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Abstract: The integration of power electronics-interconnected generation systems to the grid has
fostered a significant number of concerns on power system operations, particularly on the displace-
ment of synchronous generators that leads to a reduction in the grid’s overall inertia and frequency
response. These concerns have raised a significant amount of state-of-the-art mathematical proposals
on how to estimate system inertia; however, the majority of the proposals do not differentiate gener-
ator inertia from load inertia. When inertia prediction for control room applications is required in
real-time, the current state-of-the-art proposals use the inertia of generators as a proxy for a minimum,
overall inertia estimate, counting the number of units committed in real-time and adding up their
inertia. However, as dynamic conditions are becoming challenging with the integration of power
electronics-interconnected generation systems, it is important to quantify the amount of inertia from
the loads, for which the state-of-the-art proposals present very limited advancement, particularly in
applications with real data. This work presents a set of recorded actual events in the Chilean power
system to estimate the contribution of loads to inertia and frequency response to assess whether the
loads have a significant role in frequency stability. The contribution of this work is as follows: first,
reporting real data of a power system from the PMU and SCADA systems that are usually classified
as not public; and, second, to derive a conclusion from the data to assess the role of loads in frequency
stability in a real case.

Keywords: frequency response; inertia; power systems; frequency measurement; smart grids

1. Introduction

The frequency dynamics of loads in an electrical power system are represented by two
parameters, denoted in the literature as frequency and inertial response. Although these are
important elements in the study of dynamic robustness [1], power systems’ actual data to
conduct studies with practical significance is normally classified or not public.

Usually, inertia estimation or prediction is tested by considering synthetic data [2,3],
with low practical significance. The availability of actual data to perform such studies is
rare, with a limited number of examples in terms of inertia [4] and frequency response [5,6].
Even if one can find different instances of analysis in this field, the inertial and frequency
responses in actual power systems are subject to the nature of such systems, in terms
of the most common load type within the system under analysis [7] or its geographical
location [8]. For example, it is known that a power system whose dominant loads are
motors will have a more intense dynamic contribution in the overall dynamic behavior [9].
Another example is presented in [10], where the frequency response of the Irish System is
reported by analyzing actual data. This report also highlights that load inertia is complex to
estimate, as the load types connected are variable in time. Similarly, the work in [11] reports
the inertia contributions of five groups of loads in the Danish system, considering the
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economic activities and type of load as follows: private households, retail businesses, trade,
commerce businesses, and industry. The report shows that private household has a more
significant contribution overall, despite other punctual large consumers with high inertia,
such as military areas. The importance of assessing load contribution is implied in [12],
where it is reported that the increasing penetration of power electronics on the demand side
will reduce the inertia and frequency response of the UK system. This enforces the idea that
quantifying inertia and frequency response from loads is important to assess, as a reduction
of such a contribution may exacerbate the erosion of frequency stability robustness from
the integration of power electronics-interconnected generation systems.

This work provides actual data to assess the contribution of load dynamics to power
systems’ frequency control robustness in the particular case of Chile. This study presents
data from the Phasor Measurements Units (PMU) and SCADA of the Chilean systems [13–15]
to determine the actual response by considering a list of significant events. The contribution
of this work can be summarized in both the release of the detailed actual data of the dynamic
events and the assessment of load’s role in frequency stability robustness in an actual power
system.

2. The Power System of Chile

The Power System of Chile (Sistema Electrico Nacional, (SEN)) is operated by the
Coordinador Independiente del Sistema Electrico Nacional (CEN), and has similar responsibilities
and structure to North American Independent System Operators (ISOs). The CEN is
responsible for both transmission and economic operation, scheduling power flows, and
determining energy local marginal prices for about 99% of the Chilean population, covering
more than 3000 km out of the roughly 4300 km of the country (the rest of the territory is
covered by a set of isolated small power systems [16]). A more detailed description of the
system is summarized in Table 1.

Table 1. A summary of SEN by numbers.

Type of Asset Figure

Generating Units 696
Power Lines 1015
Substations 1111

FACTS 21
Syncronous Condensers 2
Series Compensations 30
Shunt Compensations 571

In terms of generation types, there are nearly 7.5 GW of hydropower, 12.3 GW of
thermal power, 4.2 GW of wind power, and 7.9 GW of solar power, accounting for about
31.9 GW of installed capacity, as shown in Figure 1.
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Figure 1. Generation fleet.

With a total of about 36,000 km of transmission lines in voltage levels of 500 kV, 345 kV,
and 220 kV, and sub-transmissions of 154 kV, 110 kV, 100 kV, 69 kV, 66 kV, 44 kV, and 33 kV,
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the maximum demand in the SEN is close to 13 GW, with a total annual energy production
of about 70 TWh/year. Solar and wind energy account for about 15 TWh/year, with a
penetration level of 21% [17]. In terms of the type of load, 35% originate from the mining
industry, 49% from distribution grids, and 16% from other loads of industrial origin [18–20].

3. Recorded Data

This section presents the data used to estimate the frequency response and load
inertia, including frequency, power unbalance, and generator inertia data. The frequency
events were detected using a contingency detection algorithm [21], which identifies power
imbalances from a PMU data stream. The experimental setup for obtaining the PMU
measurements is summarized in Figure 2.
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Figure 2. Experimental setup.

3.1. Recorded Data for Load Frequency Response

The data considered for the frequency events are the occurrence of two-generation
contingencies. These contingencies took place in the city of Antofagasta, in the north of
Chile; the details are summarized in Table 2, while their recorded dynamic responses are
shown in Figure 3, obtained from the experimental setup in Figure 2.

As can be seen, the events are one day apart, at about the same time of the day. Also,
to represent different types of loads at different locations, one can see the selected loads
in Figure 4. The selection considers mining facilities, distribution substations, and two
loads with a particular nature: an LNG processing plant and a water pumping station of a
reverse osmosis plant.
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Table 2. Details of the two recorded events (Chile time is UTC-4).
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Figure 3. Power unbalance of (a) 387 [MW] in June 09, 2021, and (b) 263 [MW] - June 10, 2021.
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Figure 3. Power unbalance of (a) 387 (MW) in 9 June 2021, and (b) 263 (MW) on 10 June 2021.

Then, for each load selected in Figure 4, the power consumption prior to and after the
event was extracted from the CEN SCADA system, which is shown in Table 3.

Table 3. Data obtained from the SCADA system.

Type Name
Event 1 Event 2

Pre-Fault Post-Fault Pre-Fault Post-Fault
(MW) (MW) (MW) (MW)

Mining

Cerro Colorado 19.3 19.4 21.3 21.4

Facility

El Abra 54.3 55.4 55.3 56.7
Quebrada Blanca 14.3 14.4 6.5 6.6

Sierra Gorda 66.2 68.9 50.7 53.3
Sierra Gorda 66.5 70.3 49.3 50.3

Radomiro Tomic 76.1 76.8 91.9 92.6
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Table 3. Cont.

Type Name
Event 1 Event 2

Pre-Fault Post-Fault Pre-Fault Post-Fault
(MW) (MW) (MW) (MW)

Mining

Atacama Kozan 1.9 1.9 2.5 2.6

Facility

Atacama Kozan 5.3 5.4 4.8 4.9
Caserones 5.4 5.8 6.9 7.4
Caserones 5.4 5.7 6.6 6.9
Caserones 5.5 5.9 6.9 7.3

Los Pelambres 129.6 135.2 133.6 135.3
SE Sewell 8.3 8.4 8 8.1
SE Sewell 9.8 9.9 9.3 9.4
SE Sewell 9.7 9.8 9.5 9.6

Distribution

SE Copiapo 10.6 107 11 11.1

Substation

SE Copiapo 15.9 16 16.2 16.4
SE Marquesa 25.1 25.2 26.4 26.6
SE Marbella 4.8 4.9 4.8 4.9
SE Molina 9.2 9.2 7.6 7.7

SE Delcahue 3.8 3.8 5.8 5.9
SE Pto Varas 18.3 18.4 19 19

SE Pichil 4.7 4.8 4.4 4.5
SE Pucon 13.7 13.8 13.2 13.3

Industrial Water plant 37.2 37.7 37 37.4
LNG plant 16.8 16.8 18.7 18.7Version August 14, 2023 submitted to Journal Not Specified 5 of 15

Figure 4. Geographical location of loads.
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In order to better appreciate the level of response in each particular case, Figure 5
shows the change magnitude in percentages.
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Figure 5. Active power response for (a) mining loads, (b) distribution SE and (c) special loads.

Table 4. Average Demand response by load type

Type Event 1 Event 2

Mining Facilities 2.9 % 2.3 %

Distribution Substations 0.6 % 0.8 %

Industrial Loads 0.7 % 0.6 %

Table 5. Frequency Response by load type

Type

Event 1 Event 2
Load Response load Response
MW MW/Hz MW MW/Hz

Mining facilities 3422 307 3383 342
Distribution Substations 4791 90 4736 172

Industrial Loads 1564 32 1547 38
Total 9776.7 429.3 9665.4 552

Figure 5. Active power response for (a) mining loads, (b) distribution SE, and (c) special loads.

Generator contingencies not only cause a power imbalance, but also a reactive power
imbalance, leading to voltage variations in different buses of the network. Figure 6 illus-
trates the voltage fluctuations that occurred after the generator contingencies.
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Figure 6. Voltage deviation in buses of (a) mining loads, (b) distribution SE, and (c) special loads.

3.2. Data Analysis for Load Frequency Response

Based on the analyzed data, mining facilities present the largest response to the
analyzed events. The average load response for all mining loads was found to be 2.94%
and 2.31% for the 387 MW and 263 MW events, respectively. This is consistent with the fact
that mining facilities count on a large number of asynchronous machines that are normally
connected to the grid with no power electronics inter-phase. In such a case, the variations
in system frequency are directly reflected in the speed of rotation of the machine, lowering
the mechanical load normally attached to the motor and, consequently, reducing the active
power absorbed from the grid as observed in the data.

As mechanical torque and active power consumption in asynchronous machines are
also sensible to voltage, it is important to exclude the effect of voltage to explain the active
power response of mining loads. In fact, Figure 6 shows that the overall voltage variation
was about 1%, ruling out the effect of voltage on the recorded active power response. It
was also observed that the geographical placement of the fault relative to the load under
analysis was not an important factor, as the correlation between the closeness to the fault
and the power response was not significant.

Regarding distribution substations, their responses were not as important as mining
facilities, with average values accounting for 0.62% and 0.83% for Event 1 and Event 2,
respectively. Normally, the distribution loads are composed of industrial, commercial, and
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residential blocks of demand, in which one can find a large variety of electronic, lightning,
and constant impedance loads that are not frequency-dependent in general. With less
induction machine contribution, it is expected that the distribution loads are less sensitive
to frequency phenomena. This is consistent with the results observed in Figure 5b.

In concordance with the data observed for mining loads, the response of the distri-
bution substations is unlikely to be driven by voltage phenomena. As one can see in
Figures 5b and 6b, the voltage variation is not significant, and the correlation between the
larger voltage variations and larger power changes is poor. This is consistent with the
idea that the observed response is mostly driven by the frequency variation. It is impor-
tant to clarify that distribution loads, in general, are voltage-sensitive from their constant
impedance important composition; in this particular case, the voltage variation was minor
and did not result in a noticeable active power response. Similarly, geographical placement
was not found to be a significant factor in terms of the closeness to the fault.

In terms of the LNG and water pumping facilities, the latter exhibited an observable
response to the frequency event, while the former showed little to no sensitivity to frequency
variations. In this particular case, a pumping station is normally composed of fixed-speed
asynchronous machines without any power electronics interface [22]. The average load
response of the pumping station was 1.195%, which is considerably lower than the average
response of mining loads, which is 2.625%. On the other hand, the GNL plant displayed
almost no sensitivity to frequency. LNG processing plants are composed of a variety of
processes [23] that require a high degree of control accuracy, so they cannot be sensitive to
any network variation in general. This observation can be confirmed by the data provided
in Figure 5c.

Table 4 summarizes the results of the analysis of the load response to the frequency
events, providing the average response for each load type and the corresponding percentage
of contribution.

Table 4. Average demand response by load type.

Type Event 1 Event 2

Mining Facilities 2.9 % 2.3 %
Distribution Substations 0.6 % 0.8 %

Industrial Loads 0.7 % 0.6 %

Considering the data in Tables 2 and 4, one can derive the aggregate contribution of
the SEN loads to the total frequency response of the system. Since 35%, 16%, and 49%
of the overall SEN load is associated with mining facilities, distribution substations, and
industrial loads, respectively, the total frequency response from loads in the SEN can be
summarized as shown in Table 5.

Table 5. Frequency response by load type

Type

Event 1 Event 2
Load Response Load Response
MW MW/Hz MW MW/Hz

Mining Facilities 3422 307 3383 342
Distribution Substations 4791 90 4736 172

Industrial Loads 1564 32 1547 38

Total 9776.7 429.3 9665.4 552

This way, the contribution of load to the frequency response in the SEN considers an
average frequency response of 491 MW/Hz and a level of demand of 9 GW on average. In
Table 6, this value can be seen in comparison with other state-of-the-art systems.
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Table 6. Frequency response by load type.

Grid Load Response

Chile 5%
The UK 2.5%
AEMO 1.5%

As it can be seen in Table 6, the load response in the SEN is larger than that in other
interconnections. This can be attributed to the relatively large proportion of load that is
associated with mining facilities.

3.3. Recorded Data for Load Inertia Estimation

The inertia of the load was computed by the difference between the system’s total
inertia and generator inertia. First, the total inertia of the system was determined by an
inertia estimation algorithm that captures generation contingency events from the PMU
stream data. The data was captured using the laboratory hardware and software described
in [24]. This algorithm considers the slope of the actual frequency events, as shown in
Figure 7.
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Using the swing Equation (1), the kinetic energy (K) of the system can be estimated by
Equation (2):

d
dt
(∆ f (t)) =

f0

2K
(∆Pm − ∆Pe), (1)

K =
fo
2

d
dt (∆ f (0))

(−∆Pe) (2)

where f0 is the nominal frequency of the system, ∆Pe is the power unbalance, and d
dt (4 f (0))

is the ROCOF at the first instances after the event, which determined two data points of
frequency, as shown in Equation (3):

d
dt
(∆ f (0)) =

∆ f (t1)− ∆ f (t0)

t1 − t0
(3)

The power unbalance ∆Pe is obtained from the daily report of the operator system.
This is public information, and it can be obtained from its website [25]. This way, the total
inertia of the system can be obtained.
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Considering the SCADA data, the total inertia only from generators was determined
by summing up the inertia of all the units connected at the instance of the recorded
contingencies (the data of the individual generator inertia of the SEN was also available).
Then, one can obtain the inertia contribution of the loads by the difference between the
system inertia estimated by the procedure in [2] and the generators’ inertia.

It is important to note that the SEN was, prior to 2016, composed of two islanded
systems that became interconnected afterward. As the transmission is not yet robust
between the two original islands, coherency issues make the frequency transient behavior
across the system differ, as shown in Figure 8. The difference in the frequency behavior
caused the inertia estimation to be difficult, as shown in the red lines in Figure 8. The
frequency measurements in Figure 8 consider the different geographical locations (UDEC,
UDA, UTALCA, UTEM), which are shown in Figure 2.

As coherency issues make inertia estimation complex, this study only considered the
events where the frequency measurement did not present a significant difference. As a result,
24 out of 160 events captured between March and August 2022 were considered, which are
summarized in Table 7. Kg, Kl, and Ks are the inertia (kinetic energy) of the generators, load,
and system, respectively, and ∆P is the power unbalance associated with the event.

Table 7. Generation contingencies in SEN for load inertia estimation study.

15 March 2022 22:28 0.192 54.63 74 19.37
16 March 2022 15:36 0.150 66.04 91 24.96
17 March 2022 18:38 0.250 62.38 83 21.12
26 March 2022 16:48 0.171 50.46 70 20.04
2 April 2022 13:18 0.070 51.68 73 21.32
6 April 2022 06:04 0.275 62.10 77 14.90
7 April 2022 16:39 0.115 51 63 12

14 April 2022 16:00 0.098 63.90 77 13.10
19 May 2022 18:18 0.170 61.20 88 27.48
24 May 2022 05:18 0.247 58.74 67 8.26
24 May 2022 05:12 0.130 58.73 67 8.27
25 May 2022 16:56 0.300 54.11 75 20.89
30 May 2022 01:07 0.170 59.04 80 20.96
8 June 2022 12:48 0.201 57.73 87 29.77
13 June 2022 13:43 0.330 55.10 79 23.90
18 June 2022 15:05 0.133 58.34 80 21.66
23 June 2022 23:34 0.166 64.21 85 20.79
24 June 2022 16:26 0.217 56.78 85 28.72
27 June 2022 05:55 0.232 59.88 70 10.62
2 July 2022 22:19 0.191 61.33 81 19.67
4 July 2022 18:27 0.140 62.33 79 16.67
5 July 2022 00:31 0.130 61.71 68 6.29

20 July 2022 07:41 0.160 57.78 77 19.22
20 July 2022 02:11 0.160 57.10 71 13.90
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02-04-2022 13:18 0.070 51.68 73 21.32
06-04-2022 06:04 0.275 62.10 77 14.90
07-04-2022 16:39 0.115 51 63 12
14-04-2022 16:00 0.098 63.90 77 13.10
19-05-2022 18:18 0.170 61.20 88 27.48
24-05-2022 05:18 0.247 58.74 67 8.26
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24-06-2022 16:26 0.217 56.78 85 28.72
27-06-2022 05:55 0.232 59.88 70 10.62
02-07-2022 22:19 0.191 61.33 81 19.67
04-07-2022 18:27 0.140 62.33 79 16.67
05-07-2022 00:31 0.130 61.71 68 6.29
20-07-2022 07:41 0.160 57.78 77 19.22
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Figures 9 and 10 show the resulting inertia for the load, generators, and total. It is clear
that the size of the contingencies for the events used to estimate the data is not correlated
with the value of the inertia.
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deviation about 11 units, approximately. 188

On the other hand, the inertia of load reached an average value of 18,06 GWs with a 189

standard deviation of 6,68 GWs, showing a much higher variability than that of generation. 190
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Figure 10. Summary of percentage contribution of generator and load inertia contribution to system
inertia.

Given that mining loads do not present a significant variation in terms of demand 191

level, this variation must be entirely associated to other industrial and distribution load. 192

In Fig. 12, one can see that on peak load inertia tends to be larger (demand peak in the 193

SEN occurs in the evening), while lower inertia values tend to occur at night and early 194

morning. Furthermore, this result aligns with the economic activity of the country, as it 195

typically decreases during the night and early morning hours, but experiences an increase 196

throughout the day. 197

Figure 10. Summary of percentage contribution of generator and load inertia contribution to sys-
tem inertia.

3.4. Data Analysis for Load Inertia Estimation

Based on the information obtained, the inertia of the generator has relatively low
variability, with an average of 58.7 GW and a standard deviation of 4.15 GW. This can be
explained by the fact that the SEN counts with a group of base-load units of large inertia
that are most of the time committed for low and high demand, as shown in Figure 11.

In Figure 11, the net load varies from 8000 MW to about 12,000 MW, covering a wide
range of demand. The average number of online generators is about 174 units, with a
standard deviation of about 11 units, approximately.

On the other hand, the inertia of the load reached an average value of 18.06 GW, with a
standard deviation of 6.68 GW, showing a much higher variability than that of generation.

Given that mining loads do not present a significant variation in terms of demand
level, this variation must be entirely associated with other industrial and distribution loads.
In Figure 12, one can see that, on peak load, inertia tends to be larger (the demand peak in
the SEN occurs in the evening), while lower inertia values tend to occur at night and in the
early morning. Furthermore, this result aligns with the economic activity of the country,
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as it typically decreases during the night and early morning hours, but experiences an
increase throughout the day.
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Figure 12. Load inertia estimation by hours.

Also, load inertia is depicted with load level and separated by working days and 198
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Another observation is roughly constant load inertia during weekends, indicated by green 200

circles in Fig 13. These values tend to remain stable at approximately 20 GWs. 201
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In sum, the average results are shown in Table 4. This way, the overall inertia of loads 202

in SEN vary within 10 to 30 GWs, in a range of 8 to 12 GW of demand. 203

3. Conclusions 204

This work has presented actual data of the Chilean Power System to assess the contri- 205

bution of load to frequency response and inertia. In the current scenario, where the lack 206

of inertia is becoming an operating concern, the quantification of overall load inertia is 207

important, as power electronic decoupling not only occurs at the generation level, but also 208

in the demand side, were variable speed drives are making electric machines insensible 209

to systems frequency, as well as other promising technologies in the demand side as solid 210

state transformers and electric vehicles. 211

In terms of frequency response, the analysis found that the loads in the Chilean system 212

contribute with 5% of total frequency response. In comparison with other systems in which 213

this value has been estimated with real data, the Chilean system has a larger contribution, 214

given the fact that its load composition has a relatively large share of mining facilities. 215

The estimated average inertia is about 18,06 GWs, corresponding to 23,06% of overall 216

system inertia, also larger than the estimation in other systems. Generation inertia was 217

shown to be roughly constant within the period of analysis, given a roughly constant 218

Figure 12. Load inertia estimation by hours.

Also, the load inertia is depicted with the load level and separated by working days
and weekends in Figure 13, observing the same trend of the load inertia increasing with
the load level. Another observation is roughly constant load inertia during weekends,
indicated by green circles in Figure 13. These values tend to remain stable at approximately
20 GW.
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In sum, the average results are shown in Table 4. This way, the overall inertia of the
loads in the SEN varies within 10 to 30 GW, in a range of 8 to 12 GW of demand.

4. Conclusions

This work has presented actual data from the Chilean Power System to assess the
contribution of load to frequency response and inertia. In the current scenario, where the
lack of inertia is becoming an operating concern, the quantification of the overall load
inertia is important, as power electronic decoupling not only occurs at the generation level
but also on the demand side, where variable speed drives are making electric machines
insensible to system frequency, as well as other promising technologies in the demand side,
such as solid-state transformers and electric vehicles.

In terms of frequency response, the analysis found that the loads in the Chilean system
contribute 5% of the total frequency response. In comparison with other systems in which
this value has been estimated with real data, the Chilean system has a larger contribution,
given the fact that its load composition has a relatively large share of mining facilities.

The estimated average inertia is about 18.06 GW, corresponding to 23.06% of the
overall system inertia, also larger than the estimation in other systems. The generation
inertia was shown to be roughly constant within the period of analysis, given a roughly
constant number of committed units. In the case of load inertia, it was found to be more
variable, with a trend to be larger for larger values of demand.

A future research topic is the definition of a trend in load inertia. Since generation
inertia is easily obtained by counting the inertia of online units in real-time, the total inertia
is still complex to estimate given the variability of its load component. In this sense, a more
complete data set reporting individual loads connected during the events is needed to
relate the load type to the load inertia result. Another way to improve the analysis is to
consider a model of inertia estimation that can overcome the lack of transient coherency in
the frequency data. More data points may also improve the conclusion of this study; only
25 out of 160 events were utilized because of coherency issues.
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