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Abstract: Proteases play a role in different processes for protozoans and for the free-living amoeba
Acanthamoeba. Some of these processes are related to pathogenicity and to encystment. In this study
we describe the discovery of a protease with antimicrobial activity produced by Acanthamoeba. To
identify it, we developed a novel zymogram using bacteria as an in-gel substrate that can help
identify proteins capable of bacterial degradation. We used chromatography to isolate the proteases
and showed that it quickly degrades in the environment. Additionally, we identified overexpressed
proteases during encystment. The study of proteases from Acanthamoeba can serve several purposes
including new antimicrobial proteins that the amoeba can use for potentially predigesting prokaryotes.
Secondly, it can help with the identification of potential new therapies against Acanthamoeba infection.
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1. Introduction

Protozoans, such as the free-living amoeba Acanthamoeba, secrete various bioactive
proteins that help modulate interactions between the amoeba and other microorganisms [1].
Acanthamoeba produces various antimicrobials, including hydrolytic enzymes such as pro-
teases, which are involved in substrate degradation for nutrition [2,3]. Proteases are highly
researched proteins in Acanthamoeba since they play a crucial role in pathogenicity. Proteases
of varying molecular weights have been identified in this amoeba [4–11], and their activity
profile has been suggested as a method to distinguish between potentially pathogenic and
non-pathogenic strains of Acanthamoeba [6]. Proteases have been shown to increase cell
permeability, degrade the human extracellular matrix, disrupt the cell monolayers, mediate
tissue invasion, and even induce cytotoxic effects [3,12–15]. Additionally, proteases have
been linked to the typically biphasic life cycle of Acanthamoeba as they play an important
role during encystment [16–18].

In this study, we identified a novel Acanthamoeba protease of approximately 33 kDa,
named AcPro33, that possesses antimicrobial properties. To facilitate the identification
of proteins with antimicrobial properties against specific bacteria, we developed a zymo-
gram that provides a simple and quick screening method. In addition, we discovered
two cysteine proteases involved in the encystment process, which is critical to the per-
sistence of Acanthamoeba in human infections. Understanding the molecular processes,
by which Acanthamoeba feeds and the enzymes it secretes with this purpose, can have
therapeutic implications in combatting infection.
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2. Materials and Methods
2.1. Strains and Cultures

Acanthamoeba strain 53 genotype T4s were used for the experiments (de Obeso, 2018).
Also, Acanthamoeba castellanii Neff strains (ATCC 30010), a T2 genotype strain labeled 61, a
T4-labeled 64, and a T5-labeled BC were tested for proteolytic activity. All Acanthamoeba
cultures were grown in AX2 media [19]. All Acanthamoeba cultures were grown at room
temperature until confluency.

2.2. Electrophoresis SDS Page and Protease Zymography

An SDS-PAGE was performed in 10% acrylamide gel. Protease zymograms were
performed using similar conditions to the SDS-PAGE gels, with the addition of fish gelatin
at 0.1% to the resolving gel. After electrophoretic separation, the gels were incubated with
a solution consisting of 2.5% Triton X-100; 50 mM of Tris-HCl pH 7.0 for 1 h, and then
overnight in 50 mM of Tris-HCl pH 7.0, and finally in 2 mM of CaCl2 at room temperature
with continuous shaking. The gels were rinsed and stained with a Coomassie stain for
one hour. The gels were deistained using a SDS-PAGE destaining solution.

2.3. Anitmicrobial Zymogram

An antimicrobial zymogram was developed and tested on Escherichia coli and Arcobacter
butzleri. Bacterial cultures were grown overnight. The cultures were centrifuged, and the
supernatant was discarded while the remaining bacteria were resuspended in 1 mL of H2O.
A gel similar to the SDS-PAGE was used by substituting 1 mL of water with the prepared
bacterial solution which served as the substrate. Electrophoretic separation was carried out
with 200 V at 4 ◦C. The gels were incubated with a solution consisting of 2.5% Triton X-100;
50 mM of Tris-HCl pH 7.0 for 1 h, and then overnight using a new solution consisting of
50 mM of Tris-HCl pH 7.0. The 2 mM CaCl2Gels were rinsed and stained with a Coomassie
stain and destained using a destaining solution. All incubations were performed at room
temperature with continuous shaking. Acridine orange (20 mL at 0.02% of acridine orange,
staining for 20 min and destained with methylene blue (20 mL with 0.02 g of MB + 0.002 g
of NaOH+ 0.002 g of KCl, incubated for 1.5 h and destained with H2O) and Alcian blue
(18 mL of H2O + 2 mL of 95% ethanol + 0.06 g of AB, incubated for 3 h and destained with
H2O) were also tested before identifying Coomassie as the better staining method.

2.4. Protease and Antimicrobial Zymogram Testing Conditions

Different conditions were tested to observe and characterize the enzymatic activity.
The different incubation temperatures, EDTA, and PMSF were used to test for inhibition
and characterization of the protease. PMSF is an inhibitor of serine proteases, while EDTA,
while not a proper inhibitor, is a chelator that affects enzyme activity. Both the supernatant
and cell phases were tested for different conditions.

2.5. UPLC System and Chromatography

Chromatography was performed using an Acquity® UPLC class HXBridge Peptide
BEH C18 1.7 m column (150 mm × 2.1 mm). Chromatography was carried out at a flow rate
of 0.4 mL/min. The samples were loaded directly on the analytical column. The mobile
phase was filtered via a degassed 0.22 µm nylon membrane. The injection volume consisted
of 10 µL with an analytical wavelength at 280 nm. The wavelength was selected using a
scan mode in a photodiode array detector ranging from 200 nm to 400 nm. The data were
acquired for 18 min and processed by using an Empower Pro data handling system.

The mobile phase was prepared via 0.1% phosphoric acid in acetonitrile and methanol
(85:15). Here, phosphoric acid was used to increase the sharpness of the peaks and for good
resolution; the 85:15 ratio of the mobile phase was used to minimize the time of elution of
the two peaks with a good resolution.

The column temperature was set at 25 ◦C. The sample temperature was maintained at
4 ◦C to compensate for protease instability at room temperature.
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2.6. Protein Purification

All purification steps were performed at 4 ◦C on an AKTA Purifier 10 system (GE
Healthcare Biosciences, Uppsala, Sweden). The supernatant from the cultures grown for
48 h was used as a crude source of enzyme. The crude enzyme solution of Acanthamoeba
was separated via anion exchange chromatography eluted with a stepwise NaCl gradient.
The Acanthamoeba culture was diluted using 50 mL of a 50 mM sodium phosphate buffer,
pH 7.0, and filtered with a 0.45-µm pore size. The enzyme solution was loaded onto a
HiLoad 26/10 Q Sepharose High-Performance column (GE Healthcare Biosciences) and
then equilibrated with 50 mM of a sodium phosphate buffer, pH 7.0. The fractions were
eluted at a flow rate of 1 mL/min using an equilibration buffer with a NaCl stepwise
gradient of 0–0.17 M by using a volume of 20 mL and 0.30–1.0 M for 20 mL. The fractions
were detected via UV absorbance at 280 nm for collection. Acanthamoeba protease activity
in the collected fractions was observed with the zymograms.

2.7. RNA Sequencing

Finally, RNAseq data [20–22] previously obtained to study encystment was used to ana-
lyze protease expression throughout the amoeba life cycle to look for differentially expressed
proteases. Automated TruSeq-stranded mRNA-seq from total RNA were used to prepare
the libraries. Sequencing experiments were performed using HiSeq-4000 75PE. Sequencing
experiments were carried out by Edinburgh Genomics. The reference genome (FASTA and
GTF files) from A. castellanii was obtained from ENSEMBL Protists [23]. STAR software
(version 2.6.0) was used to index the genome and align the reads [24]. The differential expres-
sion analysis was performed using R studio and edgeR [25]. FeatureCounts software (version
1.6.0) generated counts per gene using reverse stranded reads [26]. A logFC (logarithmic fold
change) above 1 or below −1 was the threshold for differential expression.

3. Results
3.1. Antimicrobial Zymogram

A zymogram to test for antimicrobial activity was developed. Different staining
methods were tested. Acridine orange (incubation for 20 min with 20 mL of H2O, 0.02%
of acridine orange and destaining with H2O). did not show any visible bands. Alcian
blue (incubation for 3 h in 18 mL of H2O, 2 mL of 95% ethanol, and 0.06 g Alcian blue
while destaining with H2O) and methylene blue (90 min with 20 mL of H2O with 0.02 g
of methylene blue, 0.002 g NaOH, and 0.002 g KCl while destaining with H2O) did not
destain properly. Coomassie blue showed proper destaining and contrast to observe the
band of enzymatic activity [20]. The zymogram showed similar results using E. coli and A.
butzleri, which are both Gram-negative bacteria (Figure 1A).

This assay helped identify the protease that is thought to be the Peptidase_S8 domain-
containing protein (ACA1_222700) as it is the correct size, type of protease, and it has been
linked to pathogenicity previously [7]. We show in Figure 1A that the protease is present
in the cells and the supernatant. Additionally, we verified that the protease was the same
protein with antimicrobial activity performing an antimicrobial zymogram and using the
gel as the sample to run a protease zymogram (Figure 1B). We then tested different strains
to check if the same proteolytic pattern showed in the gel (Figure 1C). Finally, samples
were incubated with protease inhibitors and EDTA as a chelator. We identified the protease
as a serine protease, as it could be completely inhibited with PMSF in the cells and the
supernatant fractions from zymography. EDTA, that is regularly used as a metalloprotease
inhibitor, showed a slight inhibition. The results for the protease inhibitors are shown in
Figure 1D.
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Figure 1. Antimicrobial and protease zymograms from Acanthamoeba cultures using a Coomassie 
blue stain. Small orange arrows are used to point at the bands shown. (A) Antimicrobial zymogram 
using A. butzleri as the substrate. AX2 media was used as a negative control. Two samples, one in-
cluding cells and another one with the supernatant (SN) for the culture were loaded into the gel. (B) 
Protease zymogram using an antimicrobial zymogram as the loaded sample. With this method, we 
proved that the antimicrobial protein also has proteolytic capabilities. On the right lane, we used LB 
media as a control. The antimicrobial gel was used using E. coli as the substrate. (C) Protease zymo-
gram from five different strains: 1. Neff strain, 2. Strain 65 genotype T4, 3. Strain 61 genotype T2, 4. 
Strain 64 genotype T4, and 5. Strain BC genotype T5, where different proteolytic patterns are shown. 
(D) Protease inhibition zymograms using EDTA and PMSF. Slight inhibition was observed in the 
cell sample of EDTA, but complete inhibition was observed when using PMSF. AX2 media was used 
as the control. As in (A), the cells and the supernatant were loaded into the wells. (C,D) The images 
have been processed to greyscale, with the colors inverted and the contrast altered to improve the 
resolution. 

3.2. Chromatography Acanthamoeba Protease 
Chromatographic analysis of AcPro33 was initiated under isocratic conditions to ob-

tain an adequate response, a sharp peak shape, and a short run time. The results of the 
chromatographic profile are shown in Figure 2. The chromatogram shows two peaks at 
about minute one, of which these peaks are related with the AcPro33. Follow-up injections 
showed the second peak decreasing or disappearing over time via comparisons of differ-
ent subsequent injections (Figure 2). 

Figure 1. Antimicrobial and protease zymograms from Acanthamoeba cultures using a Coomassie blue
stain. Small orange arrows are used to point at the bands shown. (A) Antimicrobial zymogram using
A. butzleri as the substrate. AX2 media was used as a negative control. Two samples, one including
cells and another one with the supernatant (SN) for the culture were loaded into the gel. (B) Protease
zymogram using an antimicrobial zymogram as the loaded sample. With this method, we proved
that the antimicrobial protein also has proteolytic capabilities. On the right lane, we used LB media
as a control. The antimicrobial gel was used using E. coli as the substrate. (C) Protease zymogram
from five different strains: 1. Neff strain, 2. Strain 65 genotype T4, 3. Strain 61 genotype T2, 4.
Strain 64 genotype T4, and 5. Strain BC genotype T5, where different proteolytic patterns are shown.
(D) Protease inhibition zymograms using EDTA and PMSF. Slight inhibition was observed in the
cell sample of EDTA, but complete inhibition was observed when using PMSF. AX2 media was
used as the control. As in (A), the cells and the supernatant were loaded into the wells. (C,D) The
images have been processed to greyscale, with the colors inverted and the contrast altered to improve
the resolution.

3.2. Chromatography Acanthamoeba Protease

Chromatographic analysis of AcPro33 was initiated under isocratic conditions to
obtain an adequate response, a sharp peak shape, and a short run time. The results of the
chromatographic profile are shown in Figure 2. The chromatogram shows two peaks at
about minute one, of which these peaks are related with the AcPro33. Follow-up injections
showed the second peak decreasing or disappearing over time via comparisons of different
subsequent injections (Figure 2).
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Figure 2. Chromatogram of AcPro33 in the XBridge Peptide BEH C18 column. Three different injec-
tions and runs of the chromatogram with the same sample, one after the other. The samples show 
changes in the patterns with one of the peaks being lost. The red line represents the first sample that 
shows two clear peaks, while the blue line is the second sample with only one peak. The green one 
represents the third injection showing a displacement of the samples, showing possible degradation. 
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ity against E. coli. Enzyme activity was confirmed via the zymogram. 
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Figure 2. Chromatogram of AcPro33 in the XBridge Peptide BEH C18 column. Three different
injections and runs of the chromatogram with the same sample, one after the other. The samples show
changes in the patterns with one of the peaks being lost. The red line represents the first sample that
shows two clear peaks, while the blue line is the second sample with only one peak. The green one
represents the third injection showing a displacement of the samples, showing possible degradation.

3.3. Purification of Acanthamoeba Protease

The crude extract separated presented similar activity to the protease characterized
in the present work. The elution happened at 0.17–0.20 M of the NaCl-contained active
protein. The specific activity of the pooled active fractions represented a 90.6% yield of the
original initial mix. The proteases purified from Acanthamoeba showed high specific activity
against E. coli. Enzyme activity was confirmed via the zymogram.

3.4. RNA-Seq Data

The gene identified to code for AcPro33 (ACA1_222700) was analyzed using RNAseq
data during the trophozoite and encysting stages. The data showed the third highest
LogCPM (Logarithmic counts per million) during the 0 (trophozoite stage) versus 24 h
of encystment comparison of the 13,271 genes tested. The LogCPM was 12.185 while the
average for all other genes was 4.651. However, despite the high expression rates of the
gene in both the trophozoites and encysting cells, no differential expression of the protease
was observed.

In relation to protease activity, the RNAseq data was screened for related genes during
encystment. Two new cysteine proteases (with geneIDs of ACA1_115390 and ACA1_138380)
were observed to be overexpressed at 24 h after induction of the encystment alongside
the encystation mediating proteinase (ACA1_321400) used as a control. The differential
expression analysis showed a LogFC for ACA1_11530 of 3.915 and for ACA1_138380 of 6.259.

4. Discussion

Prokaryotic proteases, such as AcPro33, have been researched for their antimicrobial
capabilities, with lysostaphin from Staphylococcus simulans being a commonly studied ex-
ample [27]. However, the use of prokaryotic proteases for combating other prokaryotes is
limited due to the possibility of horizontal gene transfer leading to community-wide antimi-
crobial resistance [28]. Therefore, bacteriolytic eukaryotic proteases offer a more promising
option. Such eukaryotic proteases are not widespread, but there are some examples such as
an aspartic protease produced by potatoes, a serine protease from horseshoe crabs, another
serine protease from jackfruit, and proteinase 3 from neutrophils [29–32]. Therefore, pro-
teases from Acanthamoeba and other free-living amoebae could be great options to combat
infections and antimicrobial resistance.

A larger understanding of amoebic proteases will not only help combat bacteria
but can help with amoebic infections as proteases play a role in pathogenicity and are
involved in the encystment process. Protease inhibitors have been studied for their po-
tential in controlling microorganisms, including Acanthamoeba [33]. For example, maslinic
acid, a protease inhibitor that can trigger programmed cell death, can successfully inhibit
Acanthamoeba destruction of the corneal epithelial cells’ death [34]. Also, human protease
inhibitors are involved in extracellular matrix synthesis, inflammation, and tissue repair,
reaffirming the possibility of using such compounds to combat microorganisms as they
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naturally play a role in human physiology [35]. Some protease inhibitors have been tested
against other amoebae such as Entamoeba hystolitica and E. invadens [36,37].

Newly identified proteases involved in the encystment process of Acanthamoeba could
offer new alternatives for treatment and decrease infections [38–40]. Cysteine proteases
have been reported to play an important role during encystment and have been linked to
mitochondrial degradation [41–43]. In this paper, we have also identified two proteases
that are overexpressed during the encystment process (ACA1_115390 and ACA1_138380),
increasing our understanding of the process.

Finally, the novel antimicrobial zymogram that has been described has helped iden-
tify the Acanthamoeba protease capable of degrading at least two distinct Gram-negative
bacteria, offering the opportunity to establish treatments for the disease caused by either
the organisms producing the enzyme, or the organisms affected by it. Gram-negative
bacteria were selected for different reasons including the ability of Acanthamoeba to feed
from them [44]. E. coli was selected as a target due to the importance as an opportunistic
pathogen, its availability in most laboratory settings, and its prevalence as an excellent
food source for Acanthamoeba [45]. A. butzleri was selected as an endosymbiont capable of
surviving after being phagocytized by the amoeba [46,47]. Accessible and easy assays to
identify new antimicrobials could help the identification of potential molecules we have to
combat infections. This is especially important if we can use common techniques such as
electrophoresis and easy to grow bacterial organisms such as E. coli so that the essay can be
replicated in almost every setting. It would be important to test different E. coli strains (we
used DH5α) since some can survive inside Acanthamoeba as endosymbionts, such as the
K11 and 0157 strains [44,48].

Future studies should confirm the identity of AcPro33 as the protease reported in the
literature and focus on understanding the pathogenic factors to develop new treatment
alternatives [7,33,49]. Bacterial growth assays could be added to the characterization of the
protein. Unfortunately, the fast degradation of the protease made these studies challenging
and did not offer reliable results. It has been reported that a 33 kDa serine protease plays
an important role in the pathogenicity and invasion of corneal tissue. This protease, or a
similar one, was identified in A. castellanii, A. healyi, and A. ludgunensis [7,8]. AcPro33 can
help combat different bacteria, at least some Gram-positive organisms. However, if AcPro33
were to be used as an antimicrobial agent, protein engineering would be recommended to
increase stability [50,51].

Since AcPro33 is secreted in axenic cultures and its expression does not appear to
change through the life cycle of Acanthamoeba (as observed from RNAseq data), we hy-
pothesize that the secretion of AcPro33 is a method used by Acanthamoeba to preemptively
combat bacteria and to pre-digest some of its food sources with or without the presence of
other microorganisms. Additionally, secreted proteins can be a first line of defense against
bacterial colonization since some bacteria are able to survive inside Acanthamoeba [52]. For
example, Legionella pneumophilla can survive inside Acanthamoeba at around 20 ◦C, but when
the temperature increases to 37 ◦C, as happens in the human body, it lyses the amoeba
and is capable of human infection [53]. Several other bacteria are capable of becoming
intracellular hosts of Acanthamoeba, such as Bacillus anthracis, Chlamydia pneumoniae, Heli-
cobacter pylori, Vibrio cholerae, and Salmonella typhimurium [54–58]. Secreted proteins, such
as AcPro33, that can have bacteriolytic effects provide Acanthamoeba with an evolutionary
mechanism to try to avoid bacterial colonization. Understanding this process at a deeper
level could help elucidate some of the unknown aspects of Acanthamoeba’s feeding habits,
the relation with intracellular bacteria, and help prevent human infections.
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