
Citation: Zhang, J.; Cheng, H.; Yang,

P.; Zhang, B.; Zhang, S.; Lu, Z.

Comprehensive Evaluation Index

System and Application of

Low-Carbon Resilience of Power

Grid Containing Phase-Shifting

Transformer under Ice Disaster.

Processes 2023, 11, 2633. https://

doi.org/10.3390/pr11092633

Academic Editors: Hongyu Wu and

Bo Liu

Received: 6 July 2023

Revised: 10 August 2023

Accepted: 19 August 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Comprehensive Evaluation Index System and Application of
Low-Carbon Resilience of Power Grid Containing
Phase-Shifting Transformer under Ice Disaster
Jing Zhang 1, Huilin Cheng 2, Peng Yang 3, Bingyan Zhang 4, Shiqi Zhang 4 and Zhigang Lu 4,*

1 Jinzhou County Power Supply Company, State Grid Hebei Electric Power Co., Ltd., Jinzhou 052200, China;
liuyujie@stumail.ysu.edu.cn

2 Shijiazhuang Power Supply Company, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050051, China;
chenghuilin2006@126.com

3 State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050051, China; cindela_yp@163.com
4 Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province,

Yanshan University, Qinhuangdao 066004, China; zhangbingyan01@126.com (B.Z.);
shiqiz@stumail.ysu.edu.cn (S.Z.)

* Correspondence: zhglu@ysu.edu.cn

Abstract: In view of the high impact of extreme disasters, this paper comprehensively evaluates
power grid performance from a new low-carbon toughness perspective. First, considering the
increase in carbon emissions and the recovery time of carbon emissions, low-carbon resilience
indicators are proposed. At the same time, considering the power-regulation effect of the phase-
shifter transformer, the fault and response model of a power grid under an ice disaster is established,
and then, a comprehensive evaluation index system of low-carbon toughness of the power grid is
constructed. The weight determination is carried out using the fuzzy analytic hierarchy process-
entropy-based weight method, while the fuzzy comprehensive evaluation center of gravity method
is used to evaluate the power grid comprehensively. Finally, examples are presented to verify the
feasibility of the proposed method, emphasizing its potential for evaluating the comprehensive
performance of low-carbon and toughness of the power grid in the future.

Keywords: ice disaster; phase-shifting transformer; low-carbon resilience indicators; fuzzy
comprehensive evaluation

1. Introduction

Natural disasters, such as typhoons, torrential rains, and ice storms, have become
increasingly frequent in recent years, significantly impacting the safe and steady operation
of power grids. Transmission networks, including overhead transmission lines and towers,
are susceptible to extreme weather events due to their prolonged exposure to the elements.
The resulting faults can trigger widespread power outages and cascading reactions, even
leading to grid collapse. The power system’s research community has conducted extensive
studies on grid resilience, focusing on resistance, adaptation, and recovery processes
following disruptions typically through dynamic assessments of extreme events [1]. Under
the new background of energy transition, Ref. [2] proposes that generalized resilient grids
should have six key characteristics in addition to the three core characteristics of grid
strain, defense, and resilience, while also paying attention to perception, collaboration, and
learning. An optimal decision support system (DSS) for the operation of microgrids in
extreme weather is proposed in [3] to maximize system autonomy. At present, relevant
research on grid resilience assessment and improvement is also gradually being carried
out. Ref. [4] presents a strategy for providing high system resilience at minimal cost
under the influence of extreme weather events. Considering the two stages of disaster
prevention and mitigation, an index system, including the defense time of the distribution

Processes 2023, 11, 2633. https://doi.org/10.3390/pr11092633 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11092633
https://doi.org/10.3390/pr11092633
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11092633
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11092633?type=check_update&version=1


Processes 2023, 11, 2633 2 of 19

network, elastic recovery coefficient, island sustainable time, and mean outage time of
important load, is constructed in Ref. [5]. Ref. [6] establishes a framework for evaluating
the resilience of distribution systems under disasters and proposes a new quantitative
evaluation index for resilience by analyzing the impact of various potential hazards on
distribution network lines. In [7], an optimal power system partition recovery model
that considers grid reconfiguration efficiency and path reliability is proposed to enhance
the resilience of post-disaster systems. However, most of the existing literature studying
resilience indicators and improvement measures for power grids neglect the effect of carbon
emissions during disasters. The first paper to integrate resilience with low-carbon power
grids is [8], which proposes three new characteristics: affordability for preventive measures,
accessibility for post-disaster recovery, and sustainability for long-term planning. The
article also highlights the risks posed by integrating high proportions of renewable energy
into the grid, including the randomness and intermittency of wind and solar power, which
can compromise safety and stability [9]. The widespread use of wind and solar power
can reduce the system’s inertia and security margin since they do not provide rotational
inertia [10]. The combined risks of external threats, increased internal and external risk
sources, and the uncertainty associated with low-carbon technologies have exacerbated
safety issues in power grids [8]. Hence, while striving to achieve the dual-carbon goal,
resilience issues resulting from new energy access must not be overlooked.

When a power system fails, the power distribution of the system often cannot guar-
antee power supply safety. To address this issue, the power flow control method using
phase-shifting transformers is typically adopted to adjust line transmission power. This
method can effectively and flexibly control the power flow without altering the original
generating power and network topology. By applying a suitable voltage vector to the
input voltage on the original line, the voltage phase difference changes on both sides of the
line [11], improving power flow distribution and reducing line loss during system failure.
Ref. [12] investigates the role of phase-shifting transformers in achieving forced power flow
distribution under line overload conditions. Ref. [13] establishes a unified formula for the
parameter correction equation of the phase-shifting transformer, enabling the control of
active and reactive power flow in the system. Therefore, this paper aims to enhance the
power grid’s performance by including phase-shifting transformers in the transmission
lines based on the conventional model.

To sum up, the existing research mostly considers the resilience of systems under
extreme disasters and does not take into account the impact of changes in carbon emissions.
To solve this problem, this paper constructs a comprehensive evaluation index system
of low-carbon resilience of power grids under extreme disasters to evaluate the overall
performance of the power grid.

The main contributions are as follows:

(1) According to the concept of low-carbon resilience (LCR), the evaluation index of
low-carbon toughness is put forward. Compared with the traditional single resilience
evaluation index, the LCR level of power grids under extreme disasters is measured
from two new angles of carbon emission change and carbon emission recovery time.

(2) Considering the equivalent model of the branch with the phase-shifter transformer,
the power flow distribution of the line is adjusted through the power regulation
of the phase-shifter transformer so as to improve the transmission capacity of the
power grid.

(3) Considering the impact of the whole process of disaster occurrence on the power grid,
we build a comprehensive assessment index system for low-carbon resilience of the
power grid; the principal comprehensive weight determination method combined
with the fuzzy analytic hierarchy method (FAHP) and anti-entropy weight method
(AEWM) is used, and the fuzzy evaluation value obtained is accurately processed
with the center of gravity method (COG).

The other parts of this article are arranged as follows: Section 2 introduces the concept
of LCR and LCR Power Network, Section 3 constructs the comprehensive evaluation index
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system, Section 4 introduces the evaluation index method, Section 5 discusses the case
study, and Section 6 puts forward the main conclusions.

2. LCR
2.1. LCR Concept

Low-carbon resilience (LCR) is based on the concept of resilience theory, which aims
to improve the power grid’s ability to cope with the increasing carbon emissions resulting
from human activities. The goal of LCR is to accelerate emission reduction and enable
mutual adaptation between social development and carbon emissions [14]. LCR is defined
as the ability to maintain low levels of carbon emissions in human life and production while
also emphasizing mitigation, emission reduction, and adaptation under the sustainable
development goals. The continuous improvement of resilient power grid construction
provides a theoretical foundation for the development of LCR, which focuses on the power
grid’s capacity to resist and mitigate the increase in carbon dioxide.

This resistance capacity can be measured by the increase in carbon emissions caused
by extreme disasters that disturb the power grid [15]. Specifically, such disturbances
lead to the replacement of low-carbon energy with high-carbon energy, and this increases
carbon emissions. One reason for this is that new energy sources are more sensitive to
meteorological and environmental factors, making them less resistant to disruption. In such
circumstances, the output from these sources is significantly weakened, leading to power
deficits. To maintain stability, thermal power units must assume greater responsibility,
thereby increasing the risk of carbon emissions.

The mitigation ability can be assessed by evaluating the timespan required for carbon
emissions to recover to the power grid’s initial operating level after undergoing reduced
operation and recovery following a disturbance. The stronger the resistance ability, the
lower the increase in carbon emissions, and the shorter the recovery time span, the stronger
the mitigation ability. A higher LCR level can be attributed to a smaller increase in carbon
emissions after a power grid disaster and a shorter recovery time. Figure 1 depicts the LCR
performance of the power grid from the perspectives of resistance and mitigation abilities.
Among them, the recovery time of Grid 1 is less than that of Grid 2, the increase in carbon
emission of Grid 1 is less than that of Grid 2, and the resilience level of Grid 1 is stronger
than that of Grid 2. Based on the analysis, it is evident that Power Grid 1 exhibits better
LCR performance than Power Grid 2.
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2.2. LCR Power Grid

The power industry is responsible for the majority of social carbon emissions. With
the emergence of a new power system, it is crucial to handle the uncertainties arising from
high proportions of renewable energy access and diversified flexible loads. Climate change
also needs to be taken into account while assessing the resilience of the power grid. The
primary driver of climate change is the increase in carbon emissions. Building an LCR
power grid and evaluating its performance from a low-carbon resilience perspective aligns
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with the current strategic goals of low-carbon transformation and sustainable development
of the power system. Simultaneously, the long-term construction of the power grid during
the energy transition under low-carbon policies coupled with the improvement of carbon
trading markets will promote the sustained development of LCR power grids towards
low-carbonization [2]. Figure 2 illustrates the physical quantities used to evaluate the
performance of an LCR power grid concerning different dimensions.
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3. Construction of LCR Index System

The evaluation of LCR power grid performance requires a clear definition of specific
disturbance events as different extreme events have different impacts on power grid
resilience. This research focuses on power grid resilience, taking into account the impact of
frequent ice disasters that have a large impact and long duration. This study only considers
transmission line failures, overlooking transmission tower and transformer failures.

The resilience of the power grid when affected by extreme disasters is primarily
determined by its ability to respond proactively and recover quickly. The power grid
should temporarily reduce its functional level and quickly return to normal operating
conditions. The system’s operational state curve, usually characterized by the load level, is
depicted in Figure 3.
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3.1. LCR Key Indicator System

To assess the impact of ice disasters on the power grid, the entire process is divided
into three stages: pre-disaster, during disaster, and post-disaster. Each stage is evaluated
using selected indicators within the regional power grid, as shown in Figure 4.

During the pre-disaster stage, the power grid is in its usual operating state, and its
low-carbon level is given priority. Extreme disasters may lead to a decrease in new energy
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output, resulting in economic losses and increased carbon emissions. However, distributed
access to new energy can partially alleviate the resilience pressure [8]. Therefore, different
low-carbon levels have distinct comprehensive benefits for the power grid, which can
be considered part of its ability to prevent extreme events. During a disaster, the power
grid’s load loss and resistance capability are evaluated along with its LCR level from the
standpoint of resisting an increase in carbon emissions. Following a disaster, particular
attention is given to the power grid’s recovery capability, including the operational state
and its ability to recover carbon emissions to a normal operating level.
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The quantitative expressions of the LCR evaluation indicators proposed in this article
are as follows:

LCR1 = λ1

N

∑
j=1

T

∑
t=1

(
PENS,1

j,t − PENS,0
j,t

)
− λ2

M

∑
i=1

T

∑
t=1

(
P0

Gi,t − P1
Gi,t

)
(1)

LCR2 = t4 − t1 (2)

The quantitative expressions of the other indicators are given by Equations (3)–(10).
Electricity penetration of new energy sources is established as follows:

ξnew =

∫ T
0 ∑NDG

i=1 PGi(t)dt∫ T
0 ∑N

m=1 PLoadm(t)dt
(3)

New energy generation absorption rate is established as follows:

ηnew =

∫ T
0 ∑NDG

i=1 P′Gi(t)dt∫ T
0 ∑NDG

i=1 PGi(t)dt
(4)

Maximum load loss represents the maximum interrupt load during the accident [1].

S1 = L1(t1)− L2(t2) (5)
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The rate of load loss represents the rate of load interruption during a disaster.

S2 =
L1(t1)− L2(t2)

t2 − t1
(6)

The extreme event resistance rate refers to the power grid’s ability to maintain the
normal load ratio while resisting the accident.

S3 =

∫ t2
t1

L(t)dt∫ t2
t1

L1(t)dt
(7)

The load adaptation rate indicates the proportion of load capacity that the power grid
can maintain from the end of the disaster until it returns to the stable operating state before
fault restoration [16,17].

S4 =

∫ t3
t2

L(t)dt∫ t3
t2

L1(t)dt
(8)

The recovery time of the operating state indicates the estimated time required to repair
the damaged equipment and restore the system to its normal operation.

S5 = t4 − t3 (9)

The average recovery rate denotes the average speed of load level recovery in the
distribution network when the network is restored to normal through the fault repair and
network reconfiguration recovery strategy [14].

S6 =

∫ t4
t3
[L(t)− L(t3)]dt

t4 − t3
(10)

Among them, Formulas (3) and (4) are low-carbon (LC) indexes, and Formulas (5)–(10)
are resilience (R) indexes.

3.2. LCR Grid Assessment Process

In power network performance evaluation analysis, specific indicators must be identi-
fied, and the indicators chosen in this paper depend on the system’s operating state curve.
Due to the conditions of ice disasters and the continuous repair of transmission lines, the
transmission line fault and system operation state change over time, requiring an iterative
solution process. The evaluation flowchart is illustrated in Figure 5 with the following
specific evaluation steps:

Step 1: Define the LCR evaluation index for the power grid.
Step 2: Utilize meteorological information and power network data to obtain the

vulnerability curve of the transmission lines, representing the probability of line failure at
each time.

Step 3: Employ the Monte Carlo method to simulate the operational state of each
component during extreme weather conditions and generate fault scenarios at different
time intervals.

Step 4: The repair time is determined by the system fault set at each time. When the
repair time is less than the set step length, the line is considered to be repaired, and the line
running state is updated.

Step 5: In the fault scenario, the state curve of the system under an extreme disaster is
generated by reducing the load strategy.

Step 6: The LCR index of the power grid is calculated with the state curve diagram,
and the appropriate evaluation method is selected to evaluate the LCR performance of the
power grid.
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3.2.1. Branch Equivalent Model with Phase-Shifting Transformer

The phase-shifting transformer can be modeled as an ideal transformer with an ad-
ditional impedance model. To calculate the power flow in a system with a phase-shifting
transformer, we need to consider the additional power injection on both sides of the trans-
former as well as the power injection from the original node during the power flow iteration
process. Let us assume that a phase-shifting transformer is installed on the “e” side of the
line “e–f”. The additional injected power can be represented as follows [11]:

P∆e = 2 sin
( ϕ

2
)
UeU f

[
beq cos

(
θek +

ϕ
2
)]

Q∆e = 2 sin
( ϕ

2
)
UeU f

[
beq sin

(
θek +

ϕ
2
)]

P∆ f = −2 sin
( ϕ

2
)
UeU f

[
beq cos

(
θke −

ϕ
2
)]

Q∆ f = −2 sin
( ϕ

2
)
UeU f

[
beq sin

(
θke −

ϕ
2
)] (11)

3.2.2. Transmission Line Fault Model

The primary cause of line faults during ice disaster weather is the accumulation of
excessive ice thickness due to prolonged low-temperature conditions, surpassing the line’s
capacity to withstand it. In [18], a straightforward model for ice cover thickness is proposed
with the following formula:

Req = (T/πρI)

√
(ωρ0)

2 + (3.6vW)2 (12)
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The ice load is defined to characterize the ice thickness of the line, which is the disaster
factor. The ice load per unit length of the line can be expressed as follows [19]:

LI = 9.8× 10−3ρIπReq(Req + D) (13)

On the basis of icing, the wind load per unit length of a line can be expressed as follows:

LW = 6.964× 10−3Svg
2(2Req + D) (14)

The impact of transmission line tension, gravity resulting from line icing, and horizon-
tal forces induced by strong winds are all taken into account. The magnitude and direction
of the wind load caused by ice can be expressed as follows:

LWI =
√

L2
I + L2

W

θ = arctan LW
LI

(15)

Based on the ice wind load, the line failure probability can be obtained as follows:

Pf =


0 LWI ≤ aWI

exp
[

0.6931(LWI−aWI)
bWI−aWI

]
− 1 aWI < LWI < bWI

1 LWI ≥ bWI

(16)

where aWI and bWI are the threshold value; the concrete calculation formula refers to the
Ref. [20].

3.2.3. Power System Repair and Response Model

After a transmission line failure, it is crucial to implement appropriate strategies for
component repair. The duration required for the operation to recover each line should
consider optimistic time t0, pessimistic time tp, and most likely time tm estimates for line
restoration. These values are primarily estimated based on the operator’s experience and
the significance of the faulty line within the regional power network. In Ref. [21], detailed
recovery time parameters for IEEE 30-node transmission lines are provided. Ref. [22]
suggests that the beta distribution is better suited for simulating repair time. The expected
value te and the standard deviation σt can be expressed as follows:{

te =
t0+4tm+tp

6
σt =

tp−t0
6

(17)

The occurrence of an ice disaster requires a combination of continuous low temper-
atures and freezing rain, among other conditions. During the middle and later stages
of icing, the most severe consequence can be transmission line outages, leading to the
grid being divided into multiple subsystems or even isolated islands. To maintain the
stability and secure operation of the entire power grid, load reduction measures need to be
implemented. An optimal load-shedding model based on DC power flow is established
in this paper [23]. Equation (18) is the objective function to minimize the amount of load
shedding; The Formulas (19) and (20) are the system active balance constraint line power
flow calculation formula and the DC power flow equation. The Formulas (21)–(23) are
the generator active output constraint, load reduction constraint, and line power flow
constraint under fault conditions.

min
ND

∑
d=1

P f
C,d (18)

P f
L,l =

θ
f
d − θ

f
e

xl
(19)
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KL f
NL

∑
l=1

P f
L,l = KG

NG

∑
j=1

P f
G,j − KD

ND

∑
d=1

(PD,d − P f
C,d), ∀n ∈ N (20)

Pmin
G,j ≤ PG,j ≤ Pmax

G,j , ∀j ∈ NG (21)

0 ≤ PC,d ≤ PD,d, ∀d ∈ ND (22)

−PLTE
L,max,l ≤ P f

L,l ≤ PLTE
L,max,l , ∀l ∈ Nl (23)

where KL f , KG, and KD are the node-branch correlation matrix, node-generator correlation
matrix, and node-load correlation matrix under fault state.

4. LCR Index Evaluation Realization
4.1. FAHP–AEWM-Based Weight Setting
4.1.1. Fuzzy Analytic Hierarchy Process

FAHP integrates fuzzy set theory into AHP, effectively addressing the issues of judg-
ment matrix consistency and human thinking variations. By incorporating fuzzy set theory,
FAHP allows for a more flexible and nuanced representation of decision-maker preferences,
accommodating the inherent uncertainties and imprecisions in human judgment. This
integration enhances the reliability and accuracy of the decision-making processes that rely
on AHP.

Step 1: Establishing the hierarchical model

To address the evaluation of the low-carbon toughness of the power grid, this paper
constructs the following hierarchical structure. As shown in Figure 6.
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Step 2: Constructing the fuzzy complementary judgment matrix

In the fuzzy AHP, the relative importance of each index at the same level and the
subordinate relationship between two factors are evaluated. A matrix is established,
denoted as A = (aij)n×n, if the following conditions are met:{

aii = 0.5 i = 1, 2, · · · , n
aij + aji = 1 i, j = 1, 2, · · · , n

(24)

The resulting matrix is referred to as the fuzzy complementary judgment matrix. Addi-
tionally, we employ a scale ranging from 0.1 to 0.9 to divide the relative importance between
the two indexes. This scale represents the maximum level that individuals can accept from
a psychological standpoint. If the scale is further divided into more detailed intervals, it
may lead to confusion and hinder accurate judgment [24]. The specific subdivisions of this
scale are described in Ref. [25].
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Step 3: Weight solution

Based on the established fuzzy complementary judgment matrix, the weight of each
index can be calculated using the following formula:

wi =

(
n

∑
j=1

aij+
n
2
− 1

)/
n(n− 1) (25)

The weight vector of the matrix A is as follows:

w′i = (w1, w2, · · · , wn)
T (26)

To be satisfied, wi ≥ 0,
n
∑

i−1
wi = 1(i = 1, 2, · · · , n).

Then, you can obtain the characteristic matrix A of the judgment matrix as follows:

W ′ = (wij)n×n (27)

To be satisfied, wij = wi/(wi + wj)(i, j = 1, 2, · · · , n).

Step 4: Consistency test

To assess the reasonableness of the weight calculation results, it is important to consider
that FAHP is a subjective method for determining weights. If the deviation consistency is
too significant, it indicates a large deviation in the calculation results of the weight vector.
In such cases, the weight vector cannot be reliably used as a basis for decision-making [26].
The consistency principle is typically evaluated using the compatibility principle. The
complete consistency of the fuzzy complementary judgment matrix A, along with its
characteristic matrix W′, is equivalent to its own complete consistency [27]. The indicators
of compatibility are as follows:

I(A, T) =
1
n2

n

∑
i=1

n

∑
j=1

∣∣aij + wij − 1
∣∣ (28)

Generally, if the compatibility index I(A, T) < 0.1 is met, the consistency test is
considered to pass. If not, the values in the matrix are adjusted, and a re-evaluation is
conducted until the consistency principle is satisfied.

Step 5: Determining the subjective weight of indicators

Through a layer-by-layer calculation of weights, we can obtain the weight ranking of

the factor layer for the target layer. The weight of the criteria layer is denoted as
•

W.

4.1.2. Anti-Entropy Weight Method

The AEWM is an objective weight determination method that improves upon the
entropy weight method. It addresses the weak weight contrast generated with the anti-
entropy weight method and complements the advantages of the FAHP method. AEWM
possesses the characteristics of stronger index fluctuation, smaller entropy value, and larger
weight coefficient.

The calculation steps for AEWM are as follows:

Step 1: Standardization of indicators

Let the problems evaluated have m evaluation objects and n evaluation indexes.
The metric value is xij(i = 1, 2, · · · , n; j = 1, 2, · · · , m), and the evaluation matrix is
X = (xij)n×m.

Step 2: Determine the anti-entropy value of each index
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According to the evaluation matrix, the anti-entropy of each index is as follows [28]:

hi = −
m

∑
i=1

rij ln
(
1− rij

)
(29)

Step 3: The objective weight of the index is as follows:

w′′i = hi

/
n

∑
i=1

hi (i = 1, 2, . . . , n) (30)

That is, based on the FAHP–AEWM method, the comprehensive weight of the index
set is denoted as W = (wi)n×1. The formula for calculating this weight is as follows:

ωi = ω′iω
′′
i

/
n

∑
i=1

ω′iω
′′
i (i = 1, 2, . . . , n) (31)

4.2. Comprehensive Evaluation of Indicators Based on FCE–COG

After obtaining the evaluation matrix, the fuzzy comprehensive evaluation (FCE)
method typically evaluates the index based on the principle of maximum membership de-
gree while disregarding the membership degrees of other evaluation grades [29]. However,
to address the limitations of this approach, the evaluation result can be defuzzified using
the barycenter method. This helps to compensate for the shortcomings and enhance the
accuracy of the evaluation.

Steps of fuzzy comprehensive evaluation [30]:

Step 1: Determine the factor set of the evaluation object U = {u1, u2, · · · , un}
Step 2: Determine the comment set V

The comment set is divided into five grades based on the comprehensive performance
of the power grid. The set is represented as V = {v1, v2, v3, v4, v5} = {good, better, general,
worse, poor}, and each grade is expressed by specific values within a certain range (0, 1),
denoted as V = {0.9, 0.7, 0.5, 0.3, 0.1}.
Step 3: Determine the fuzzy judgment matrix

R =

 r1
· · ·
rn

 =

r11 · · · r15
...

. . .
...

rn1 · · · rn5

 (32)

where rij is the degree of ui subordination for vj. The normal membership function is

µa = e−
{[(

ui − vj
)
/σ
]2} selected as the membership function of each evaluation index

to the comment set [31], which σ is the standard deviation of the comment set.
Step 4: Calculate the fuzzy comprehensive evaluation set B

B = WT R = {b1, b2, · · · , b5} (33)

Taking into account the impact of multiple attribute factors on the actual operation
state of the power grid, a multi-level fuzzy comprehensive evaluation method is introduced.
The essence of this method lies in obtaining the fuzzy evaluation value for the upper level
through the lowest level and ultimately deriving the fuzzy comprehensive evaluation result
for the target level. This approach enables a comprehensive assessment that considers the
interplay of various attribute factors within the power grid’s operational context.
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Step 5: Calculate the center of gravity

For U = {u1, u2, · · · , un} ⊂ R, the membership function µA(x) of a fuzzy set U over
a fuzzy set A, the center of gravity can be expressed as:

GA =
n

∑
i=1

x · µA(x)

/
n

∑
i=1

µA(x) (34)

After obtaining the final evaluation matrix, the first step is to calculate the center of
gravity G = (gi)1×n of the fuzzy set for each factor set and establish an evaluation index

a = G
•

W. The comprehensive evaluation result is determined as the evaluation grade that
is closest to a. This allows for a more accurate assessment based on the proximity of the
evaluation grade to the calculated center of gravity.

5. Example Analysis

Taking the improved IEEE 30-node system as an example, the LCR level of the power
network is evaluated using the defined index. In this evaluation, the 8-node thermal power
unit is replaced by a wind farm, and a phase-shifting transformer is added between node 5
and node 7. The phase-shifting gears are set to modify the equivalent impedance of the
access system. The modified diagram of the IEEE 30-node system is illustrated in Figure 7.
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Taking into account the conditions of an ice disaster, the maximum anti-ice thickness
allowed in the design system is set at 20 mm with a wind speed of 25 m/s. The detailed
meteorological information and other parameters related to the ice disaster can be found in
Ref. [20].

In this research paper, the duration of the ice disaster is assumed to be 8 days. Con-
sidering the need for prolonged low temperatures for transmission line icing, each step
length is chosen as 8 h. This results in a division of time into 24 periods, totaling 192 h. By
calculating the ice wind load, the fault probability of each transmission line over time is
obtained. The failure probability curve for certain lines in the system is depicted in Figure 8.
It is observed that the starting time and rate of icing may slightly vary for different lines
due to their geographical locations, but the general trend remains consistent.

Since the line fault, repair, and response model proposed in this paper is a linear pro-
gramming problem, it is solved with CPLEX. The operating state curve of the system can
be derived. Figure 9 illustrates two scenarios where the inclusion of phase-shifting trans-
formers is considered. These cases provide visual representations of the system’s operating
state, showcasing the impact of the phase-shifting transformers in different situations.
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Observing the load changes depicted in Figure 9, we can observe that, in Curve 2, the
system begins to reduce its load at t = 72 h due to the disturbance caused by the ice disaster.
As the ice cover thickness increases, the severity of line breakages worsens, leading to
a continuous increase in load loss in order to maintain stable power system operation. At
t = 96 h, the power system experiences its maximum load loss, reaching 226.2 MW. At
104 h, the load of the system begins to increase, and at 128 h, the system can resume normal
operation. After a certain period of repair, the transmission line gradually returns to its
normal operation state.

Curve 1, on the other hand, represents a scenario where the transmission capacity
of the system is increased by incorporating phase-shifting transformers onto the original
line in the event of a fault. It can be observed that, in this case, the system is able to
sustain normal operation for a longer duration after being disrupted. The onset of load
reduction occurs later compared to Curve 2, and the system load reaches a maximum loss
of 237.1 MW, surpassing Curve 2. Furthermore, the system recovery time has been reduced
from 24 h to 16 h. This demonstrates the effectiveness of incorporating phase-shifting
transformers in enhancing the resilience and efficiency of the power system during ice
disaster situations.

5.1. The Index Value Is Calculated

From the above data and load curve, the index values mentioned in this paper can be
calculated with Formulas (1)–(10), as shown in Table 1.
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Table 1. The value of the grid evaluation index.

Indicator No Phase Shift
Transformer Added

The Phase-Shifting
Transformer

Indicator
Type

ξnew 0.529 0.529 LC

ηnew 0.742 0.891 LC

LCR1 143.93 MW 90.991 MW LCR

S1 50.2 MW 42.3 MW R

S2 2.258 MW/h 3.419 MW/h R

S3 0.9024 0.9613 R

S4 0.823 0.8792 R

LCR2 56 h 40 h LCR

S5 24 h 16 h R

S6 16.217 MW/h 18.675 MW/h R

Table 1 provides further evidence supporting the benefits of incorporating a phase
shifter into the transmission line. The data reveal that this addition results in a reduction in
carbon emissions by 36.78% and a decrease in carbon emission recovery time by 28.57%.
Moreover, the system’s LCR performance shows improvement with the inclusion of a
phase shifter. Additionally, both the maximum load loss and system recovery time are
reduced. This indicates enhancements in acceptance rate, resistance rate, and adaptation
rate, underscoring the improved low-carbon and resilience performance of the system after
integrating a phase shifter.

Based on the aforementioned analysis, it is evident that the addition of a phase shifter
enhances the transmission capacity of the line, ultimately leading to an overall superior
system performance. To delve deeper into the data, a comprehensive evaluation method
proposed in this paper will be employed for further analysis.

5.2. Subjective Weight Assignment

The subjective weight assigned to each index does not rely on specific values, ensuring
that the inclusion of the phase shifter will not alter the outcome. Once the subjective weight
vector is obtained using Formulas (24)–(26), it is essential to verify if the consistency require-
ment is met. This is accomplished by calculating Formula (28) for I1 = 0.0375, I2 = 0.0710,
and I3 = 0.0360 and assessing the overall consistency. The result of the subjective weight
assignment is W ′ = (0.4500, 0.5500, 0.2050, 0.2150, 0.1950, 0.1750, 0.3330, 0.3000, 0.3667)T .

5.3. Objective Weight Assignment

Given that the selected indexes are employed to assess the power grid’s performance
from various perspectives, it is necessary to standardize the index values. These indexes
can be categorized into two types, benefit type and cost type, each requiring a specific
standardization method as referenced in [32]. Subsequently, the objective weight vector
can be computed using Formulas (29) and (30). Finally, the comprehensive weight results
for each index can be obtained through FAHP–AEWM, as depicted in Figure 10.

5.4. Comprehensive Evaluation

The fuzzy evaluation matrix for each index can be generated using the membership
function. Subsequently, the evaluation matrix for the criterion layer can be obtained by
calculating the fuzzy evaluation value, as illustrated in Table 2. To facilitate reference,
Case 1 denotes the scenario where the phase-shifting transformer is not added, while
Case 2 represents the scenario where the phase-shifting transformer is added.
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Table 2. Benchmark layer evaluation matrix.

Case Criteria Layer Evaluation Matrix

case 1 BLCR,1

0.0466, 0.1672, 0.2714, 0.1997, 0.0666
0.0412, 0.1673, 0.3136, 0.2717, 0.1089
0.0411, 0.1825, 0.3687, 0.3381, 0.1406

case 2 BLCR,2

0.0666, 0.1997, 0.2714, 0.1672, 0.0466
0.1089, 0.2717, 0.3136, 0.1673, 0.0412
0.1406, 0.3381, 0.3687, 0.1825, 0.0411

Upon comparing the aforementioned data, it becomes evident that, after adding the
phase-shifting transformer, the ranking of the criterion layer indexes corresponding to
each comment set is as follows: general > better > worse > good > poor. Similarly, the
ranking of membership degrees is as follows: general > worse > better > poor > good. It
can be observed that all indexes attain the highest grade of ‘General’, and this highest grade
remains consistent across both cases. The main discrepancy lies in the second-grade rating.
To obtain a precise evaluation value for power network performance, the center of gravity
method is employed to accurately handle the fuzzy results, as presented in Table 3.

Table 3. LCR grid evaluation results.

Case The Barycenter Vector of the Fuzzy
Set in the Criterion Layer

Final Evaluation Indicators
and Evaluation Results

case 1 0.4207, 0.4069, 0.4038 aLCR,1 = 0.4098 (general)
case 2 0.5793, 0.5931, 0.5962 aLCR,2 = 0.5902 (general)

5.5. Results Analysis

From the weight distribution of Figure 10, the weight (0.4) is the largest in macro-scale,
and (0.3167) is the second in post-accident. The weight distribution shows that, when
the extreme event occurs, the resistance of the power grid LCR is most affected by the
strength of the comprehensive evaluation results, especially in the system. In addition to
considering the loss of load resistance, the ability to adapt and recover after the event is
also a significant part of the assessment because the time it takes for the system to regain
stability depends on how quickly it recovers; in addition, the ability to prevent in advance



Processes 2023, 11, 2633 16 of 19

also cannot be ignored. On the one hand, the better the prevention measures, the less
the loss of power grid operation in extreme disasters; on the other hand, the access to
renewable energy for the system response to disasters has certain advantages.

The evaluation matrix represents the close degree of each index to the comment set,
which is essentially decided by the weight and the index value. It can be observed in Table 2
that the result of prior layer membership ranking is better than that before adding the
phase-shifting transformer. The reason is that, in terms of the weight distribution, there is
not much difference between the two indexes in advance. The main difference is the index
value. Obviously, after adding the phase-shifting transformer, the new energy absorption
rate is higher, so we engage in the front-level evaluation; the evaluation grade of the power
grid is higher after joining. The increase in new energy efficiency will also bring low-carbon
benefits, reducing carbon emissions to a certain extent and shortening the recovery time of
carbon emissions. At the same time, the addition of phase shifters has a positive impact on
the grid in both the resilience and recovery stages; therefore, both in-event and post-event
levels are closer to the higher ratings of comment sets.

The final Table 3 evaluation results are in line with the previous discussion. For the
two cases with or without the phase-shifting transformer, the performance of the power
grid is average, but the LCR evaluation value of the power grid is 0.5902 after adding
the phase-shifting transformer, which is higher than that before adding the phase-shifting
transformer; this shows that the evaluation method used in this paper can make a correct
evaluation of LCR performance of a power grid. The evaluation results also show that the
LCR performance of a power grid can be improved by adding a phase-shifting transformer.

6. Conclusions

In this paper, a novel LCR assessment index is proposed based on existing resilience
assessments, focusing on carbon emission resistance and mitigation capacity. An assess-
ment framework is constructed, encompassing the entire process of ice disasters. After
establishing the evaluation index system for power grids in response to ice disasters, the
LCR performance of the power grid in tackling such extreme events is evaluated using
comprehensive weighting, fuzzy evaluation, and precise treatment methods. The validity
of the proposed index and methodology is confirmed through comparative analysis. The
conclusions were as follows:

(1) With the phase-shift transformer, the power grid shows superior performance
before, during, and after the extreme disaster. The absorption of new energy before the
event to reduce the maximum load loss, the increase in the rate of resistance and adaptation,
and after the increase in resilience are reflected.

(2) With the penetration of the low-carbon concept, the low-carbon resilience index
based on the increase in carbon emissions and the recovery time of carbon emissions
proposed in this paper can better evaluate the comprehensive performance of a power grid
under extreme disasters. At the same time, low carbon and resilience are more mutually
reinforcing. The more new energy access, the better the low-carbon benefits of the power
grid, while flexible resources on the power grid to resist the occurrence of disasters will
also have a positive impact.

Additional research can further analyze the influence of the installation location of
the phase-shift transformer and the energy storage resource on the low-carbon toughness
of a power grid. In the future, multi-energy deep coupling is both an opportunity and
a challenge. Based on the research in this paper, we can continue to expand the LCR grid
evaluation index system and add the consideration of low-carbon factor while exploring
more means of improving resilience, and the LCR performance of a power grid is evaluated
more comprehensively.
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Nomenclature

Indices and Sets
e, f Index for buses
m Index for scenarios
aij Index for the relative importance of each index at the same level
rij Index for degree of ui subordination for vj
ND, NG, Nl , N Set for loads, generators, lines, nodes
Parameters
NDG Number of new energy power plants
N Number of buses
M Number of new energy source buses
T Duration of the ice disaster
LCR1 Increase in carbon emissions of the power grid
LCR2 Time for carbon emissions of the power grid to recover
λ1 Carbon emission coefficients of the power plant
λ2 New energy emission reduction coefficient
ξnew Electricity penetration of new energy sources
ηnew New energy generation absorption rate
Req Thickness of ice cover (mm)
LI Ice load (N/m)
LW Wind load (N/m)
S Pitch factor
vg Wind speed (m/s)
te The expected value
σt The standard deviation
W′ The characteristic matrix of the judgment matrix
a Evaluation index
Constants
L1 The amount of load under normal system operating conditions
L2 The amount of load under system derating operation
aWI , bWI Threshold value
ρI Density of ice, 0.9 g/cm3

ρ0 Density of water, 1.0 g/cm3

D Wire diameter
t0 Optimistic time for line recovery
tp Pessimistic time for line recovery
tm Most likely time for line recovery
PD,d The active load of load d
Pmin

G,j , Pmax
G,j The minimum and maximum output of a generator

PLTE
L,max,l Long-term emergency limit of Line Power flow under fault condition

Variables
t1 System operating time: moment of the disaster occurrence
t2 Moment the power grid enters a stable operation at reduced capacity
t3 The moment when the ice disaster dissipates
t4 The moment when the power grid resumes normal operation
PENS,0

j,t Load shedding amount of the system in normal operating conditions

PENS,1
j,t Load shedding amount of the system in a fault state

P1
Gi,t New energy grid-connected power in fault operating conditions

P0
Gi,t New energy grid-connected power in normal operating conditions
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PGi(t) Power of new energy units i for time period t
PLoadm(t) Power of load m for time period t
PGi
′(t) Power of new energy units i or time period t

L(t) Load at time period t
P∆e, P∆ f Additional active power injected into the bus
Q∆e, Q∆ f Additional reactive power injected into the bus
Ue, U f Voltage amplitudes of the bus
ϕ No-load phase-shifting angle of the phase-shifting transformer
beq Equivalent admittance of the phase-shifting transformer
θek Bus phase difference of the two sides of the phase-shifting transformer
ω The precipitation per hour (mm/h)
v Wind speed at the location (m/s)
W Content of liquid water in the air, W = 0.067ω0.846

P f
C,d

Load d the amount of load cut off in the failure state

P f
G,j Active power output of generator j under fault condition

P f
L,l

Power flow of Line l in a fault state

θ
f
d , θ

f
e

The voltage phase angle of the beginning node d and the end node e of
line l under fault condition

xl The DC resistance of line l

References
1. Chen, L.; Deng, X.Y.; Chen, H.K.; Shi, J. Power System Resilience Assessment and improvement. Power Syst. Prot. Control. 2022,

50, 11–22.
2. Ruan, Q.T.; Xie, W.; Xu, Y.; Hua, B.; Song, P.; He, J.H.; Zhang, Q.Q. Concept and key features of flexible power grid. Chin. J.

Electr. Eng. 2020, 40, 6773–6784.
3. Fotopoulou, M.; Rakopoulos, D.; Petridis, S. Decision Support System for Emergencies in Microgrids. Sensors 2022, 22, 9457.

[CrossRef] [PubMed]
4. Wu, Y.K.; Chen, Y.C.; Chang, H.L.; Hong, J.S. The Effect of Decision Analysis on Power System Resilience and Economic Value

During a Severe Weather Event. IEEE Trans. Ind. Appl. 2022, 58, 1685–1695. [CrossRef]
5. Li, Z.K.; Wang, F.S.; Gu, W.Y.; Mi, Y.; Ji, L. Elasticity assessment of smart distribution networks in extreme weather.

Power Syst. Autom. 2020, 44, 60–68.
6. Wang, Y.; Huang, T.; Li, X.; Tang, J.; Wu, Z.; Mo, Y.; Xue, L.; Zhou, Y.; Niu, T.; Sun, S. A Resilience Assessment Framework for

Distribution Systems Under Typhoon Disasters. IEEE Access 2021, 9, 155224–155233. [CrossRef]
7. Chen, Y.; Yang, Y.; Liu, Y.; Lu, Q.; Yang, M.; Zhang, R.; Liu, J. An Optimization Strategy for Power System Partition Recovery

Considering Grid Reconfiguration Efficiency and Path Reliability. In Proceedings of the 2023 6th International Conference on
Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 12–14 May 2023; pp. 1449–1454.

8. Ruan, Q.T.; Mei, S.W.; Huang, X.D.; Chen, Y. Challenges and prospects for improving the resilience of low-carbon urban power
grids. Chin. J. Electr. Eng. 2022, 42, 2819–2830.

9. Kang, C.Q.; Yao, L.Z. Key scientific problems and theoretical research framework of high-proportion renewable energy power
system. Power Syst. Autom. 2017, 41, 1–11.
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