment were all uniformly pulverized powders, which
could be used directly. The crude oil samples utilized in this study were sourced from the
Nanyang Oilfield in Henan, China. Oil sample properties are shown in Table 1.

Table 1. The physical parameters of heavy oil.

Pour Point/◦C Asphaltene, % Saturated HC, % Aromatic HC, % Resin, %

20.0 23.44 31.16 28.73 16.67

2.2. Synthesis of the Catalyst

A certain mass of catechol was dissolved in ethanol, and an iron chloride aqueous
solution was prepared according to the molar ratio of iron chloride to catechol of 1:2. The
iron chloride aqueous solution was slowly dropped into catechol ethanol solution, mixed
evenly, stirred at 70 ◦C for 4 h, and dried to obtain a catechol iron (C−Fe) catalyst. The
preparation of C−Fe is shown in Figure 2.
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Figure 2. Catalyst synthesis and structures.

2.3. Characterization of the Complex

A Fourier transform infrared spectrometer, was used with the pressed-disk technique,
and the spectral range of the measurement process was 400−4000 cm−1.

2.4. Aquathermolysis of Heavy Oil

In a high-temperature and high–pressure reactor, the oil sample was combined with
certain amounts of water, reservoir minerals, exogenous catalysts, and hydrogen donor.
The reaction took place at 200 ◦C for 4 h, and the working pressure was 0.2−0.3 mpa.
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2.5. Product Evaluation

The viscosity of heavy oils was measured in accordance with ASTM D97-96. The viscos-
ity reduction rate, denoted as ∆η%, was determined using the formula ((η0 − η)/η0) × 100,
where η0 and η (mPa·s) represent the viscosities of the oil prior to and subsequent to the
reaction [27,28]. Furthermore, the analysis of heavy oil components was carried out in
accordance with the China Petroleum Industry Standard SY/T 5119-2016. An elementar
vario EL cube was used to determine the elemental compositions (C, H, N, and S) of the
original oil and the improved oil. The distribution of carbon in crude oil at various temper-
atures was assessed via thermogravimetric analysis. Under a nitrogenous environment, the
oil samples were heated at a rate of 10 ◦C/min from 30 ◦C to 550 ◦C. According to SY/T
0545−2012, the wax precipitation point of the heavy oil was tested. Using Mettler−Toledo
DSC822e DSC (Mettler Toledo Limited, Shanghai, China) equipment, the different scanning
calorimetry (DSC) analyses of heavy oil were all performed within a temperature range of
−25 to 50 ◦C, a flow rate of 50 mL/min, and a nitrogen environment.

3. Results and Discussion
3.1. Characterization of the Catalyst

Figure 3 displays the infrared spectra of the catalyst and ligand. The absorption peaks
of the ligand at 1616 cm−1, 1517 cm−1, and 1469 cm−1 are the absorption peaks of the
benzene ring. The corresponding absorption peaks at 1616 cm−1, 1483 cm−1, and 1430 cm−1

in the catalyst are also the absorption peaks of the benzene ring. The stretching vibration
peak of −OH in the ligand catechol is around 3457 cm−1, and the peak is strong and sharp.
After the association with the iron ion is completed, where the stretching vibration peak
position of the hydroxyl group is at 3222 cm−1, and the peak width is strong, the infrared
absorption position shifts. It shows that the −OH of the ligand coordinated with metal
ions, and the ligand formed a stable complex.
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Figure 3. Infrared spectra of the ligand catechol and the C−Fe complex.

3.2. Effect of Reaction Temperature on Aquathermolysis

We aimed to investigate the viscosity–temperature properties of the oil samples after a
hydrothermal cracking reaction at different reaction temperatures. As shown in Figure 4,
the oil samples already had a good viscosity reduction effect at low temperature, and the
higher the temperature, the better the viscosity reduction effect. The viscosity reduction
rate of the oil samples reached its maximum at 200 ◦C. Due to the increase in temperature,
the energy given to the system became larger, which caused the chemical bonds of the
recombinant components in the oil samples to break, resulting in a viscosity decrease.
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When the temperature was too high, the hydrothermal cracking reaction polymerization
reaction dominated, and coking occurred at the bottom of the reactor. Therefore, 200 ◦C
was selected as the optimum reaction temperature.
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3.3. Effect of Reaction Time on Aquathermolysis

After determining the reaction temperature at which the oil samples were subjected
to a hydrothermal cracking reaction, we continued to examine the effect of different reac-
tion times on the viscosity–temperature properties of the oil samples after hydrothermal
cracking. As shown in Figure 5, the viscosity of the oil samples decreased with increasing
reaction time, and the hydrothermal cracking reaction had the best viscosity-reducing effect
on the oil samples when it reached 4 h. The viscosity of the oil samples gradually recovered
as the reaction time increased, which indicated that the hydrothermal cracking reaction
was essentially completed at 4 h. Therefore, the reaction duration was determined to be 4 h.
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3.4. Effect of Water

Figure 6 clearly illustrates the substantial impact of the water-to-oil mass ratio on
viscosity. The viscosity of heavy oil falls dramatically with an increase in the water to oil
mass ratio when the water-to-oil ratio is between 0 and 0.3. For water-to-oil ratios between
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0.3 and 0.5, the viscosity of heavy oil shows a positive correlation with the corresponding
water-to-oil mass ratio. This phenomenon can be attributed to the occurrence of the reaction
of a water–gas shift (WGSR) [29] between the heavy oil and water. This is due to the fact that
in the hydrothermal cracking reaction, the main role of water is to give the active hydrogen
needed for the reaction system, and as the amount of water is increased, the amount of
active hydrogen that can be provided by water increases, resulting in the hydrothermal
cracking reaction being carried out more thoroughly and inhibiting the polymerization of
free radicals. When the amount of water is too large, it plays a certain role in diluting the
free radicals produced in the reaction process, resulting in an increase in the viscosity of
the oil samples. Simultaneously, considering the dilution of catalyst in subsequent catalytic
reactions due to the increase in the water amount [30], the subsequent experiments adopted
a water-to-oil mass ratio of 0.3 as the reaction condition.
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3.5. Effect of Reservoir Minerals on Aquathermolysis

Six minerals were selected to carry out the aquathermolysis reaction under the reaction
conditions determined above. As evidenced by the analysis in Figure 7, clay minerals
typically have a distinct catalytic reduction effect. Strong adsorption, cation exchange
capacity (CEC), and strong acid centers of the clay may be responsible for this phenomenon.
The viscosity comparison performed at 30 ◦C demonstrated that sodium montmorillonite
exhibited the most significant reduction in viscosity, reaching up to 41.53%. This was
followed by kaolin, showing a viscosity reduction rate of 40.10%, and ferrous sulfide, with
a viscosity reduction rate of 40.00%. The findings indicate that minerals exhibit a notable
influence on aquathermolysis.

3.6. The Effect of Hydrogen Donors on the Aquathermolysis of Heavy Oil

The type of alcohol has a non-negligible effect on the hydrothermal cracking of heavy
oil. Different types of hydrogen donors all contributed to viscosity reduction, as shown
in the analysis in Figure 8. Among them, isopropanol had the best hydrocracking impact
in heavy oil, but its viscosity reduction effect under the dilution effect was less than ideal.
Currently, isopropanol is commercially available at USD 1030 per ton and ethanol at
USD 895 per ton, which is significantly costlier than ethanol. Therefore, in subsequent
experiments, ethanol was selected as the hydrogen donor to reduce the viscosity. As the
ethanol-to-oil ratio increased, Figure 9 shows that the viscosity of heavy oil significantly
decreased. The subsequent studies used an ethanol-to-oil mass ratio of 0.3 as the reaction
condition due to the dilution impact of the catalyst in the subsequent catalytic reaction
caused by the rise in ethanol concentration.
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3.7. Analysis of the Viscosity of Heavy Oil Catalyzed by Various Catalysts

Figure 10 indicates that in the synergistic catalysis of minerals and C-Fe, the syn-
ergistic viscosity reduction effect of C-Fe and sodium montmorillonite was the best.
The viscosity was reduced by 60.47% at 30 ◦C in comparison with the blank oil sam-
ple. Compared with the viscosity after aquathermolysis, the viscosity decreased by 42.23%.
Therefore, the reaction system of sodium montmorillonite and C-Fe was selected for
the subsequent experiment.
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Figure 10. Influence of synergistic catalysis between reservoir minerals and catalyst on heavy
oil viscosity.

Figure 11 shows that the catalytic aquathermolysis reaction between heavy oil and
water exhibited a certain viscosity reduction rate of up to 31.56%. Compared with the
oil–water reaction, the addition of water and C-Fe to the heavy oil resulted in an increase of
3.32% in the viscosity reduction rate. After adding water and sodium montmorillonite to the
oil, the viscosity reduction rate was increased by 9.97% compared with that of the oil–water
reaction. Although the catalytic impact of the two together was not immediately apparent,
it had a certain viscosity reduction catalytic effect on the aquathermolysis of the heavy
oil. After adding water, C-Fe, and sodium montmorillonite to the heavy oil, the viscosity
reduction rate was 18.94% higher than that of the oil–water sodium montmorillonite,
indicating that the exogenous catalyst and clay have a synergistic catalytic effect on the
aquathermolysis of heavy oil. The viscosity reduction rate of the heavy oil after the addition
of water, C-Fe, sodium montmorillonite, and ethanol was 14.78% greater than that after the
addition of oil–water, C-Fe, and sodium montmorillonite, demonstrating that ethanol has a
superior hydrogen supply impact during the catalytic aquathermolysis of heavy oil.
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Figure 11. Performance of oil samples in reducing viscosity under various reaction circumstances.

3.8. Determination of SARA before and after Reaction

The results in Table 2 show that when the hydrothermal cracking reaction was com-
pleted, the saturated and aromatic hydrocarbon fractions contained in the oil samples
increased, and the asphaltene and colloidal fractions decreased, which also indicates that
most of the large molecules in the recombined fractions of the oil samples underwent ring-
opening and hydrogenation reactions. The addition of the composite catalyst promoted the
conversion of the recombined components in the oil samples, consumed more free radicals,
reduced the occurrence of copolymerization reactions, and increased the content of light
components, thus improving the viscosity reduction efficiency.

Table 2. Oil sample SARA analysis before and after the reaction.

Oil Sample Saturates, % Aromatics, % Asphaltenes, % Resins, %

Blank 23.44 31.16 28.73 16.67
After reaction with C-Fe and

sodium montmorillonite 30.28 36.20 25.98 7.54

After reaction with C-Fe and sodium
montmorillonite and EtOH 33.15 37.74 23.19 5.92

3.9. Elemental Analysis (EA)

An analysis was conducted on the variation in the element content in the heavy
oil before and after the aquathermolysis reaction. Table 3 presents the results of this
study. The findings demonstrate that the concentrations of carbon, nitrogen, and sulfur
reduced during pure aquathermolysis, while the amounts of hydrogen marginally rose.
This suggests that water contributes hydrogen to the heavy oil aquathermolysis process,
increasing the saturation of macromolecules in heavy oil. The synergistic effect of sodium
montmorillonite and the catalyst leads to the increase in hydrogen content, the decrease
in sulfur content, and the increase in H/C ratio. The data obtained affirms the synergistic
effect of sodium clay and the catalyst on the hydrogenation process of unsaturated carbon in
heavy oil. After the addition of ethanol, the elemental analysis revealed a higher hydrogen
content and increased nitrogen, sulfur, and H/C ratio. It showed that ethanol has a stronger
ability to provide protons for the reaction, promoting the generation of small molecules and
the breaking of C-N, C-S, and other bonds in the oil samples to produce more heteroatomic
compounds. More importantly, it can also promote the conversion of more asphaltenes,



Processes 2023, 11, 2635 10 of 14

gums, and other recombinant components into light components, thus improving the
oil quality.

Table 3. Oil sample elemental content before and after the reaction.

Oil Sample
Elemental Content/%

C/H
C H N S

Blank 86.20 10.02 1.88 0.65 0.116
After the aquathermolysis 85.90 10.04 1.41 0.56 0.116

After reaction with C-Fe and sodium montmorillonite 86.19 10.10 1.58 0.44 0.117
After reaction with C-Fe and sodium montmorillonite and EtOH 83.99 10.29 1.30 0.44 0.122

3.10. Thermogravimetric Analysis (TGA)

Figure 12 shows the TGA curves, while Table 4 presents the corresponding mass loss
of the heavy oil before and after the reaction. After aquathermolysis catalyzed by sodium
clay and a catalyst, it was observed that the weight loss rate of the oil with a boiling point
less than 150 ◦C and more than 450 ◦C decreased, while the weight loss rate of the oil
with a boiling point between 350 and 450 ◦C increased. The weight loss rate of light oil
with a boiling point less than 150 ◦C increased after the aquathermolysis was catalyzed by
sodium montmorillonite, catalyst, and an ethanol promoter. In addition, at a temperature
above 350 ◦C, a significant reduction in mass loss was observed [31,32], which confirms
that the addition of a composite catalyst promotes the conversion of asphaltenes, resins,
and other heavy components to light components during the reaction process, leading to
the increase in the light component content of oil samples, and then the viscosity of oil
samples decreases.
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Table 4. Weight loss rate of oil samples after different reaction systems.

Reaction System
Weight Loss Ratio/%

0–150 ◦C 150–350 ◦C 350–450 ◦C >450 ◦C

Blank 3.10 18.36 34.82 43.72
Water 4.42 24.05 31.90 39.63

Water + C-Fe + sodium montmorillonite 1.83 29.35 29.77 39.05
Water + C-Fe + sodium montmorillonite + EtOH 5.33 30.82 28.94 34.91



Processes 2023, 11, 2635 11 of 14

3.11. Differential Scanning Calorimetry Analysis (DSC)

Figure 13 illustrates the findings from a DSC study of the wax formation process of
crude oil under various reaction conditions. Compared with the blank oil sample, the wax
precipitation point after aquathermolysis increased from 43.00 ◦C to 43.07 ◦C. After the
synergistic catalytic cracking of C-Fe and sodium montmorillonite, the wax precipitation
point of the oil sample increased from 43.00 ◦C to 43.71 ◦C, and the wax precipitation point
increased to 45.07 ◦C after the addition of ethanol. The aforementioned study shows that
resins in the heavy oil are broken down and transformed into asphaltenes, which serve
as the primary nucleus of the wax precipitation and hasten the formation of wax crystals,
raising the wax precipitation point.
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3.12. Mechanism

Due to the layered structure of clay, there are numerous cations in its octahedral voids
and numerous broken bonds on the surface of clay minerals, which have strong adsorption
effects on organic macromolecules. The synergistic dual catalytic mechanism of exogenous
catalysts and clay minerals is shown in Figures 14 and 15, which can be mainly described
in the following stages: (1) The exogenous catalyst acts on the heteroatoms in the heavy
components, destroying the hydrogen bonds between the molecules of some high-carbon
hydrocarbon compounds, which results in the rupture of C-S, C=O, C-N bonds, etc. (2) The
transition metal in the exogenous catalyst is easily exchanged with the sodium ion in the
sodium montmorillonite, thus becoming the active center in the reaction. The presence of
abundant vacant orbitals enables transition metals to readily engage with the electron-rich
species present in heavy oil, thereby significantly enhancing the catalytic efficiency of the
aquathermolysis decomposition in heavy oil [33,34]. (3) Due to the existence of Lewis
acid on the surface of montmorillonite, high-carbon hydrocarbon compounds provide it
with an electron, and simultaneously generate free radicals. The free radicals rearrange to
promote the cleavage of C-C bonds and the formation of short-chain alkanes [35]. Clay
minerals act as Bronsted acids to provide protons (H+) for the organic matter adsorbed
by it. Protons (H+) are generated through the dissociation of the adsorbed water and
interlayer water molecules that are bound to exchangeable cations. The primary reaction
pathway for these protons involves the formation of transition-state carbocations [36,37].
(4) Upon the adsorption of water molecules onto the surface of clay minerals, the Lewis
acid exhibits a high electron affinity, facilitating the sharing of an electron pair with the
hydroxyl group in water. Consequently, the hydroxyl group becomes firmly adsorbed onto
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the surface of the Lewis acid, while the remaining H+ is readily released. This converts the
Lewis acid into a Bronsted acid. When clay minerals are dehydrated, Bronsted acid sites
are gradually converted into Lewis acids due to the lack of protons [38]. In this reaction
system, montmorillonite activates the reactant water/steam, reduces the reaction activation
energy, accelerates the breaking speed of some hydrogen bonds between the molecules
of high-carbon hydrocarbon compounds, and improves the effectiveness of reducing the
viscosity of heavy oil.
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4. Summary and Conclusions

In conclusion, reaction time, oil-to-water ratio, and mineral type all affect the viscosity
reduction effect of heavy oil–water thermal cracking. In addition, the addition of external
catalysts and hydrogen donors can enhance the catalytic effect in reducing viscosity. Un-
der optimized conditions, the viscosity reduction rates of oil–water, oil–water+ sodium
montmorillonite, oil–water+ sodium montmorillonite +C-Fe, and oil–water+ sodium mont-
morillonite + C-Fe + ethanol oil samples reached 31.56%, 41.53%, 60.47%, and 75.25%,
indicating that exogenous catalysts and in situ clay have a synergistic catalytic effect on
the aquathermolysis of heavy oil. After the catalytic aquathermolysis of heavy oil, the
thermogravimetric analysis showed that the light components increased, and the oil–water
+ sodium montmorillonite + C-Fe oil samples changed significantly. DSC showed that with
the wax precipitation point of crude oil, the wax peaks all shifted to the right, and the
wax content increased. Under the synergistic catalytic aquathermolysis of heavy oil with
exogenous catalyst and minerals, it is helpful to break the C-C, C-N, and C-S bonds. The
addition of a hydrogen donor further improves the viscosity reduction effect. This work
will benefit related research on oilfield exploration.
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