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Abstract: Defect detection is crucial in quality control for fabric production. Deep-learning-based
unsupervised reconstruction methods have been recognized universally to address the scarcity of
fabric defect samples, high costs of labeling, and insufficient prior knowledge. However, these
methods are subject to several weaknesses in reconstructing defect images into defect-free images
with high quality, like image blurring, defect residue, and texture inconsistency, resulting in false
detection and missed detection. Therefore, this article proposes an unsupervised detection method
for fabric surface defects oriented to the timestep adaptive diffusion model. Firstly, the Simplex
Noise-Denoising Diffusion Probabilistic Model (SN-DDPM) is constructed to recursively optimize
the distribution of the posterior latent vector, thus gradually approaching the probability distribution
of surface features of the defect-free samples through multiple iterative diffusions. Meanwhile, the
timestep adaptive module is utilized to dynamically adjust the optimal timestep, enabling the model
to flexibly adapt to different data distributions. During the detection, the SN-DDPM is employed to
reconstruct the defect images into defect-free images, and image differentiation, frequency-tuned
salient detection (FTSD), and threshold binarization are utilized to segment the defects. The results
reveal that compared with the other seven unsupervised detection methods, the proposed method
exhibits higher F1 and IoU values, which are increased by at least 5.42% and 7.61%, respectively,
demonstrating that the proposed method is effective and accurate.

Keywords: denoising diffusion probabilistic model; fabric defect detection; deep-learning-based
unsupervised detection method; image repair; computer vision

1. Introduction

Fabric defect detection plays a key role in controlling textile quality. Fabric defects
may influence the appearance of the product, resulting in performance degradation or even
functional failure. Punctual detection and repair of fabric defects can lower the defective
rate and scrapped quantity, reduce waste and repeated production costs, ensure the qual-
ification of final products, and improve customer satisfaction and brand reputation [1].
However, manual detection currently still prevails in many enterprises, which not only
places high requirements on the technical qualifications of inspectors but also leads to a
heavy burden of labor costs. Consequently, promoting a highly precise and efficient fabric
defect detection system is extremely significant in improving product quality, ensuring the
smooth running of production machines, and effectively lowering labor costs [2].

Machine vision has been highly recognized and is gradually replacing manual vision,
becoming an important application in fabric defect detection. Machine vision detection,
a traditional processing method for images, can extract low-level features of images by
obtaining prior knowledge of defect features, thus identifying and classifying the defects [3].
Under the premise of ensuring accuracy, machine vision detection can realize automation
and intelligence while imposing high requirements for camera performance and light
source environment [4]. Fabric defects are diversified in form and complicated in texture,

Processes 2023, 11, 2615. https:/ /doi.org/10.3390/pr11092615

https://www.mdpi.com/journal /processes


https://doi.org/10.3390/pr11092615
https://doi.org/10.3390/pr11092615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-6757-0310
https://doi.org/10.3390/pr11092615
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11092615?type=check_update&version=2

Processes 2023, 11, 2615

20f21

as shown in Figure 1. Notably, small defects, as displayed in Figure 1b, occupy fewer
pixels and have little impact on the overall structure or pattern of the image, increasing the
difficulty of distinguishing them from the surrounding texture or pattern. Owning to the
above factors, machine vision fails to recognize defects in specific textured fabrics, which is
only one of its application restrictions.

(@) (b)

Figure 1. Surface defects of complicated texture fabrics: (a) linear defect; (b) spot defect; and

(c) planar defect.

Deep learning technologies break through the deficiencies of traditional machine
learning technologies. The deep-learning-based supervised detection method [5,6], which
automatically extracts the features of the detected object, has shown significant effectiveness
in image classification, which further supports its application in surface defect detection.
Notably, the deep-learning-based supervised detection method possesses high performance
but still requires lots of annotated data to train the model and a certain number of defect
samples as references. Actually, collecting and annotating numerous defect sample data is
challenging and even impractical [7]. Therefore, some scholars [8-10] have comprehensively
and extensively studied deep-learning-based unsupervised detection methods to detect
surface defects. A prevailing method [11,12] is to obtain the reconstruction models with
positive product features by learning defect-free samples, then reconstructing defect images
into defect-free images by utilizing the trained reconstruction models, and positioning
defects by comparing the differences before and after reconstruction.

The above method is superior because it does not require obtaining the defect type in
advance and free from labeling of the sample defects. Currently, the unsupervised defect
detection models primarily include the generative adversarial network (GAN) [13] and the
automatic encoder (AE) [14]. Nevertheless, these models face challenges in reconstruct-
ing defect images into defect-free images in a high-quality manner [15], causing lower
accuracy in defect detection. GAN is composed of manually designed generators and
discriminators and focuses on solving potential gradient vanishing or explosions, increas-
ing its training difficulty. AE maps high-dimensional feature images to low-dimensional
vector representations, which leads to pixel merging, resulting in blurry reconstructed
images. In addition, the fabric surface texture features are distributed in a non-periodic
manner, and such decentralized data are extremely likely to generate a highly similar image
to the original one, resulting in residual defects in the reconstructed image. During the
post-processing, the fixed threshold segmentation makes it hard to distinguish defects
from reconstruction differences, especially for small and low-contrast defects, making it
difficult to accurately position defects. The denoising diffusion probabilistic model [16], as
a new generative model, is of higher stability and controllability, and can effectively solve
the saddle point by minimizing the convex cross-entropy loss [17]. In consideration of
the above contents, a timestep-adaption-diffusion-model-oriented unsupervised detection
method for fabric surface defects is proposed in this article. By recursively optimizing the
distribution of the posterior latent vector and fitting a distribution that is closer to the real
one, it effectively solves the poor model reconstruction mentioned above. First, regarding
the low accuracy of GAN-based and AE-based methods in repairing defect images, the
simplex noise [18]-denoising diffusion probabilistic model (SN-DDPM) is proposed to
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control the diffusion to repair defect images and keep the authenticity and interpretability
of the image. Secondly, targeting inefficient high-quality reconstruction and no appropriate
timestep for the diffusion model, the structural similarity index (SSIM) [19] and mean
squared error (MSE) are employed as the guided timestep adaption modules, aiming at
the optimal step size of the SN-DDPM and high-quality reconstruction. Additionally, an
effective defect segmentation algorithm that utilizes image difference and FTSD [20] is
employed to highlight the morphological features of defects. Furthermore, the adaption
threshold binarization and closed operations are adopted to segment the defect precisely
and improve the detection accuracy.

In summary, the contributions of this article may be summarized as follows:

Applying the SN-DDPM to repair fabric defect images for precise detection;

Employing SSIM and MSE as the parameterized timestep adaption modules to achieve
the optimal timestep of the model (DDPM);

Proposing a post-processing method based on FTSD to achieve pixel-level segmenta-
tion of defects.

This article is organized structurally as follows.

In Section 2, the unsupervised detection models and DDPM are introduced. Section 3
elaborates on the proposed timestep-adaption-diffusion-model-oriented unsupervised
detection method for fabric surface defects. The applied dataset, training details, and
evaluation indicators are described in Section 4. The next section summarizes and discusses
the experimental results. The last section is the conclusion highlighting the experimental
results and prospects for future research directions.

2. Related Works

Recently, unsupervised detection models have been recognized widely due to their
outstanding performance. This section will introduce partial models and explore the
application prospects of DDPMs in defect detection.

2.1. Unsupervised Detection Method

The current unsupervised detection methods benefit from the support of image re-
construction technologies, which combine higher reconstruction results accuracy with
applying other measurement methods (such as potential vector errors) to identify and
discover defects. Thus, the quality of reconstructed images directly influences the final de-
tection effect. There are many new technologies and algorithms with excellent performance
in enhancing the quality of reconstructed images. Li et al. [21] initially used a denoising
automatic encoder to reconstruct fabric defect images, which can categorize defect and
defect-free images and segment defects by fixed thresholds. While this method holds great
potential for improvement in small defects with low contrast, Zhang et al. [22] put forward
a multi-scale U-shaped denoising convolutional autoencoder model and applied it to defect
detection. Their experimental results disclosed that this model has good generalization ca-
pability. Li et al. [23] constructed a generative network with an encoder-decoder structure
and introduced multi-scale channel attention and pixel attention into the encoder network.
Meanwhile, they improved the performance of defect detection by applying consistency
loss constraints in the reconstruction of pixels, structure, and gradients of the image. In
terms of image generation, GAN outperforms the AE-based method [13], increasingly
extending its application in derived models for defect detection. Zhang et al. [24] integrated
attention mechanisms based on GAN to enhance its feature representation capability for
high-quality information, achieving better reconstruction. Wei et al. [25] conducted multi-
stage training based on a deep convolutional generation adversarial network (DCGAN) and
reduced the interference of defects in the image reconstruction using the linear weighted
integration method. They proved that the constructed method outperformed others in
terms of f-score measurement. However, the fabric images exhibit abundant texture details,
complicated color changes, and irregular patterns, increasing the difficulty for GAN to
capture their true distribution. Thus, the generator learns many subtle differences and
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local structures, extremely weakening the gradient signal and increasing the likelihood of
gradient cancellation [26]. In addition, there are multi-scale and multi-level structures in
the texture of fabric images, which not only increases the risk of pattern breakdown but
also results in the failure to generate real textures and detail changes in the test image.

2.2. Denoising Diffusion Probabilistic Models

DDPMs have shown excellent performance in various applications, such as image
synthesis, video generation, and molecular design [27]. DDPMs improve the training
stability by systematically adding the noise to the generated data and real data, and
sending them to the discriminator for processing [28]. Moreover, DDPMs are capable
of effectively solving the instability caused by a mismatch between the distribution of
generated data and real data during GAN training. Miiller-Franzes et al. [29] verified that
the DDPM showed better precision and recall than the GAN-based models during the
generation of medical images. Lugmayr et al. [30] developed a DDPM model based on
mask repairing that generates an image of the masked area by reasoning the unmasked
image information. Their results were more semantic and authentic in contrast to those
of other models. Li et al. [31] reconstructed the super-resolution of the image using a
DDPM and obtained simpler and more stable properties in the training process compared
with the GAN-based model. With only one loss term, the adopted DDPM could complete
the training without an additional discriminator module, enhancing the convenience and
efficiency of the model in practical application. Additionally, Gedara Chaminda Bandara
et al. [32] pre-trained a DDPM to obtain information on unannotated remote sensing
images and then utilized the multi-scale feature representation of the diffusion model
decoder to train a lightweight change detection classifier. The method was proved to
extract key semantics of remote sensing images and produce better feature representations
than VAE-based and GAN-based methods.

Thus, it is evident that DDPMs have demonstrated outstanding performance in image
generation, not only better preserving the structure and detailed features of images, but also
presenting unique advantages in solving the instability during GAN training. Therefore,
SN-DDPM is adopted in this article to repair fabric defect images, reconstruct defect images
into defect-free images of higher quality, and position the defect areas more accurately.

3. Proposed Methods

Furthermore, this article proposes a timestep-adaptive-diffusion-model-oriented unsu-
pervised detection method for fabric surface defects. This mainly contributes to the feature
extraction of good fabric surface and defect detection with SN-DDPM, as illustrated in
Figure 2.

(1) Surface Feature Extraction of Flawless Fabrics

As demonstrated in Figure 2a, the constructed SN-DDPM gradually adds SN to the
training data from a certain target distribution Xj through the forward diffusion process
q(x¢|x—1) to obtain the pure noise X7. The model converts Xt into Xy by learning the
reverse process pg(x¢|x;_1), and iteratively outputs the optimal timestep f; through the
timestep adaptive module.

(2) Defect Detection with SN-DDPM

As explicated in Figure 2b, SN is added to a defective image, with a timestep of ¢, and
reconstructed images are obtained after denoising. The grayscale processing and Gaussian
filtering are performed on the defect image and reconstructed image, followed by an abso-
lute difference to obtain a residual image. Finally, FTSD is employed to highlight defects,
followed by threshold binarization and closed operation to obtain the detection results.
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Figure 2. Framework of the timestep-adaptive-diffusion-model-oriented unsupervised detection
method for fabric surface defects.

3.1. Surface Feature Extraction of Flawless Fabrics

SN-DDPM is generative and can produce high-quality images by narrowing the
distribution of training data after training, so as to capture the essential characteristics
of the fabric surface. Figure 2a reveals the two processes during diffusion, forward and
reverse. During the forward diffusion, SN is gradually added to the original image Xy
until the image completely turns to pure noise Xt. The reverse diffusion transfers the Xt
to Xp gradually through training the denoising Unet, and iteratively outputs the optimal
timestep f; using the timestamp adaptive module.

3.1.1. Forward Diffusion
In each step of forward diffusion, an SN with a variance of p; is added to X;_; to

generate a new hidden variable X;, with a distribution of g(x¢|x;_1). The specific diffusion
process is expressed in Formula (1) below.

q(xe|xe—1) = N(x¢|xp—1v/1 — Bt Be]) 1)
where N (x¢|x;_11/1 — Bt, BtI) represents the normal distribution of mean x;_1+/1 — B¢

and covariance ;I that produces x; I is the identity matrix, showing that each dimension
exhibits the same standard deviation B, which satisfies 1 < B2 < ... < Br; q(x¢|x;—1)
represents the normal distribution, with a mean value of x;_; /1 — B; and a variance of
B:¢1. To sample X; at any timestep ¢ [16], &y = 1 — By and a; = HZ-T:O «; are set herein, and
the following two formulas can be obtained:

q(xt|x0) = N (x| xov/as, (1 —w)1) )
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Xt = xo\V& 4 e\/1 — 5,60 ~ N(0,1) @)

where ¢; serves as a learned gradient of the data density. Using the above methods, X; can
be acquired at once without sampling the ¢ — 1 times, and thus the noisy image X; can be
generated faster, further improving the overall diffusion efficiency.

3.1.2. Simplex Noise

SN possesses a higher frequency than Gaussian noise, due to which it shows the
complicated details and textures of the fabric surface better. Regarding the coordinate
transformation, the simplex coordinate is transformed into the positive super lattice volume
space of the corresponding space by skewing, as follows:

X' =x+(x+y)xF (4)

vV =y+(x+y)xF (5)

where x and y are the coordinates of the original super lattice body; x" and i’ are the
coordinates of the positive super lattice body; and F can be calculated as follows:

_Vn+1-1

n

F (6)
where n denotes the spatial dimension, which is assigned as 2 in this article for two-
dimensional image processing.

Then, the simplex lattice should be determined. The vectors of pixel points are se-
quenced from largest to smallest to obtain a new vector, and the largest value in the
dimension is taken in sequence until three vertices are obtained. According to the ob-
tained vertices, the vertex gradient vector grad can be determined, taking the permutation
sequence table as the indexing to obtain the vertex gradient value, the same as Perlin noise.

To obtain the distance vector dist between pixel points and vertices, the inverse
function G in the skewing formula F is applicable, and G can be expressed as Formula (7):

G— n+1 (7)
Then, dist can be expressed as follows:
dist = (x —14+2G,y — 1+ 2G) (8)

Finally, the radial attenuation function is applied to calculate the contribution value of
each vertex (Formula (9)), and the values are summed.

(max (0, 7% — |dist|2))4 x dot(dist, grad) )
where better visual effects can be obtained at 72 = 0.6 [18].

3.1.3. Reverse Diffusion

Being opposite to the forward diffusion, the reverse process is to remove noise. It can
be realized by learning a model py by the denoising Unet to approximately simulate the
conditional probability g(x;_1|x;). By parameterizing the mean and variance values, py
can be obtained:

po(xi—1|xt) = N (x;—1; pg(xe,t), Y _o(x1,t)) (10)

xg is known, so the following expression can be obtained through the Bayesian formula:

q(xi_1|xt, x0) = N (x4_1; fi(xt, x0), Bt 1) (11)
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By combining with Formula (3), the below expression can be obtained:
1 1-— Kt
) (12)

I = —— (X — ———¢
o= T e

Therefore, the training model iy (x¢, t) is applied to estimate ji;, while x; serves as
input during the training, so the model can estimate the noise €;.

3.1.4. Denoising Unet

The structure of the denoising Unet is explicated in Figure 3 below:

128x128 Upsample 128x128

64x64 X ¥ 64x64
32:32 X ¥ 3232
16x16 % ¥ 16x16
8x8 & ¥ 88

Middle
[ Upsample }ZQ[ block ];XZ [Downsample}

Figure 3. Structure of the denoising Unet.

The denoising Unet possesses an encoder—decoder structure, where the right half
is down-sampling and the left half is up-sampling. During the encoder operation, the
resolution of the image can be gradually reduced through continuous down-sampling to
obtain image information at different scales. Meanwhile, this process can support the model
to extract low-level features, such as points, lines, and gradients from the underlying image
information, and gradually transition to high-level features, such as contours and more
abstract information. In this way, the network fulfills the feature extraction and combination
from details to the whole, making the finally obtained features more comprehensive. In
addition, using the denoising Unet with the supplemented skip connection structure, the
network integrates various feature diagrams of encoder positioning to the channel while
the up-sampling is implemented at each level. Furthermore, with the integration of the
underlying and apparent features, the network can maintain more high-resolution details
contained in high-level feature diagrams, improving the accuracy of image reconstruction.

To support the model in estimating noise €;, the logarithmic likelihood of the predicted
distribution of the model should be maximized and the negative logarithmic likelihood
should be optimized by using the lower bound of variation. After that, the following
formulas can be obtained:

Lyip=Lr+Lr1+--+ Lo (13)
L1 = Dkr(q(xt|x0)|Ipe(xT)) (14)
Lt = Dgr(q(x¢|xe—1,x0)||po(xe|xe41)); 1<t<T-1 (15)

Ly = —log pa(xo|x1) (16)
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Since the forward diffusion consists of no learnable parameters, xT is pure noise and
can be ignored as a constant, so the loss function can be simplified [16] and calculated:

LM = Exyellle = eoVarxo + 1= e, 1)) 47

Furthermore, the above formula can be utilized to predict the noise € at each time ¢ to
allow the model to accurately predict by measuring the difference between € and the real
noise €y till they are the same.

3.1.5. Timestep Adaptive Module

The timestep largely determines the quality of reconstructed images. Relevant experi-
ments and research [27,33] show the single valley function relationship between timestep
and the quality of reconstructed images. In this article, the advance-retreat method is
adopted as the core concept of the timestep adaptive module. It is a dominant optimization
algorithm, with adjusted search steps to achieve the closest optimal solution in accordance
with the change in objective function.

The timestep adaptive module is illustrated in Figure 4.

— — —# Timestep size search

Fractional curve

T, T

T

Figure 4. Example of a timestep adaptive diagram, with the advance-retreat method applied to solve
the closest solution to the optimal solution Ty.

The training data for the feature extraction of defect-free surfaces are defect-free images
only. In consideration of this, SSIM and MSE served as evaluation indicators to ensure
the reconstruction result is maximally similar to the original image, which can be defined
as follows:

L = (1—a)MSEy, +a(1—SSIMy,) (18)

where x and y represent the original and reconstructed data, respectively; and « refers to
the weight factor to balance the relative importance of the pixels and SSIM. Herein, « = 0.5
is designated to balance the degree of distortion and SSIM of the images. SSIM can be
calculated based on the data of brightness, contrast, and structure:

(2.”XVy + Cl)(z‘fxy +2)
(H? + w? + 1) (02 + 02 +¢2)

SSIMyy = (19)
In the formula above, yy and iy represent the average values of x and y, respectively;
0y and 0 denote the variance of x and y, respectively; 0yy is the covariance of x and y;

¢; = (kiL)*> and ¢, = (k;L)? are constants to maintain stability; and L stands for the
dynamic range of pixel values, with k; = 0.01 and k = 0.03 [19].
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MSE can be calculated with the following formula:

n

1
MSEyy =~} (x ~ y)? (20)
i=1

After the initial point Ty and the initial step & = 100 are set, the next detection point
can be written as Tygg = Ty + h, based on which the 7 (Ty) and Z (Tygo) can be calculated
and compared. If IL(Ty) > L(Tiqp), the forward search can be continued, otherwise, the
reverse search should be implemented, and the search step size is defined as % To prevent
the search from falling into an infinite loop, a counter is set herein to control the number of
searches. It will stop the search and output Ty when the number of cycles n reaches 20.

3.2. Defect Detection with SN-DDPM

The SN-DDPM only containing the features of flawless products is obtained, as men-
tioned in Section 3.1, in which the corresponding optimal timestep is clarified. Here,
the defect image is reconstructed, and the defect is located accurately. As shown in Fig-
ure 1b, the defect is segmented into main three steps, namely, image reconstruction, image
difference, and FTSD, as specified below (Algorithm 1).

Algorithm 1: Defect Detection with SN-DDPM

Input: RGB image X
Output: Defect detection result X,
Step 1: Obtaining the optimal timestep and reconstructing the defect image X.
Step 2: Processing the images as follows:
Converting the RGB image to grayscale: X¢rqy = 0.2125X, + 0.7154X, + 0.0721X},

ian filter: 1 4y
Gaussian filter: Xgyssion = T, -exp(— Toxty )
Step 3: Absolute difference:

AX = |Xgaussitm - Xguussiun'
Step 4: Performing FTSD:
Applying the Gaussian filter to smooth the residual image
9: Converting the smoothed image to LAB color space
10:  Calculating the average image feature vector
11:  Calculating the pixel vector value
12:  Calculating the saliency image from normalized Euclidean distance
13: Step 5: Binarization:
14:  Calculating the threshold value: T = y + o
0, ifp<T
255, otherwise

15:  Binarizing the saliency image: O = {

16: Step 6: Closed operation:
17: Xyesult = (Xsaliency = S) Os

Step 1: The defect image is reconstructed using the previously obtained reconstruction
model and the optimal timestep. With the defect image serving as input, the optimal
timestep controls the SN to generate a noisy image and input it into the reconstruction
model to obtain the reconstructed image, which maximally keeps the features of flawless
products, with the defects repaired.

Step 2: The grayscale processing and Gaussian filtering are conducted on defect
images and reconstructed images, respectively, as expressed in Formulas (21) and (22),
respectively:

Xoray = 0.2125X; +0.7154 X + 0.0721X, (21)

-exp(— x2 Y ’
27T0’x(7y p 2(7x(7y

G(xy) = ) (22)
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where, X¢/q, represents the grayscale image; and X, X, and X, are the pixel values of the
red, green, and blue (RGB) channels, respectively. Meanwhile, the convolution kernel with
the size of 3 x 3 is selected for Gaussian filtering, and 0 and ¢, denote the pixel deviations
in the x-axis and y-axis directions of the image, respectively.

Step 3: The absolute difference operation (Formula (23) is performed on the test
diagram and the reconstructed grayscale Gaussian image to obtain a residual image.

Ax(m,n) =|X(mn) — J?(m,n) (23)

In the expression above, x(,, ,) and £, , represent the standard image and operated
image with the dimension of m x 1, respectively, and Ax,, ,) refers to the residual image.
Step 4: The residual image is subjected to FTSD to obtain a saliency image. As
demonstrated in Figure 5, the specific process includes smoothing the residual image using
a7 x 7 Gaussian filter to eliminate noise and preserve the overall structure of the image.
The image obtained at this time is called a Gaussian image, which is then converted from
the RGB color space to the LAB color space to obtain the Lab image. Subsequently, the
average pixel values Ly, a;, and by of the L, A, and B channels of the converted Lab image
are calculated to obtain the average image feature vector I, and pixel vector value I, (x,y).
After the calculation and normalization of the Euclidean distance of these two vectors, the
saliency image is finally obtained.
Lm/)c
I,.(x,y)= |:amh(‘|
b

whe

Gaussian blur RGB to LAB

(563 =], ~ L)

RGB image Gaussian image Lab image Saliency image

Figure 5. Process of the FTSD method to remove noise and highlight defects.

Step 5: The random noise in the unreal defect area is filtered for more accurate
detection. Noise usually obeys a normal distribution, so binarization is employed to
segment a gray residual image, with the threshold being defined as follows:

T=u+o (24)

where, T is the adaptive threshold, and i and o are the mean and standard deviation of the
saliency image, respectively. The binarization and segmentation operations are expressed

as follows:
p=0, p=<T
{ p=255,p>T @5

where p represents the pixel value of the residual image; 0 is defined if p is less than or
equal to the threshold, otherwise 255 is designated.

Step 6: Finally, through a closed operation, small holes are eliminated, and cracks in
the contour line are filled, thus obtaining a complete defect form. The closed operation is
expanded and corroded, with the formula as follows:

Xresult = (Xsaliency @ S) Os (26)

where X1 is the image after the closed operation, s represents the structural element, ®
is the expansion operation, and © refers to the corrosion operation.
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Defect

Defect-free

The spatial complexity of the SN-DDPM model is significant, with 239.6 M parameters,
each of which is stored using a 32-bit floating point data type. Such a large set of parameters
endows SN-DDPM with powerful characterization capabilities, enabling it to extract more
subtle patterns and associations, giving it an advantage in complex conditions, large-scale
datasets, or high-dimensional data.

4. Experimental Setup
4.1. Datasets

The colored fabrics from the small lattice (SL) dataset from the Yarn-dyed Fabric Image
Dataset Version 1 (YDFID-1) [34] were selected, which consisted of 3245 defect-free samples
and 254 defect samples. The fabric pattern is primarily that of small lattices, displayed in
RGB images of 512 x 512 pixels. To verify the applicability of SN-DDPM on different color
fabrics, eight types of typical fabrics with different textures and colors were selected, which
are SL1, SL2, SL5, SL8, SL9, SL10, SL11, and SL13. Images of some defect-free and defect
samples were selected for comparison, as given in Figure 6. This dataset contains highly
complicated defect categories and fabric textures, providing a sound solution for verifying
the performance of deep learning models in detecting complicated defects.

SL2 SL5 SL8 SL9 SL10 SL11 SL13

Figure 6. Images for defect-free and defect samples of colored fabrics from the SL dataset.

Influenced by insufficient data of defect-free samples in the dataset, the sample size
was increased using data enhancement methods, which is beneficial for improving the
model invariance. A total of 51,888 high-quality images were obtained by rotating the
original defect-free images at 90°, 180°, and 270°, as well as flipping the upper, lower, left,
and right mirror surfaces. They served as training sets, while the rest of the samples were
test sets.

4.2. Training Process

During the model training, the flawless fabric image was adopted only to train fully
extracting the characteristics of flawless samples with the principle of unsupervised learn-
ing. The model was trained through flawless images, obtaining the feature distribution
of these samples. The detection results of the proposed method were compared with
those of DCAE [35], DCGAN [36], Recycle-GAN [37], MSCDAE [38], UDCAE [39], VAE-
L2SSIM [40], and AFFGAN [12]. All models were trained with a batch size of 8, an epoch
of 5000, and a learning rate of 1 x 10—%. Meanwhile, the model loss should be maintained
in a stable state. A system equipped with an Intel i9-12900H CPU and Nvidia RTX3070ti
GPU was employed to train and test the models in this article.

4.3. Evaluation Method
4.3.1. Evaluation Indicator of Image Reconstruction Results

The peak signal-to-noise ratio (PSNR) [41] and SSIM, two commonly applied indi-
cators to assess image quality, can quantitatively analyze the reconstruction results and
evaluate the model’s capability to retain details during image reconstruction objectively
and accurately. SSIM was discussed in Section 3.1.5, and PSNR is introduced herein.
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By combining Formula (20), the PSNR can be defined as follows:

MAX?

PSNR = 1010g10(m

) (27)

MAX? in the above expression represents the maximum possible pixel value of the
image. The image pixels used in the article are represented by 8-bit binary, so its value
is 255.

With large PSNR and SSIM values, the reconstruction model can better preserve the
details of the original image, the reconstruction results are closer to the original image, and
the image quality is higher. Therefore, the larger the values of PSNR and SSIM, the higher
the similarity between the reconstructed image and the original image, and the stronger
the model’s capability to reconstruct details.

4.3.2. Evaluation Indicator Defect Detection Results

Precision (P), recall (R), accuracy (Acc), F1 value, and intersection over union (IoU), as
defined in Formulas (28)—(32), were employed to quantitatively analyze the defect detection
results of different models.

p= %fﬂj % 100% (28)

R= Tpiipm % 100% (29)

Ace =757 lej I ;g TEN < 100% (30)
Pl:sz;ingFNXlOO% (1)
ToU = ﬁ % 100% (32)

The relationships among the four indicators, true positive (TP), false positive (FP),
false negative (FN), and true negative (T N), are summarized in Figure 7, with gray repre-
senting the test result and brown representing the reference value. Actually, TP represents
the number of pixels that are successfully detected and confirmed as defect areas; FP repre-
sents the number of pixels that are defect areas but erroneously identified as non-defective
areas; FN refers to the number of pixels that are non-defect areas but erroneously identified
as defective areas; and TN stands for the number of pixels which are successfully detected
and confirmed as defect-free areas. P and R denote the precision of the model in predicting
whether it is correct or not. The higher the P and R values, the better the performance of
the defect detection method. Nevertheless, it is worth noting that there are contradictions
between P and R under certain circumstances, increasing the difficulty in acquiring higher
values of both, while the F1 value can better reflect the overall detection performance.
In addition, Acc indicates the model’s accuracy in predicting the correct region, and IoU
measures the accuracy of the model in judging the defect position. Acc and IoU can reflect
whether the model has detected the defect, instead of unilaterally paying attention to the
accuracy of defective pixel detection.
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Figure 7. Confusion matrix diagram to show the relationship among TP, FP, TN, and FN.

5. Experimental Results and Discussion
5.1. Fabric Images Reconstruction Experiments

The reconstruction capability of the unsupervised detection model has a direct effect
on the detection results, which is primarily reflected in the repair of the defect area of the
detected fabric image and that of the image details of the defect-free area. For comparing
the reconstruction capabilities of DCAE, DCGAN, Recycle-GAN, MSCDAE, UDCAE, VAE-
L2SSIM, AFFGAN, and SN-DDPM, the fabric samples with different textures, background
colors, and types of defects were selected in this study. Figure 8 shows the repairing results
of eight models on the image to be tested, in which the sample SL1 contains a large defect
area. The DCGAN and VAE-L2SSIM exhibit no remarkable defect areas but fail to visualize
details of the defect-free areas. The reconstructed image of DCGAN displays obvious
stitching traces, while that of VAE-L2SSIM possesses blurring and texture disorder. The
DCAE, MSCDAE, AFFGAN, and UDCAE all show traces of defect areas, of which the
reconstructed results of MSCDAE are quite different from the original images. Recycle-
GAN cannot effectively reconstruct defect areas into good products, and there is a big
difference between non-defect areas before and after reconstruction. Compared with the
above six models, SN-DDPM shows higher capability to repair defect areas and displays
the non-defect areas almost the same as the original images, which is beneficial to the
subsequent defect positioning. The second line shows the sample SL8 with monofilament
stripe defects and the construction and repair results of each model. After repair by the
DCAE, DCGAN, and VAE-L2SSIM, traces of defect areas are not observed, but the texture
information of non-defect areas is lost. Furthermore, block stitching traces are visible in
the reconstructed images after repair by DCGAN. MSCDAE retains the defects on the
reconstruction diagram, and the reconstruction results of non-defect areas are not as good
as expected. Additionally, UDCAE is unable to effectively reconstruct the images and
Recycle-GAN fails in and enlarges the defect area. In addition, AFFGAN is capable of
effectively reconstructing a defect image into a defect-free image but exhibits a too regular
and unnatural texture of the reconstructed image compared with the original image. The
above comparison and discussion reveal that SN-DDPM possesses leading advantages in
repairing defect areas and maintaining relevant details of non-defect areas. The results
of eight models in reconstructing and removing small defects in sample SL9 containing
small defects are listed in the third row. It can be observed that most models exhibit the
repaired defect areas. Nevertheless, VAE-L2SSIM and DCGAN fail to effectively reconstruct
the image, while Recycle-GAN and MSCDAE suffer from blurred reconstructed images
and defect retention. Therefore, SN-DDPM has a better visual reconstruction effect of
texture details than that of other models, thus reasonably demonstrating competitive
reconstruction performance.
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Defective image
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DCGAN AFFGAN SN-DDPM

Recycle-GAN

MSCDAE UDCAE VAE-L2SSIM

SL1

SL8

SL9
Figure 8. Qualitative comparison of the reconstruction results of different models, with the red boxes
marking the defect areas.

Furthermore, PSNR and SSIM are selected to assess the image quality, based on which
the reconstruction capabilities of various models are quantitatively compared. There is
no defect-free image corresponding to the defect sample in the data set so the defect-free
image is used as the reconstruction object. As listed in Table 1, SN-DDPM obtains the
best SSIM values, which verifies that the timestep adaptive module constrained by SSIM
can effectively improve the reconstruction capability of the model in defect-free areas. In
addition, SN-DDPM also obtains the highest PSNR values, indicating that this model has
strong a reconstruction capability. Notably, both AFFGAN and SN-DDPM can capture the
structural and textural features of fabrics, but the pixels of the reconstructed image using
AFFGAN on the sample SL11 are closer to those of the original image. Thus, AFFGAN and
SN-DDPM demonstrate close SSIM but greatly different PSNR.

Table 1. PSNR and SSIM values in the reconstructed images of 7 models.
Index Method SL1 SL2 SL5 SL8 SL9 SL10  SL11  SLI3 A{’,:Irzfe
DCAE 0.9584 0.8035 0.8264 0.9341 0.6942 0.8907 0.7530 0.8886 0.8436
DCGAN 0.5477 0.1682 0.5392 0.0986 0.7462 0.3840 0.3568 0.0460 0.3608
Recycle-GAN 0.0151 0.2721 0.1397 0.3643 0.0787 0.3472 0.1495 0.0330 0.1750
SSIM MSCDAE 0.4084 0.4238 0.1586 0.3286 0.7645 0.3988 0.4672 0.4385 0.4236
UDCAE 0.9558 0.7956 0.8234 0.8267 0.8564 0.8462 0.7869 0.7093 0.8250
VAE-L2SSIM 0.5703 0.1699 0.3295 0.3885 0.4695 0.4629 0.5428 0.3921 0.4157
AFFGAN 0.9748 0.8542 0.8594 0.8693 0.9135 0.9491 0.9446 0.9136 0.9098
SN-DDPM 0.9646 0.9029 0.8697 0.8938 0.9396 0.9077 0.9481 0.9591 0.9232
DCAE 26.2641  26.7438  27.4138  27.1108 249037 283805 279167  28.6731 27.1758
DCGAN 14.8116  12.8657  14.5869 8.1876 14.6379  13.8489  13.2846  12.2010 13.0530
Recycle-GAN 11.7674 175644 11.7564 183723 189168 19.0082  14.6736  11.0379 15.3871
PSNR MSCDAE 199604  21.7564 124692 14.8990 249513 23.1437 21.2004 25.1333  20.4392
(dB) UDCAE 25.3496  25.6432 253891 22.8675 263204 25.6267 219769 25.0596  24.7791
VAE-L2SSIM 20.8485  10.0348 12.8676  24.6738  18.7857 229767  20.6472  26.1235 19.6197
AFFGAN 28.1567  28.9947  27.0947  27.8877  28.9254 293189  30.0192 27.7191 28.5146
SN-DDPM 28.1464  29.8400 254589  27.8956  29.1771  30.2919  28.3950  30.1329  28.6672

Note: The optimal result is marked with a bold number.

The above results suggest that DCGAN learns the features of defect-free regions,
so that it can effectively reconstruct the defect regions. The block reconstruction of the
DCGAN model on the image results in the failed connection of the fabric textures in
the adjacent grid boundary areas, causing obvious stitching marks in the reconstruction
results. The partially reconstructed images by DCAE, MSCDAE, and UDCAE demonstrate
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observable defects. Due to fewer network layers and smaller receptive domains, DCAE and
MSCDAE are applicable for simple mapping transformations on input images only, making
it difficult to extract the essential texture information of flawless areas. In comparison
with DCAE and MSCDAE, the UDCAE model presents poor connections among image
pixels even though the network structure has been deepened. As a result, the deep model
compresses the images by force, so that some details are lost. In addition, the overall
color scale is similar, so that it is easy to form the color block kernels, as observed in the
sample SL8, intensifying the difficulty of accurately positioning the defects. AFFGAN
enhances the feature representation capability of defect-free textures based on the attention
mechanism, maintaining good reconstruction results. Notably, some reconstruction results
still are subjected to a small number of residual defects. As observed in the reconstructed
image of SN-DDPM, the defect areas in the color-patterned fabric image are repaired, and
features of the defect-free areas are clearly and intuitively displayed. This indicates that
SN-DDPM exhibits the best performance in capturing the essential information of color-
patterned fabric images. In addition, detail textures are concerned more with introducing a
timestamp adaptive module guided by SSIM and MSE, achieving optimal reconstruction
and restoration results.

5.2. Defect Detection Experiments

To verify whether the SN-DDPM can accurately locate the defects at the pixel level,
relevant tests were performed on fabric samples containing different textures, background
colors, and types of defects. The overall results are shown in Figure 9, where the original
images, reconstructed images, heat maps, saliency images, final results, and ground truth
are displayed in sequence from top to bottom. As shown in the third lines (heat maps),
SN-DDPM performs well in the reconstruction of defect images, so the reconstruction error
of defect-free areas exerts a small influencing effect on the detection results. In addition, the
saliency images in the fourth line suggest that the salient algorithm can accurately segment
defects and highlight defect areas, exhibiting obvious effects on small defects with low
contrast in samples SL11 and SL13. The final results are extremely close to the ground truth
except for the sample SL5. However, because of the similarity between the defect color
and the background color, the sample SL5 suffers significant pixel loss in the defect area
during the absolute difference process, resulting in incomplete defect morphology in the
saliency image. However, this does not influence the capability to determine the shape and
location of the defects based on the detection results. Therefore, applying SN-DDPM for
defect image reconstruction and combining saliency algorithms for defect detection can
achieve excellent results and high reliability in defect positioning.

To evaluate the performance of SN-DDPM objectively and accurately, Table 2 presents
the values of evaluation indicators of DCAE, DCGAN, Recycle GAN, MSCDAE, UDCAE,
VAE-L2SSIM, AFFGAN, and SN-DDPM in each test set. In terms of average value, SN-
DDPM achieves the optimal results in all indicators, of which the F1 and IoU values
typically reflect an increase in model performance by at least 5.42% and 7.61%, respectively.
The table reveals that UDCAE is comparable to SN-DDPM in terms of P and Acc values
but exhibits a significantly lower F1 value. This is attributed to the fact that compared
to SN-DDPM, UDCAE shows poorer detection results in the ground truth, which can be
expressed as a larger FN in the confusion matrix diagram. Due to the higher number of
pixels in the defect-free region, AFFGAN maintains a higher Acc value but a higher FP
rate in recognizing the defects, resulting in lower P and F1 values. The P and R values of
SN-DDPM are basically complementary, indicating that when the P value is positive, the
R value is negative, and vice versa. Compared to other models, the difference between
the lower and higher performance values of SN-DDPM is not significant, which is more
intuitive in the F1 value. Such a result suggests that SN-DDPM improves the F1 value
significantly, demonstrating its superiority in overall detection performance. Meanwhile,
SN-DDPM demonstrates its advantage in Acc value, although it is not so significant in
comparison to other models. The primary reason is that the number of pixels in the defect
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areas used is much smaller than that in the defect-free area, rendering Acc unable to
objectively describe the quality of the detection results. Referring to the value of IoU,
SN-DDPM is highly competitive, with the highest IoU values, demonstrating its accuracy

and reliability in defect prediction.

SL1 SL2 SL5 SL8 SL9 SL10 SL11 SL13

Defective image

Reconstructed imag;

Heat map
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Figure 9. The defect detection effect of SN-DDPM.

Table 2. Model detection accuracies on various types of fabrics.

Metric Method SL1 SL2 SL5 SL8 SL9 SL10 SL11 sL13  Average
(%) Value
DCAE 37.92 37.73 48.87 63.49 16.29 46.59 55.83 47.52 4408
DCGAN 22.29 38.13 66.45 31.91 16.23 8.76 0.00 0.00 2297
Recycle-GAN 36.24 25.39 20.33 42.77 31.25 23.85 35.78 4415 32.47
MSCDAE 51.39 36.17 49.68 56.78 44.68 43.66 54.09 49.68 4827
P UDCAE 54.94 55.55 87.75 15.53 59.14 51.14 15.69 87.75 53.44
VAE-1.2SSIM 0.00 42.69 25.00 70.13 14.28 24.48 228 24.06 25.37
AFFGAN 62.01 17.02 21.84 63.26 35.85 47.69 34.67 29.86 39.02
SN-DDPM 61.10 58.97 33.48 57.45 60.47 51.04 61.44 46.10 53.76
DCAE 72.92 65.04 51.57 81.08 13.51 62.74 60.03 65.80 59.09
DCGAN 20.08 35.93 6.70 17.73 10.00 1.00 0.00 99.44 23.86
Recycle-GAN 79.56 60.22 56.68 73.87 67.80 83.46 74.28 75.27 71.39
MSCDAE 74.44 74.15 71.15 86.55 26.03 71.23 76.19 71.15 68.86
R UDCAE 82.11 61.61 35.66 8.08 78.45 44.20 15.12 35.66 4511
VAE-1.2SSIM 0.00 14.14 0.99 59.60 22.50 281 11.66 34.10 18.22
AFFGAN 75.89 57.42 69.09 79.30 80.57 64.41 38.12 44.79 63.70
SN-DDPM 83.07 70.61 87.01 84.20 64.11 83.65 80.89 76.92 78.81
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Table 2. Cont.

Metric Method SL1 SL2 SL5 SL8 SL9 SL10 SL11 sL13  Average
(%) Value
DCAE 9836 9785 9697 9923 9799 9859 9926  99.37 98.45
DCGAN 9763 9893 9703 9917 9784 9884 9915 0.00 86.07
RecycleGAN  99.09  97.69 9747  99.05 9826 9901 9925  99.10 98.62
MSCDAE 9878 9752 9492 9924 9823 9853 9923 9492 97.67
Acc UDCAE 9894 9874 9784 9900 9867 9875 9921  97.84 98.62
VAE-L2SSIM 9868 9872 9690 9936 9827 9885 9953 9953 98.73
AFFGAN 99.16 9734 9797 9923  99.82 9866  99.17  99.55 98.86
SN-DDPM 99.36 9787 9761 99.40 9942 9942 9962 9890 98.95
DCAE 4655 4641 4802  67.26 1474 5017 5260 4536 46.39
DCGAN 1632 3624 1048 2172 5.36 1.75 0.00 0.00 11.48
RecycleGAN 4605 2497  27.65 0.00 3788 3331 4408 5251 3331
MSCDAE 5840 4729  57.64 6659 2568 5190  59.66  57.64 53.10
Fl UDCAE 6317 5336 4699 8.63 6060 3922 1314 4699 4151
VAE-L2SSIM 0.00 19.34 1.90 6368  15.04 486 242 2242 1871
AFFGAN 6515 1641 3153 6657 4962 5257 3235  29.93 43.02
SN-DDPM 65.62 5561 4477 6467 6144 5711 6476 5420 58.52
DCAE 3145 3185 3298 5224 2387 3498 3803 3042 34.48
DCGAN 1011 2870 6.69 15.12 2.96 0.99 0.00 0.00 8.07
RecycleGAN 3322 1681 1654 3822 2383 2154 3060 3917 27.49
MSCDAE 280 3125 4459 5091 1745 3650 4407 4459 39.02
ToU UDCAE 4731 3943 3249 6.39 4406 2637 8.62 32.49 29.65
VAE-L2SSIM 0.00 13.40 0.99 48.65 9.44 2.75 1276 1276 12.59
AFFGAN 50.09 9.33 1918 5132 3300 3714 2548 2084 30.80
SN-DDPM 5325 4725 3152 5094 4892  46.80 5409 4026 46.63

Note: The optimal result is marked with a bold number.

5.3. Ablation Study

The effectiveness of the timestep adaptive module is based on the condition that the
evaluation indicator 7 is a single valley function because it is difficult to solve the optimal
timestep in case L is a multi-valley function. The defect-free samples SL1, SL2, SL8, SL9, and
SL10 are selected as the experimental subjects to verify whether the evaluation indicator 7
is a single valley function. Specifically, Z is calculated every 10 steps, with a total timestep

of 1000. The experimental results are illustrated in Figure 10.
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Figure 10. Relationship between timestep and evaluation score for SL1, SL2, SL8, SL9, and SL10.
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Defective image

Reconstructed image

The figure discloses that the evaluation indicators of various samples show the char-
acteristics of a unimodal function. Some fluctuations in the waveform activate within
the error range and are free from significant influence on the overall trend. In addition,
a lower value of L reflects a better reconstruction effect. Based on the optimal step sizes
corresponding to various types of samples, it can be observed that all results are within the
range of 0-1000 and are different in each type of sample. In this case, it is impossible to
represent the optimal step sizes with fixed values, which further proves the effectiveness
and applicability of the timestep adaptive module.

To further verify the validity of « = 0.5 in Formula (18), a is assigned different values
based on the above experiments, and the optimal timestep is obtained by the timestep
adaptive module. Meanwhile, the F1 and IoU values of the final result are calculated as the
evaluation criteria, as listed in Table 3.

Table 3. Ablation study for different values of «.

Metric (%) o SL1 SL2 SL8 SL9 SL10  Average Value

0.1 32.45 29.17 29.94 30.17 30.74 30.49

0.3 58.51 55.56 56.83 47.00 52.13 54.01

F1 0.5 65.62 55.61 64.67 61.44 57.11 60.89
0.7 49.00 46.05 47.95 43.26 41.46 45.54

0.9 2427 25.80 23.08 26.51 24.12 24.76

0.1 19.81 17.11 17.62 17.77 18.16 18.09

0.3 41.89 38.93 40.35 30.71 35.25 37.43

IoU 0.5 53.25 47.25 50.94 48.92 46.80 49.43
0.7 26.10 33.22 35.01 29.95 28.19 30.49

0.9 14.98 16.24 14.28 16.53 14.89 15.38

Note: The optimal result is marked with a bold number.

As observed in Table 3, the results of F1 and IoU values are not satisfactory at « = 0.1
and & = 0.9 but are the best at « = 0.5. These outcomes suggest that « = 0.5 balances the
degree of distortion and structural similarity of the image. Meanwhile, the experimental
results in this article confirm that & = 0.5 is effective.

5.4. Model Failure Experiment

SN-DDPM exhibits strong reconstruction performance but has insufficient robustness
during the experimental process. Specifically, the reconstruction results are chaotic when
there is an overwhelming number of sample types during the model training. To ensure the
diversity of training samples, all fabric samples (19 types in total) in the dataset are selected
as the training set, with equal numbers of each sample type, while some defect images
serve as the test set. The experimental results are summarized as follows (Figure 11):

SL1 SL2 SL3 SL5 SL7 SL9

Figure 11. Model failure experiment: 19 types of defect-free fabric samples are trained and partial
defect images are tested.
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As shown in Figure 11, only the samples SL1 and SL5 can be reconstructed normally,
while the reconstruction results of the remaining samples show significant pixel deviations.
The texture of the defect-free area in sample SL7 is matched to that of the original image,
while its color is closer to that of the sample SL2. By contrast, the samples SL2, SL3, and SL9
not only showed significant pixel deviations but also failed to reconstruct the texture details
normally. Therefore, it can be concluded that SN-DDPM exhibits good detection only by
training a small number of types of samples, while it has to be retrained or structurally
adjusted based on different data distributions and its features adapted to other types of
defect detection tasks. Consequently, it is not feasible as a unified model for all defect
detection tasks.

Relevant research [42,43] shows that the major challenge faced by the diffusion model
is the instability and inconsistency of the output, failing to accurately associate attributes
with its objects (e.g., color). In this article, SN-DDPM demonstrates weak reconstruction
results in the presence of multiple sample datasets, showing that its generalization capa-
bility still needs to be studied and improved. Therefore, the following two methods are
proposed: (1) Using the mask-based SN-DDPM, the image can be reconstructed well by
masking the suspicious defect areas and utilizing the defect-free features around the mask.
Meanwhile, it can preserve the semantic information of the defect-free areas in the original
image. Thus, the repaired image will better match the viewer’s understanding of the scene
and objects, effectively avoiding the chaotic reconstruction caused by excessive training
features in the model. (2) Attention mechanisms can be introduced to help the model better
focus on important regions and features in the image, thereby improving the accuracy
and consistency of the generated output. Through learning attention weights, the model
can better comprehend the attributes and associations of objects, thereby outputting more
accurate results.

6. Conclusions

In this article, a timestep-adaptive-diffusion-model-oriented unsupervised detection
method is applied to the detection of fabric surface defects. It only employs the fabric
defect-free samples to train the model and takes SSIM and MSE as the guided timestep
adaptive modules to obtain the optimal timestep. During the detection, SN-DDPM with
the optimal timestep is employed to reconstruct the defect image into a defect-free image.
After that, the residual images before and after reconstruction are processed through FTSD
to highlight the defect area. Finally, a discrimination threshold is utilized to segment the
defect. Experimental results based on public datasets reveal that SN-DDPM can more
effectively extract the essential characteristics of fabrics in contrast to other unsupervised
reconstruction models. Meanwhile, its reconstruction results are closer to the true feature
distribution, effectively solving the blurring, defect residue, or texture inconsistency in the
reconstruction results obtained by other models. These findings suggest that the SN-DDPM
demonstrates superior reconstruction capability and outstanding detection performance.
In addition, the instability and inconsistency of SN-DDPM in diverse sample datasets are
discussed and feasible effective solutions are recommended to help develop more reliable
and powerful models.
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