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Abstract: The optimization of photocatalysis is complex, as heterogenous catalysis makes its kinetic
modeling or design of experiment (DOE) significantly more difficult than homogeneous reactions. On
the other hand, Bayesian optimization (BO) has been found to be efficient in the optimization of many
complex chemical problems but has rarely been studied in photocatalysis. In this paper, we developed
a BO platform and applied it to the optimization of three photocatalytic CO2 reduction systems that
have been kinetically modeled in previous studies. Three decision variables, namely, partial pressure
of CO2, partial pressure of H2O, and reaction time, were used to optimize the reaction rate. We first
compared BO with the traditional DOE methods in the Khalilzadeh and Tan systems and found that
the optimized reaction rates predicted by BO were 0.7% and 11.0% higher, respectively, than the
best results of optimization by DOE, and were significantly better than the original experimental
data, which were 1.9% and 13.6% higher, respectively. In both systems, we also explored the best
combination of the surrogate model and acquisition function for BO, and the results showed that
the combination of Gaussian processes (GP) and upper confidence bound (UCB) had the most stable
search performance. Furthermore, the Thompson system with time dependence was optimized with
BO according to the selectivity of CH4. The results showed that the optimized reaction time of BO
agreed with the actual experimental data with an error of less than 5%. These results suggest that BO
is a more promising alternative to kinetic modeling or traditional DOE in the efficient optimization of
photocatalytic reduction.

Keywords: Bayesian optimization; machine learning; reaction optimization; photocatalytic reduction;
design of experiment

1. Introduction

The conversion of CO2 into high-value-added sustainable chemicals and fuels
(e.g., CH4) using photocatalytic reduction [1] has become one of the effective solutions for
chemists worldwide to address the challenges of global warming and the energy crisis.
As different photocatalytic systems have different catalysts, light sources, and photoreac-
tors, the scale and geometry-independent Langmuir–Hinshelwood (hereafter L-H) kinetic
model has been widely used to correlate experimental data and as a benchmark to de-
scribe the performance of photocatalytic CO2 reduction. In this context, a heterogeneous
photocatalytic kinetic model was developed by Tan et al. [2]. For catalysts with different
energy sites, Khalilzadeh et al. [3] developed a kinetic model based on the sips [4] isotherm.
Thompson et al. [5] responded to the challenge of catalyst deactivation by developing a
new CO2 photoreduction kinetic for a selectivity model for different products (CH4, CO,
H2). Currently, kinetic models of conventional photocatalytic systems have limited general-
ity, and small changes in catalyst and experimental variables [6,7] can render the model
ineffective. Furthermore, reconstructing a model [8] is often time-consuming and costly.
In the case of heterogeneous photocatalytic [9] systems involving adsorption processes,
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kinetic models require more parameters, which makes model tuning more difficult and
increases the computational effort. In addition, more decision variables [10], such as light
level, temperature, and pressure, further add to the complexity and difficulty of optimizing
photocatalytic systems. Therefore, there is an urgent need for more economical and effective
optimization methods for photocatalytic reduction research.

Design of experiment (DOE) has been widely used in process flow and quality control
due to its advantages of low cost, high quality, and short test period. Paul et al. [11] used
a resolution IV DOE method to optimize SNAr reaction; Randall et al. [12] successfully
applied the fractional factorial (FF) DOE method in the study of biological in vitro culture.
Lee et al. [13] explained the application of the central composite design (CCD) DOE method
in environmental chemistry. Anika et al. [14] successfully implemented the full factorial
design (FFD) DOE method in furniture and other manufacturing industries. DOE seeks
key factors and control-related factors through quantitative analysis of process parameters.
However, DOE is not suitable for high-dimensional variable space [15], especially in the
mixed domain with category variables. As the number of experiments required by the
DOE method increases exponentially with the number of factors, factor screening [16] must
be carried out. In addition, DOE tests continuous variables with predefined values, so
the optimal value between these values will likely be missed [17]. Moreover, in DOE, the
data obtained from the previous batches of experiments do not influence the selection of
variable combinations for the next batch. Therefore, these limitations of DOE may prevent
it from efficiently optimizing complex reaction systems like photocatalytic reduction.

Bayesian optimization (BO) is a statistics-based global optimization algorithm that
has been used to solve optimization problems with high evaluation costs, such as mul-
timodal [18], nonconvex objectives [19], and observed noise [20], due to its powerful
generalization performance [21]. It mainly consists of the surrogate model and the acqui-
sition function. BO constantly updates the fitting of the surrogate model with previously
obtained data and determines the next most “potential” evaluation point [22] based on the
optimization of acquisition functions. In recent years, chemists have used the BO algorithm
for applications in chemical reactions and processes [23,24]. Doyle et al. [25] applied BO to
optimize Mitsunobu and defluorination reactions; Aspuru-Guzik et al. [26] used a closed-
loop system developed with BO algorithms to optimize stereoselective Suzuki–Miyaura
coupling reactions. In material sciences-related research fields, Deshwal et al. [27] suc-
cessfully found covalent organic frameworks (COFs) with the highest simulated methane
transport capacity through BO in a database consisting of about 70,000 hypothetical COFs;
Neaton et al. [28] conducted a proof-of-concept study using BO on the methane absorp-
tion capacity of an existing hypothetical metal–organic frameworks (MOFs) dataset; Xie
et al. [29] built an intelligent platform combining BO algorithms with synthetic robots to
accelerate the synthesis of MOFs. However, research on BO for photocatalytic reduction
has rarely been conducted. Traditional experiments for photocatalytic CO2 reduction are
often costly, and repeat experiments usually use the univariate control method, which
results in low efficiency. However, the BO method [30] is a low-cost and relatively efficient
alternative with the ability to optimize multiple variables at the same time while seeking
the optimal value. As a result, the use of BO methods for photocatalytic reduction has the
potential to significantly advance the field.

In this study, we aimed to demonstrate the plausibility of utilizing BO photocatalytic
reduction of CO2 to convert it into CH4. Initially, BO was performed on two photocatalytic
reduction systems, with the partial pressure of reactants serving as the decision variable.
The outcomes were then compared with those of the conventional DOE method. We
also explored the impact of various alternate models and acquisition functions on the
photocatalytic BO model. In addition, we optimized a photocatalytic reduction system
with three variables, including catalyst deactivation time, to demonstrate the capability of
BO in optimizing time-sensitive photocatalysis.
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2. Methods and Models
2.1. Optimization Methods
2.1.1. Bayesian Optimization

BO uses the famous Bayesian theorem (see Equation (1)) in the optimization pro-
cess [22] where H represents the unknown objective function f (x) (or represents the
parameters in the parametric model); D = {(x1, y1), (x2, y2), . . . , (xn, yn)} represents the
observed dataset; P(D|H) represents the likelihood probability distribution of f(x), which
is also called “noise” due to unavoidable errors in the observation; P(H) represents the
prior probability distribution, that is, the assumption of f (x); P(D) is expressed as the
marginal likelihood distribution or “evidence” of the unknown objective function f (x), for
which it is usually challenging to obtain a clear analytical formula due to the difficulty of
calculation, so it is mainly used to optimize hyperparameters; P(H|D) is expressed as the
posterior probability distribution of f (x), which represents the confidence of the unknown
objective function after the prior one is modified by the known dataset.

P(H|D) =
P(D|H)P(H)

P(D)
(1)

The two most critical parts of the BO algorithm [31] are a probabilistic surrogate
model [32] to approximate the expensive unknown objective function and an acquisition
function optimized by the posterior information of the surrogate model.

2.1.2. Surrogate Model

The optimization objective is a computationally expensive function f(x), which is
approximated using a simple, low-cost model [33]. Actually, it is a surrogate function that
is trained on observations from previous experiments and inexpensively quantifies the
uncertainty.

The probability surrogate model includes the prior probability model P(H) and the ob-
servation models, that is, the likelihood distribution P(D|H) generated by the observation
data. After updating the probability surrogate model, the posterior probability distribution
P(H|D) is obtained. This section briefly introduces the surrogate models GP and BNN. For
details, see Supplementary Materials.

Gaussian Processes (GP)

f (x) ∼ N(µ(x), κ(x, x)) (2)

where µ(x) : Rn → Rn represents the mean function, which returns the mean value of each
dimension; κ(x, x) : Rn × Rn → Rn×n is the covariance [34] function, which returns the
covariance matrix between dimensions (see Equation (2)).

Bayesian Neural Network (BNN)

BNN = argminKL[qθ(w)||p(w|D)] = argmin
∫

qθ(w)log
(

qθ(w)

p(w|D)

)
dw (3)

where the training set D is {xi, yi}, 0 ≤ i ≤ N; the proper distribution of the random
variable w is p(w|D) (see Equation (3)); the posterior distribution is q(W|θ) (qθ(w) for
short); and BNN uses the KL divergence [35] to measure the similarity between q(W|θ)
and p(w|D).

2.1.3. Acquisition Function

The acquisition function relies on the surrogate model to provide an efficient, intel-
ligent, and active search for the optimal target. It is constructed based on the posterior
probability distribution P(H|D) and determines the next most “potential” evaluation point
by maximizing the acquisition function. A suitable acquisition function can effectively
ensure the minimum total loss and maintain a balance between exploitation (i.e., using the
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currently developed area to search for predictions around the optimal value) and explo-
ration (the unknown area where the uncertainty is high). This section briefly introduces the
acquisition functions PI, EI, and UCB. For details, see Supplementary Materials.

Probability of Improvement (PI)

PI(x) = Φ

(
u(x)− f (x+)− ξ

σ(x)

)
(4)

where Φ(·) represents the cumulative probability distribution (CDF); f (x+) represents
the best value among all parameter combinations tested so far; x+ represents the best
parameter combination itself; ξ is a minimal positive integer. A threshold is set above the
current optimal value (see Equation (4)).

Expected Improvement (EI)

EI(x) =
{
(µt(x)− f (x+)− ξ)Φ(Z) + σt(x)ϕ(Z), i f σt(x) > 0

0, i f σt(x) = 0

Z =
µt(x)− f (x+)−ξ

σt(x)

(5)

where Φ(·) and ϕ(·) are the cumulative distribution function (CDF) and the probability
density function (PDF) of the standard normal distribution [36], respectively; ξ is a parame-
ter, which is used to balance exploration and development; f (x+) is the current maximum;
x+ = argmaxxi∈x1:t

f (xi), where xi is the query position of the i-th step (see Equation (5)).
Upper Confidence Bound (UCB)

UCB(x; D) = µ(x) + βσ(x) (6)

For any x in the dataset D, the first item is the mean µ(x), focusing on development;
the second item has a standard deviation σ(x), which reflects the floating range and degree;
β is often the Chernoff–Hoeffding bound [37]; the larger β is, the more emphasis is placed
on exploration (see Equation (6)).

2.1.4. Algorithm

BO framework for CO2 photocatalytic reduction:
Input: a dataset consisting of n initial samples Dn, set the number of iterations N
Output: the global optimal value for the desired properties (the yield or selectivity

of CH4)

(1) Begin with t = 1;
(2) Pre-sample, build initial samples [38], train and update the chosen surrogate model

f̂ (xn), xn ∈ X;
(3) For i = 1, 2,..., measure the CO2 photocatalytic properties f (xn) represented by known

parameter values [39] (partial pressure Pi and/or deactivation time h) xn;
(4) Maximize the acquisition function A(xn) to determine the next evaluated process

parameter value xn+1: xn+1 = argmaxxεX A(x|D1:n);
(5) Evaluate the objective function value f (xn+1) = f̂ (xn+1) + εn+1;
(6) Fitting data: Dn+1 = Dn ∪ (xn+1, f (xn+1)), update the probability surrogate model;
(7) Update t = t + 1;
(8) BO actively iterates increases from t times to N times in the feedback loop until it

finds the optimal global value x* (see Equation (7)).

x* = argmax f (x)
x ∈ Xn

(7)

xn+1 = argmax A
(

x; f̂n(x)
)

x ∈ X
(8)
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2.1.5. Design of Experiments (DOE)

The basic principles of DOE are repetition, randomization, and chunking, which
means allowing for repetition of basic experiments, random determination of the order
of each experiment, chunking of the search space, and enabling internal comparison of
experimental conditions of interest. This paper uses doepy (https://pypi.org/project/
doepy/ (accessed on 16 February 2023)), a third-party extension package for Python, to
implement the DOE sampling method, using three main sampling methods, URS, LHS,
and OLHS.

Latin hypercube sampling (LHS), a stratified random sampling, enables efficient
sampling from intervals of the distribution of variables. Assuming that there are k variables
x1, x2 . . . xk, to take N samples from their specified intervals, the cumulative distribution of
each variable is divided into the same N small intervals, and a value is randomly selected
from each interval. The N values of each variable are randomly combined with the values
of the other variables. Unlike random sampling, this method can guarantee total coverage
of each range of variables by maximizing the stratification of each marginal distribution.

Uniform random sampling (URS). This module generates uniformly distributed ran-
dom numbers at intervals you specify. The same non-negative seeds and parameters
generate random numbers and then generate a normal distribution. The seeds are reset to
the specified value each time a repeatable sequence is started. The general method uses the
inverse transform sampling method of the target random variable’s cumulative distribution
function (CDF). Because simulations using this method require reversing the CDF of the
target variable, alternative methods have been devised for cases where the CDF is not in
closed form.

Optimal Latin hypercube sampling (OLHS), which optimizes the sampling process
by using the ESE algorithm [40] based on LHS, aims to make the (generalized) distance
between sample points larger so that the sample points are entirely scattered in the overall
design space. It is worth noting that the values of x and y did not change during the
entire optimization process, but the distribution of sample points was changed by using
different combinations. Using a matrix operation for high-dimensional problems can
significantly speed up the optimization process. Meanwhile, there are mature theoretical
and experimental results for the algorithm’s parameters, such as threshold values.

2.1.6. Langmuir–Hinshelwood (L-H) Mechanism

The L-H mechanism is a heterogeneous catalytic mechanism in which the surface
reaction is controlled by two adsorbed molecules [41]. The two reactants (CO2 and H2O)
are first adsorbed onto the solid catalyst; the redox reaction takes place on the surface, and
then the products are desorbed again. The surface reaction is the rate-controlling step, as
the adsorption and desorption rates are much higher than the surface reaction rates [2].
As can be seen from the kinetic model, the process parameters that affect the rate of CO2
reduction include the constant rate k, irradiance I, light intensity α, equilibrium adsorption
constant Ki, partial pressure Pi, non-uniform coefficient of reactants n, all reactants and
product z. In addition, temperature, photocatalyst, and photoreactor are also factors that
affect the rate of CO2 photoreduction. According to a related paper [42], the rate constant
k and the equilibrium adsorption constant Ki can be determined based on experimental
results of CO2 photoreduction with a specific photocatalyst at a specific temperature T,
irradiance I, and light intensity α.

2.2. Kinetic Models
2.2.1. L-H-Based Kinetic Model

For CO2 photoreduction, the rate expression must consider the light intensity (I)
because the reaction occurs at the active site of the light. Since the complete mechanism
and activation steps are still unknown, an empirically derived kinetic model of CO2

https://pypi.org/project/doepy/
https://pypi.org/project/doepy/


Processes 2023, 11, 2614 6 of 19

photoreduction provides an alternative to the microkinetic modeling approach, whose
model expression is shown in Equation (9).

r = kIα ∏n
i=1 KiPi

(1 + ∑z
i=1 KiPi)

n (9)

Parameter annotation:
r: CO2 reduction reaction rate (µmol·g−1

cat ·h−1)
k: Rate constant (µmol·g−1

cat ·h−1); the value of k is only a function of temperature (T)
I: Irradiance (mw/cm2); depends on the geometry of the photoreactor
α: Reaction order of light intensity
Ki: Equilibrium adsorption constants for reactants and products (bar−1)
Pi: Partial pressure of reactants and products (bar)
n: The inhomogeneity coefficient of adsorbed reactants in elementary surface reactions

indicates the magnitude of the effect of concentration on the reaction rate
z: Quantities of all reactants and products.

2.2.2. A Probabilistic L-H-Based Dynamic Kinetic Model

The illuminated area (µmolcm−2h−1) is used to develop a kinetic model scalable
relative to light rather than the mass of the photocatalyst. A new model is introduced that
can be scaled for light (flexibility), for describing the change in the photocatalyst over time,
and for attempting to include only the active sites involved; the estimated coverage is used
to calculate the kinetic data rate (see Equation (10)).

r = k
Iα

ηd

(
t

ηd

)Iα−1
exp−(

t
ηd

) Iα
∏n

i=1 (K iPi)
ai

(1 + ∑z
i=1 KiPi)

∑ ai (10)

Parameter annotation:
r: CO2 reduction reaction rate (µmolcm−2h−1)
k: Rate constant (µmolcm−2h−1)
t: Time (h)
I: I = I

I0
, Irradiance (dimensionless)

α: Reaction order of light intensity (dimensionless)
ηd: The deactivation scale parameter (dimensionless)
Ki: Equilibrium adsorption constants for reactants and products (bar−1)
Pi: Partial pressure of reactants and products (bar)
n: The inhomogeneity coefficient of adsorbed reactants in elementary surface reactions

indicates the magnitude of the effect of concentration on the reaction rate
ai: The number of moles for each reactant from the assumed surface reaction
z: Quantities of all reactants and products.

2.3. CO2 Photoreduction Kinetic Model
2.3.1. Tan

Tan et al. [2] systematically studied the process parameters; the irradiance I is
81 mw/cm2, the light intensity α is 0.044, the reaction rate constant k was determined
to be 84.42 µmol·g−1

cat ·h−1, and the adsorption equilibrium constants KCO2 and KH2O are
0.019 bar−1 and 8.07 bar−1, respectively. Combining the values of the determined kinetic
constants, the kinetic model of the photocatalytic reduction of CO2 on 5GO-OTiO2 is
obtained as Equation (11).

r = 15.953
PH2OPCO2(

1 + 8.070PH2O + 0.0193PCO2

)2 (11)
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2.3.2. Khalilzadeh

Khalilzadeh et al. [3] used a doped photocatalyst (Fe-N-Ti@50CPO), and the kinetic
model was changed to Equation (12). The kinetic model constants predicted using ex-
perimental data for the multi-component system at an irradiance of 85 mw/cm2 and a
light intensity α of 0.71 was a reaction rate constant k of 8.33 µmol·g−1

cat ·h−1, and the opti-
mum equilibrium rate constants KCO2 and KH2O were determined to be 234.31 bar−1 and
2091.1 bar−1, respectively, with a non-uniformity factor n of 1.67. Combined with the
predicted values of the kinetic constants, the kinetic model of the photocatalytic reduction
of CO2 on Fe-N-Ti@50CPO is shown in Equation (13).

r = kIα (KCO2PCO2)
1
n (KH2OPH2O)

1
n(

1 + (KCO2PCO2)
1
n + (KH2OPH2O)

1
n
)2 (12)

r = 498589.34

(
PCO2 PH2O

)0.5988(
1 + 26.24PCO2

0.5988 + 97.33PH2O
0.5988

)2 (13)

2.3.3. Thompson

Thompson et al. [5] used the Weibull PDF (probability density function) to describe
the deactivation of the catalyst over time in a kinetic model. This function incorporates the
parameter ηd for the change in yield over time and the parameter β (β = Iα) for the reduction
and deactivation of the active site over time, as in Equation 14. A probabilistic LH-based
kinetic model of the assumed product was adopted (see Equation (15)). In particular; the
constant irradiance I is 400 mw/cm2; the estimated reaction rate constant k for the CH4
product was 7.16 × 10−1 µmolcm−2h−1; the light intensity α and the deactivation scale
parameter ηd were 7.37 × 10−2 and 4.81, respectively; the equilibrium rate constants KCO2

and KH2O were determined to be 3.21 bar−1 and 99.99 bar−1; and the model coefficients for
the other two products are not repeated. Combining the predicted values of the kinetic
constants, a probabilistic L-H-based kinetic model is shown in Equation (16). In addition, a
model for the selectivity concerning the CH4 product is shown in Equation (17).

PDF(t) =
Iα

ηd

(
t

ηd

)Iα−1
exp−(

t
ηd

) Iα

(14)



rCH4 = kPDF(t) (KH2OPH2O)
4
KCO2 PCO2

(1+KH2OPH2O+KCO2 PCO2)
5

rCO = kPDF(t)
KH2OPH2OKCO2 PCO2

(1+KH2OPH2O+KCO2 PCO2)
2

rH2 = kPDF(t) (KH2OPH2O)
2

(1+KH2OPH2O+KCO2 PCO2)
2

(15)



rCH4 = 74281779.8584
( t

4.81
)0.5549exp−(

t
4.81 )

1.5549 PH2O
4PCO2

(1+99.99PH2O+3.21PCO2)
5

rCO = 51.74855
( t

19.8
)0.2339exp−(

t
19.8 )

1.2339 PH2OPCO2

(1+79.33PH2O+22.65PCO2)
2

rH2 = 138.93623
( t

2.78
)0.8867exp−(

t
2.78 )

1.8867 PH2O
2

(1+77.22PH2O+12.54PCO2)
2

(16)

SelectivityCH4
=

rCH4

rCO + rH2

(17)
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3. Results

Photocatalytic reduction of CO2 into CH4 is a prevalent research focus for CO2 re-
duction. In this study, three different photocatalytic systems, Tan [2], Khalilzadeh [3], and
Thompson [5], were selected to demonstrate the feasibility of performing BO on hetero-
geneous photocatalysis. The kinetic models of the three systems (Table 1), built upon
the L-H mechanism [43], were used to simulate experimental data under certain reaction
conditions (Figure 1). The study began with the Tan and Khalilzadeh systems that had the
partial pressure of CO2 and H2O as decision variables. The optimization performance of
conventional DOE approaches and BO were compared based on the optimized reaction
rates. Also, the BO model was further improved by selecting the best combination of
different surrogate models and acquisition functions. Finally, the BO optimization of the
Thompson system for the selectivity of CH4 was explored with an additional variable of
catalyst deactivation time.

Table 1. Kinetic model name and chemical principle.

Kinetic Model
Name Catalyst Catalyst Shape Reaction

Time (h) Photoreactor Type of Light Source

Tan [2] 5GO-OTiO2

Yellowish solid powder, binary
nanocomposites, hybrid

heterostructures
8 Continuous gas flow

reactor Xenon arc lamp

Khalilzadeh [3] 0.12%Fe-0.5%N/
TiO2

Nanoparticles, crystal structure 1 Pyrex vessel and
quartz tube

70W mercury
lamp

Thompson [5] P25 TiO2
Coating method, pure and cracks,

similar coverage 5 Photo differential
photoreactor OmniCure S2000
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As is shown in Figure 2, BO in this study uses batch data Dn from previous experiments
to train the surrogate model, and the acquisition function recommends the next set of
experiments by evaluating the prediction results. The iteration continues for N times in
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the feedback loop until a satisfactory optimal value is found. A detailed introduction of
BO and DOE algorithms, as well as the kinetic models of the photocatalytic systems, were
included in the “methods and models” section.
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3.1. Comparing Different Traditional DOE Methods in Two-Dimensional Space

First of all, the optimized performance of three DOE methods, optimal Latin hyper-
cube sampling (OLHS [44]), Latin hypercube sampling (LHS [45]), and uniform random
sampling (URS [46]), was evaluated on the Tan and Khalilzadeh photocatalysis systems
with the partial pressure of H2O and CO2 as decision variables. Figure 3 shows that,
although the average optimized reaction rates given by the three algorithms are similar,
OLHS has the highest stability, while the other two methods have a higher fluctuation
of optimized reaction rates between different trials, especially the URS strategy where
the biggest difference between the highest and lowest optimized reaction rates reached
0.15 µmol·g−1

cat ·h−1 in Tan and 2.364 µmol·g−1
cat ·h−1 in Khalilzadeh. The best performance of

OLHS was due to the fact that OLHS was optimized on top of LHS in combination with the
enhanced stochastic evolutionary (ESE [40]) sampling optimization algorithm. Maximizing
the sampling distance in space makes the overall sampling space more homogeneous. In
contrast, URS is relatively more random [47].
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Figure 3. Contains 20 batch tests with 20 experimental sampling points per batch taking the optimal
reaction rate for each batch; scatter shapes are used to distinguish between different DOE strategies,
and line plots are used to observe the trend of the maximum yield. (a) Khalilzadeh. Multivariate
optimization comparison of maximum yields for DOE methods. (b) Tan. Multivariate optimization
comparison of DOE methods for maximum yield.

3.2. Comparing BO and DOE-OLHS

The same systems in 3.1 were optimized using BO, and the results are shown in Figure 3.
In both the Khalilzadeh and Tan photocatalytic systems, the optimized reaction rates from the
BO approach were generally higher than those from the DOE-OLHS, with the maximum opti-
mized reaction rates obtained of 47.339 µmol·g−1

cat ·h−1 and 0.490 µmol·g−1
cat ·h−1, respectively,

which were on average 0.7% and 11.0% higher, respectively, than DOE-OLHS, and on average
1.9% and 13.6% higher, respectively, than the original experimental data. (The optimal partial
pressures of CO2 and H2O are 0.6 bar and 0.12 bar (Khalilzadeh), and 0.9 bar and 0.173 bar
(Tan), respectively.) Meanwhile, the BO method was more stable in the Tan system (Figure 4b),
with a difference of only an 1.124% error between the highest and lowest optimized reaction
rates, compared to 1.875% in the Khalilzadeh system, which was related to the magnitude
difference in the optimized reaction rates between the two systems.
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Figure 4. Comparison of BO and DOE for maximum reaction rate optimization in multivariate search
space for two photosensitized systems. The BO was initialized with 10 LHS containing 20 batch trials
with 20 simulations per batch to take the optimal reaction rate per batch; the DOE was 20 OLHS
sampling points; scatter shapes are used to distinguish the different optimization strategies, and
line plots are used to observe the trend of the maximum yield. (a) Comparison of multivariate
optimization of Khalilzadeh. BO (GP-UCB) with DOE maximum yield. (b) Multivariate optimization
comparison of Tan. BO (GP-UCB) with DOE maximum yield.
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The optimization results of BO and DOE-OLHS were further compared in a 3D
triangular surface plot (Figures 5 and 6). The results show that the optimal global solution
searched using BO outperforms DOE-OLHS for the same photocatalytic system. During
the iterative phase, the data sampled by BO are significantly more compact than those
sampled by DOE, as there is a general tendency for the data points sampled by the BO
iteration to converge toward the final best point. In contrast, the data points obtained by
the DOE-OLHS iteration are more dispersed. In addition, the best reaction rates obtained
by BO were higher than those obtained by DOE-OLHS, as is shown in Figure 4.
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Figure 5. Comparison of DOE (OLHS) and BO (GP-UCB, 10 LHS samples) binary optimization
results in Khalilzadeh. Curved triangulation distinguishes the size and distribution of the data, with
triangular colors used to distinguish the magnitude of the values, with the corresponding optimized
reaction rate color bars on the right.
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in Tan. Curved triangulation distinguishes the size and distribution of the data, with triangular colors
used to distinguish the magnitude of the values, with the corresponding optimized reaction rate color
bars on the right.
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In this case, the BO strategy, giving the search range for each factor and recommending
a more appropriate sampling order based on the distribution of sampling points, exhibited
significantly better optimization performance compared to the DOE-OLHS method, which
uses a sampling approach in multi-factor search space optimization. Compared to BO’s
active learning strategy, DOE’s fixed sampling model tends to lose some of the maximum
potential gain points, and it cannot make sampling decisions based on previously obtained
experimental data or compromise between exploration and exploration of the search space.

In addition, we assessed the impact of the initial sampling size on BO. The initial
sampling size was reduced to five, and the same experiments as in Figures 5 and 6 were
performed (Figure S2). The results using 10 initial sampling data had a more concentrated
data distribution and obtained a higher optimum response rate than those using 5 initial
sampling data. These results suggest that increasing the initial amount of data without
increasing the fixed search domain density can significantly improve the performance of
BO due to the robustness of GP to non-linear function optimization.

3.3. Investigating the Effects of Different Combinations of Surrogate Models and
Acquisition Functions

We also compared the performance of different BO strategies by testing different
combinations of surrogate models and acquisition functions. Figure 7 shows that the
Gaussian processes (GP) model outperforms the Bayesian neural network (BNN) as the
surrogate model, as the combinations with GP reached higher optimized reaction rates.
In particular, the combination of GP and upper confidence bound (UCB) had the highest
maximum yield and the best stability. In contrast, BNN-EI and BNN-PI yielded the worst
optimization in each system. The above results show that GP has better scalability and
search performance than BNN in the multi-parameter optimization of both photocatalytic
systems. This is because GP’s inherent Gaussian structure allows for fewer parameters to
be adjusted compared to BNN, making it suitable for interpretable uncertainty estimation
on relatively small data sizes [48], while BNN maximizes performance on various machine-
learning tasks with significantly larger datasets [49].
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Figure 7. BO models’ optimization results compare six combinations of surrogate models and acqui-
sition functions under two photocatalytic systems. The BO was initialized with 10 LHS containing
20 batch tests and 20 simulations per batch, and the optimal reaction rate was taken for each batch.
The rates were plotted as line plots (a,b), using scatter shapes to distinguish between different BO
strategies and lines connecting the scatters to observe the trend in maximum yield. (a) Khalilzadeh.
Optimal reaction rate; (b) Tan. Optimal reaction rate.

3.4. Optimization of Product Selectivity including Catalyst Deactivation

Thompson’s system with reaction time (t) as an additional variable was optimized
by different BO models for the selectivity of CH4 (Figure 8a). The combination of GP and
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PI shows the most stable performance with a difference between the highest and lowest
optimized selectivity of only 0.012. Therefore, we demonstrated the results of the GP-PI
model in a three-dimensional triangular surface plot (Figure 8b). The results show that
when the partial pressure of CO2 is 94.53 kPa, the partial pressure of H2O is 5.17 kPa, and
the time is 2.58 h, the BO model can obtain the best CH4 selectivity of 2.3176, which is
merely 0.1% compared with the corresponding error in the actual experiment. To obtain
the maximum CH4 selectivity of 2.32, the reaction needs to be stopped at a partial pressure
of CO2 of 98.38 kPa and a partial pressure of H2O of 5.44 kPa for 2.69 h.
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system. (a) BO strategy screening. The optimization results of BO models for six different combina-
tions of surrogate models and acquisition functions were compared for the selectivity model of CH4.
Twenty batches of simulation trials were conducted for each strategy separately; each set of trials was
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initialized with 10 LHS points for the BO framework and iterated 50 times separately; the optimal
reaction rate for each batch was taken to plot the experimental simulation points; scatter shapes
are used to distinguish the different BO strategies, and scatter points are connected with a dash to
observe the trend of maximum yield; (b) 3D triangular surface plots containing catalyst deactivation
times were drawn using the data from the better-performing BO models (BNN-PI and GP-PI) in (a),
where the 3D coordinates indicate the partial pressures of CO2 and H2O, and the catalyst deactivation
time, respectively. The triangulation of the surface distinguishes the size and distribution of the data,
and colors are used to distinguish the magnitude of the values, with the corresponding color bars of
the optimized deactivation time to the right.

On the other hand, the optimized BNN-PI strategy produced the maximum product
selectivity of 2.3186 when the partial pressure of CO2 was 96.23 kPa, the partial pressure of
H2O was 5.34 kPa, and the time was 2.68 h. This is consistent with the increase in sample
datasets to enhance the BNN optimization performance mentioned earlier. The previous
optimization of reaction rate used a dataset containing 600 samples; here, the product
selective optimization uses a dataset containing 1200 samples. In particular, in such a
complex product selectivity model, the PI acquisition function tended to explore near the
maximum value, which provided a practical compromise for the optimization properties of
BNN. To obtain better optimization performance, BNN’s complex model architecture [50]
requires more datasets with more samples and more training rounds to demonstrate its
powerful learning ability. Overall, the GP surrogate model performs more consistently
compared to BNN in bivariate optimization due to GP’s superior performance on small
datasets. In contrast, BNN as an inverse optimization method [51] lacks robustness on static
datasets compared to the forward optimization of the GP method, which makes it perform
better on complex product selectivity models with deactivation times. However, in future
research, we expect BNN to perform even better on large mixed dynamic datasets [52].

4. Discussion

For complex and unknown photocatalytic reduction reactions, kinetic models are
usually constructed from the rate law developed by the photocatalytic reduction reaction
mechanism proposed [53], and the kinetic data are generally estimated using mathematical
software methods (such as the least squares regression method) to correlate the input and
output data of the photocatalytic reaction experiment [54]. However, kinetic models often
assume that the output of the photocatalytic system is only related to the current input and
is not affected by the past and future input values and the internal effects of the system
(such as feedback mechanisms and nonlinear effects), so they cannot react and predict
the historical effects and future trends of the photocatalytic system. The photocatalytic
reduction reaction is time-sensitive, while the kinetic model can only describe the short-
term behavior of the system but cannot predict its long-term evolution trend. In addition,
due to the nonlinear changes in the photocatalytic system, the parameters of the kinetic
model may have complex spatial distribution characteristics, which makes it difficult to
solve the model parameters accurately.

As a tool for developing experimental strategies, DOE is widely used in scientific
fields such as quality control and process improvement. However, as a local optimization
algorithm, DOE cannot locate the global optimal solution in the dynamic photocatalytic
reduction reaction. In the case of a given range of parameters, DOE has design limitations
that involve only three levels [14] and three factors [55]. When there are multi-factor
variables or even mixed-parameter spaces containing categorical variables, DOE must
carry out factor screening [56], thus increasing the experimental budget. The cost of these
experiments is often high for photocatalytic reduction reactions, so the DOE method may
not be an ideal method for the optimization of photocatalytic reduction reactions.

BO is a statistics-based optimization algorithm developed to find the global optimal
solution to an expensive black-box function. The core components of BO are the surrogate
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model and acquisition function. The surrogate model is responsible for training the initial
dataset fitted from the historical input experimental data; it also makes predictions for the
unevaluated simulation experiments to include the effects of past and future inputs on
the system. The acquisition function verifies the prediction results of the model mainly
by balancing development (known areas with good prediction performance of the model)
and exploration (areas with high uncertainty of the unknown) and recommends the next
sampling point for testing, which avoids the appearance of locally optimal solutions to a
great extent and increases the scientific insights of the system.

We acknowledge that the comparison of various optimization techniques in this study
relies on experimental data from kinetic model simulations and is not exceptional compared
to earlier results on optimizing photocatalytic CO2 reduction. The previous experimental
optimization [57,58], utilizing the single-variable control approach, displayed encouraging
outcomes for both CH4 yield and selectivity. For instance, Alkanad et al. [57] achieved a
methane yield of 48 µmol·g−1

cat ·h−1 by optimizing the hydrothermal reaction conditions and
identified one catalyst that outperformed the other seven in their experimental comparison.
Single-variable optimization methods can be costly and time-consuming in terms of experi-
mentation and data production. However, a simulation of experimental noises was added
to the implementation of this work. In addition, the use of simulated data makes sure
that all comparison tests are based on the same conditions and baseline level. Although
BO has its inherent limitations, such as the high cost of surrogate model calculation for
updating and the absence of a general acquisition function, we can still narrow these gaps
by designing more advanced models and suitable filters in future studies.

5. Conclusions

In this work, we developed a BO framework and applied it to a series of photocat-
alytic reduction systems. Compared to the conventional DOE approach for maximum
CH4 yield optimization in the two-variable [PCO2, PH2O] space, the global optimization of
BO outperformed the DOE approach, and the optimized reaction rates found using BO
were 0.7% and 11.0% higher, respectively, than the best results of optimization by DOE,
and it was significantly better than the original experimental data, which were 1.9% and
13.6% higher, respectively. In addition, the best combination of the two main components
of BO, the surrogate model and acquisition function, was investigated, and the combina-
tion of GP and UCB was found to have the highest optimization efficiency, obtained at
47.339 µmol·g−1

cat ·h−1 and 0.490 µmol·g−1
cat ·h−1, respectively. Furthermore, BO was used to

optimize the CH4 product selectivity model in the Thompson system with the additional
variable of catalyst deactivation time. The results showed that BO exhibited superior
performance, and the optimization results agreed well with the actual experimental data,
with an error of less than 5%. In the meantime, BO was found to significantly increase the
efficiency of optimization compared to the traditional DOE methods.

Our BO framework can be conveniently applied to complex photocatalytic systems to
optimize multivariable reaction processes. The use of BO can also help the development of
photocatalysis experiments toward automation. Future research will aim to improve the
BO framework for parallel optimization in a more complex search space (i.e., containing
categorical variables). In addition, material descriptors will be added to the BO framework
to optimize the selection of photocatalysts in CO2 photoreduction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11092614/s1, Figure S1. Workflow of the BO framework, including
combination and optimization; Figure S2. Comparison of bivariate optimization results between
DOE and BO(GP-UCB) under different benchmarks. Scatter plot is used to describe the number and
location of data points, and color is used to distinguish data types. Surface trigonometry is used to
distinguish the size and distribution of data, and triangle color is used to distinguish the size of the
value. (a) Khalilzadeh., comparing the optimization effect of DOE(OLHS) and BO (initialization of
5 LHS points) in three-dimensional space. (b) Khalilzadeh., comparing the optimization effect of
DOE(OLHS) and BO (initialization of 10 LHS points) in three-dimensional space. (c) Tan., compare

https://www.mdpi.com/article/10.3390/pr11092614/s1
https://www.mdpi.com/article/10.3390/pr11092614/s1
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the optimization effect of DOE(OLHS) and BO (initialization of 5 LHS points) in three-dimensional
space. (d) Tan., compare the optimization effect of DOE(OLHS) and BO (initialization of 10 LHS
points) in three-dimensional space; Figure S3. BO comparison of selectivity models for CH4 under the
Thompson photocatalytic system. (a) BO strategy screening. Optimization results of BO models for six
different combinations of proxy models and acquisition functions were compared for the selectivity
model of CH4. Twenty batches of simulation trials were conducted for each strategy separately; each
set of trials was initialized with 10 LHS points for the BO framework and iterated 50 times separately;
the optimal reaction rate for each batch was taken to plot the experimental simulation points, scatter
shapes were used to distinguish the different BO strategies and scatter points were connected with a
dash to observe the trend of maximum yield; (b) 2D scatter plot containing catalyst deactivation times.
Among them, the two-dimensional coordinates represent the CO2 partial pressure and H2O partial
pressure respectively, the color of the scatter point represents the catalyst deactivation time, the shape
of the scatter point represents different BO strategies, and the size of the scatter point represents the
change of the selectivity; Figure S4. BO comparison of selectivity models for CO under the Thompson
photocatalytic system. (a) BO strategy screening. Optimization results of BO models for six different
combinations of proxy models and acquisition functions were compared for the selectivity model
of CO. Twenty batches of simulation trials were conducted for each strategy separately; each set of
trials was initialized with 10 LHS points for the BO framework and iterated 50 times separately; the
optimal reaction rate for each batch was taken to plot the experimental simulation points, scatter
shapes were used to distinguish the different BO strategies and scatter points were connected with a
dash to observe the trend of maximum yield; (b) 2D scatter plot containing catalyst deactivation times.
Among them, the two-dimensional coordinates represent the CO2 partial pressure and H2O partial
pressure respectively, the color of the scatter point represents the catalyst deactivation time, the shape
of the scatter point represents different BO strategies, and the size of the scatter point represents the
change of the selectivity; Figure S5. BO comparison of selectivity models for H2 under the Thompson
photocatalytic system. (a) BO strategy screening. Optimization results of BO models for six different
combinations of proxy models and acquisition functions were compared for the selectivity model
of H2. Twenty batches of simulation trials were conducted for each strategy separately; each set of
trials was initialized with 10 LHS points for the BO framework and iterated 50 times separately; the
optimal reaction rate for each batch was taken to plot the experimental simulation points, scatter
shapes were used to distinguish the different BO strategies and scatter points were connected with a
dash to observe the trend of maximum yield; (b) 2D scatter plot containing catalyst deactivation times.
Among them, the two-dimensional coordinates represent the CO2 partial pressure and H2O partial
pressure respectively, the color of the scatter point represents the catalyst deactivation time, the shape
of the scatter point represents different BO strategies, and the size of the scatter point represents the
change of the selectivity; Table S1. Kinetic model name and chemical principle.
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