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Abstract: In order to investigate the impact of a crushed rock shape on the storage coefficient of
underground reservoirs in coal mines, statistical analysis of the shape characteristics of crushed rocks
was conducted, which was followed by numerical packing tests using the rigid block model. These
tests aimed to investigate the spatial structure characteristics of underground reservoir water storage
space in coal mines under the influence of different shapes of crushed rock. The results demonstrated
the following: (1) Crushed rock exhibits a lognormal distribution in its shape characteristic parameters
at different scales with a predominant discoid shape. The shape coefficient M can be utilized as a
comprehensive indicator to characterize the shape characteristics of crushed rock. (2) The average
storage coefficient of crushed rock increases exponentially as the shape coefficient M increases. There
is a 50.1% increase in the storage coefficient from M = 1 to 3.5. (3) The spatial structure of the water
storage space exhibits self-similarity, and both the void fractal dimension and the void boundary
fractal dimension increase with an increase in the shape coefficient M. (4) When comparing the
non-spherical particle system with the spherical particle system, it is observed that the spherical
particle system has smaller water storage space, lower connectivity among voids, and more irregular
void space. In the non-spherical particle system, the water storage space becomes larger as the shape
of crushed rock becomes more irregular, resulting in more irregular void space. However, there is no
significant effect on void connectivity.

Keywords: coal mine underground reservoir; storage coefficient; shape of crushed rock; rigid block
model; fractal dimension; void network model

1. Introduction

Addressing technical challenges such as limited water storage capacity, high cost of
water storage, wastage due to evaporation, and severe water pollution in the coal industries
in western China, Gu [1] has been actively involved in technical research and engineering
experiments on the underground storage of mine water. He has introduced the innovative
concept of coal mine underground water reservoir storage and has also proposed the
concept of the “storage coefficient” for the first time. The storage coefficient refers to the
amount of water stored per unit volume of goaf. Underground reservoir water storage
space in coal mines not only enables the storage and utilization of mine water but also
utilizes the crushed gangue to filter, precipitate, adsorb, and undergo ion exchange for
the self-purification treatment of mine water. This innovative approach addresses the
challenges associated with the low efficiency, poor benefits, and low resource recovery
rate observed in traditional water-retaining mining technology. The crushed rocks in coal
mines form a complex particle packing system, with the voids in this system being the
most important spaces for water storage underground. The shape of the crushed rocks
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influences the packing structure and subsequently affects the structure of the water storage
space in the goaf [2–4]. Therefore, it is essential to study the spatial structure characteristics
of the underground reservoir water storage space in coal mines, taking into account the
shape characteristics of the crushed rocks.

In recent years, there have been several investigations conducted to study the spatial
structure characteristics of underground reservoir water storage space in coal mines. These
investigations have utilized theoretical analysis, laboratory experiments, and numerical
simulations. In theoretical analysis research, Song et al. [5] employed the key layer theory
to quantitatively describe the subsidence of the overlying rock mass in the goaf. They also
examined the distribution characteristics of overburden fractures under the influence of
mining. Based on the relative amount of subsidence, they derived an approximate formula
for the void ratio of the overlying regular movement zone. Wang et al. [6] established
the void structure model of crushed rock based on fractal theory, and the research results
showed that the water storage performance is good. Ju et al. [7] used the “O” ring theoretical
model of overburden fractures distribution to establish the mathematical expression of
underground reservoir storage capacity and guided the underground reservoir engineering
practice in the Lijiatou Coal Mine. Fang et al. [8] established a model for calculating the
storage coefficient of underground reservoir considering the influence of effective stress
and determined the analytical solution of the model. In laboratory experimental research,
Szlazak [9] conducted numerous experiments on the void ratio of the goaf in a longwall
face. The study also examined the spatial distribution patterns of the void ratio at various
positions along the longwall face. A testing system used for a bearing deformation test
of large-size broken rock was developed by Zhang et al. and the typical sandstone from
the roof was chosen as a sample. The test results indicated that along with the increase
in axial load, the residual bulking coefficient and void decrease gradually [10]. In order
to study the effects of the water-saturated state on crushed stone, the compaction tests on
sandstone, mudstone and sandy mudstone from the #3 coal seam roof of the Yima Xin’an
Mine were conducted by using a self-developed apparatus. Chen et al. [11] founded that
the strength of crushed rock was negatively correlated with the decreases of the residual
swelling coefficient, residual void ratio and compaction. Deng et al. [12] conducted physical
experiments to investigate the laws of overburden rock mass breakage, the development
of off-seam cracks, and the swelling of mined rock mass. They found that the swelling
coefficient of mined rock mass increases near the mined coal seam. However, as the
distance from the coal seam increases, the swelling coefficient gradually decreases and
eventually reaches a constant value. Ma et al. [13,14] and Su et al. [15] conducted a study
on the variation laws of the swelling coefficient, void ratio, and connectivity during the
compaction process of crushed rock in the coal seam roof of the goaf. They observed that the
reduction in swelling coefficient and void ratio increases with the higher compaction stress
and larger size of crushed rock. In numerical simulation research, Li et al. [16] conducted a
CT scanning to extract the actual shape information of crushed gangue. They then analyzed
the impact of particle gradation and shape on the void ratio of the natural packing system
using discrete element numerical software. The results revealed that the irregularity of the
crushed gangue shape directly affects the void ratio of the particle packing system. Zhang
et al. [17] employed PFC software and a spherical particle model to investigate the stress,
void structure, and crushing evolution characteristics of crushed coal and rock samples
during the compaction process. However, their simulation process overlooked the influence
of particle size and shape of the crushed coal and rock samples. Pang et al. [18] examined
the fracture structure of the overlying rock mass on the working surface by utilizing
fracture mechanics theory and UDEC software. They also derived the temporal and spatial
evolution patterns of the effective storage coefficient through the vertical displacement
trajectory curves of the subdivided overburdens of the underground reservoir. Additionally,
the results of basic experiments and numerical simulation studies on packing density [19],
local order degree [20], bridge structure [21], topological structure [22], porosity structure
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fraction [23] and non-spherical particle packing [24] were published, exploring the intrinsic
nonuniformity of particle packing systems from different perspectives.

The current research on the storage coefficient lacks consideration of the influence of
shape characteristics of crushed rock on the spatial distribution law of the storage coefficient.
This leads to unreliable analysis depth and calculation results of the spatial structure
characteristics of water storage space. The shape of crushed rock can affect the water
storage capacity of an underground reservoir by influencing the size, connectivity, non-
uniformity and other structure characteristics of water storage space. To address this, this
paper utilizes 3D laser scanning to statistically analyze the shape characteristics of crushed
rock. It also investigates the spatial structure characteristics of underground reservoir water
storage space in coal mines, taking into account the influence of different shapes of crushed
rock using the Rigid Block Model (RBM). The main objective of this study is to conduct basic
research on the spatial structure characteristics of underground reservoir water storage
space based on the shape of crushed rock, which is often overlooked. Factors such as
particle gradation and water absorption characteristics are not considered. The results
of this study are a kind of useful supplement and improvement to the existing research
ideas and means of underground water reservoir storage problems in coal mines, and they
provide theoretical and technical support for the design and planning of underground water
reservoir capacity and the coordinated development of coal mining and water resources
protection in western China. Furthermore, they provide a scientific basis for both basic
theoretical research and practical applications in particle packing systems. These systems
encompass various materials such as caved ore and rock in metal mines, sand, grain,
and chemical particles. The findings aim to enhance the safety and efficiency of granular
materials throughout their storage, packing, transportation, and other related processes.

2. Materials and Methods
2.1. Materials

The crushed rocks used in this study were taken from Haragou Coal Mine, Daliuta
Town, Shenmu County, Shaanxi Province, with a size range of 5–45 mm and a solid
density of 2300 kg/m3 (Figure 1a). The crushed rocks were divided into 8 groups based on
particle size sieving, with each group having a particle size interval of 5 mm. From each
group, 200 blocks were randomly chosen and scanned using an EiScan-SE 3D laser scanner
equipped with the SHINING 3D software (Figure 1b). Subsequently, a 3D model of the
crushed rock was created (Figure 1c). The 3D model construction process of crushed rock
mass is shown in Figure 1.
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Figure 1. Three-dimensional (3D) model construction process of crushed rock: (a) Particle size sieving
of crushed rock; (b) 3D laser scanning of crushed rock; (c) 3D model of crushed rock.

2.2. Shape Indicators of Crushed Rock

Particle shape plays a crucial role in determining the void distribution law of a particle
packing system [25]. To investigate how different shapes of crushed rocks affect the spatial
structural characteristics of underground reservoir water storage space in coal mines, it is
essential to quantitatively characterize the shape of the crushed rock. In general, the particle
shape can be quantitatively described in three scales: overall shape, angular features and
surface texture [26]. The first scale indicators describe the overall shape characteristics of
particles, including the long-to-medium axis ratio e, the medium-to-short axis ratio f and
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the sphericity ψ; the second scale indicator describes the angular characteristics of particles,
which is usually expressed by the convexity Cv; and the third scale indicator describes the
surface texture of particles, which is characterized by the roughness. Relevant research
results indicate that the third scale shape indicator does not significantly affect the packing
structure and mechanical properties of particle systems [27–30], as typically characterized
by the friction coefficient in discrete element numerical simulations [31]. Therefore, this
study focuses solely on the first and second scale shape indicators of crushed rock. Table 1
presents the shape indicators of crushed rock used in this study.

Table 1. The shape indicators of crushed rock.

Shape
Description Scale

Shape
Indicators Formulas Value Ranges Descriptive Features

The first scale

Long-to-medium axis
ratio e e = L

I ≥1
It represents the needle-like degree of
the particle, and the larger the value,

the more elongated the particle.

Medium-to-short axis
ratio f f = I

S ≥1
It represents the flaky degree of the

particle, and the larger the value, the
more flaky the particle.

Sphericity ψ ψ = Ri
Rc

0~1

It represents the proximity of the
particle to the sphere, and the closer

the value is to 1, the closer the particle
shape is to the sphere.

The second scale Convexity Cv Cv = V
Vh

0~1

It represents the angular
characteristics of the particle, and the
smaller the value, the more angular

the particle.

Shape coefficient M M =
(A/V×D)

6
≥1

The value is 1 for spheres and greater
than 1 for non-spherical particles, and
the larger the value, the more irregular

the particle.

Noted: L, I, and S denote the longest, intermediate, and shortest axes of the smallest external rectangle of the
particle (Figure 1c), respectively; Ri and Rc denote the largest internal and smallest external circular radii of
the particle, respectively; V and Vh denote the volume and non-concave volume of the particle, respectively; D
denotes the equivalent diameter of the particle; and A denotes the surface area of the particle.

2.3. Test Design

The shape of crushed rock can have a significant impact on the size, connectivity, and
stability of underground reservoir water storage space in coal mines. As introduced in
Section 2.1, the laser-scanning technique was used to create 3D models of crushed rock
in various shapes. These models were then imported into PFC3D software to generate
irregular particle shape templates, which were further utilized to construct rigid block
models of different shapes. In order to investigate the spatial structure characteristics of
water storage space under the influence of different shapes of crushed rock, numerical
packing tests were conducted using the rigid block model in PFC3D, which can reliably
characterize the shape characteristics of irregular particles while ensuring high simulation
efficiency compared with other numerical software based on the finite element method
and finite difference method. To ensure the uniqueness of each shape characteristic, each
numerical packing test was conducted using only one crushed rock shape. In this study,
six sets of numerical packing tests were designed based on the statistical results of the
typical shape characteristic of crushed rock mentioned in Section 3.1, and the average shape
coefficients M were set to 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5, with a variance range of M ± 0.1. We
note the following: (1) The numerical packing test based upon spherical particles (M = 1) is
considered as a controlled test. (2) Considering the simulation accuracy and computational
efficiency, the shape of the real crushed rock is appropriately simplified to reduce the
number of invalid contacts between irregular rigid blocks [32,33].
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The rigid block gradation in these numerical tests was determined by the Fuller
equation of gradation curve [34]:

P = 100 ×
(

d
dmax

)n
(1)

Here, P denotes the passing percentage of the rigid block on the sieve diameter d, dmax
denotes the maximum particle size, and n denotes the Talbol power index. n = 0.6 [34] was
taken here, and the size range of crushed rock is 0.1–1.2 m.

The 52,304 fully mechanized mining face of Haragou Coal Mine in Shenmu County,
Shaanxi Province, is taken as the research object, and the height of its caving zone is about
15 m, the burial depth ranges from 150 to 268 m, the self-weight stress of overlying rock
mass ranges from 3.0 to 6.5 MPa, and the density of crushed rock is 2300 kg/m3. Therefore,
in these numerical tests, the goaf was abstracted as a characterization unit model of crushed
rock of 15 m × 15 m × 15 m (about 20 times of the average size) [31], and the overlying
stress was set 5 MPa, as shown in Table 2. The friction coefficients of wall and rigid block
were determined to be 0.50 and 0.55, respectively, based on the natural repose angle tests
shown in Figure 2, and the specific meso-mechanical parameters of the wall and rigid block
are presented in Table 3.

Table 2. Comparison of caving zone height and overlying stress in numerical tests and parameters of
52,304 fully mechanized mining face.

Parameters of 52,304 Fully-Mechanized Mining Face of
Daliuta Coal Mine Numerical Model Parameters

Height of caving zone 15 m Characterization unit model
of crushed rock 15 m

Overlying stress 3.0–6.5 MPa Overlying stress 5 MPa
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Figure 2. Physical and numerical natural repose angle test results: (a) Physical test; (b) Numerical test.

Table 3. Meso-mechanical parameters of wall and rigid block.

Wall Rigid Block

Normal
Stiffness/
(N·m−1)

Shear
Stiffness/
(N·m−1)

Friction
Coefficient

Normal
Stiffness/
(N·m−1)

Shear
Stiffness/
(N·m−1)

Density/
(kg·m−3)

Friction
Coefficient

1 × 109 1 × 109 0.50 5 × 108 5 × 108 2300 0.55

2.4. Test Procedures

Numerical packing tests of crushed rock with different shapes were carried out as
follows. (1) Initial packing: Based on the linear contact model and after gravity settling [35],
an initial packing model of crushed rock with different shapes was created, and the walls
and rigid blocks were assigned with the meso-mechanical parameters as presented in
Table 3. (2) Applying overlying stress: The side and bottom walls of the model were fixed,
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and the top wall started to move down and compress the crushed rocks until the vertical
stress σz reaches 5 MPa. (3) The average void ratios (storage coefficients) of the packing
system of crushed rock with different shapes were calculated based on the FISH language in
PFC3D. Six tests were conducted to obtain these ratios. Additionally, the storage coefficients
of each layer within the model height range of 1–14 m were calculated at intervals of 1 m
from the vertical height in all six tests. Taking the numerical packing test M = 3.0 as an
example, the final packing model of crushed rock is shown in Figure 3.
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3. Results
3.1. Statistical Analysis of the Shape Characteristics of Crushed Rock

The quantitative characterizations of the long-to-medium axis ratio e, the medium-to-
short axis ratio f, the sphericity ψ, the convexity Cv, and the shape coefficient M as shown
in Table 1 were achieved using MATLAB software, based on the 3D model of crushed
rock obtained through 3D laser scanning. Figure 4 depicts the statistical distributions of
various shape indicators of crushed rock. The curves in the figure represent the fitting
results obtained using the lognormal distribution model. As shown in Figure 4, (1) the
long-to-medium axis ratio e ranges from 1 to 2.4, with a mean value of 1.471. The majority
of values are concentrated in the range of 1 to 1.65, accounting for 76.36% of the data. The
middle-to-short axis ratio f ranges from 1 to 5, with a mean value of 2.120. The majority
of values are concentrated in the range of 1 to 2.6, accounting for 79.79% of the data.
The sphericity ψ ranges from 0.15 to 0.6, with a mean value of 0.353. The majority of
values are concentrated in the range of 0.22 to 0.44, accounting for 73.49% of the data. The
convexity Cv ranges from 0.78 to 0.92, with a mean value of 0.864. The majority of values
are concentrated in the range of 0.83 to 0.90, accounting for 72.08% of the data. And the
shape coefficient M ranges from 1.3 to 4.0, with a mean value of 2.223. The majority of
values are concentrated in the range of 1.6 to 2.6, accounting for 73.49% of the data. (2) The
correlation coefficient R2 values are all greater than 0.961, indicating that the lognormal
distribution model accurately describes the distribution laws of the long-to-medium axis
ratio e, the short-to-medium axis ratio f, the sphericity ψ, the convexity and concavity Cv,
and the shape coefficient M of crushed rock.



Processes 2023, 11, 2611 7 of 17Processes 2023, 11, x FOR PEER REVIEW 7 of 17 
 

 

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 4. Statistical distributions of various shape indicators of crushed rock: (a) Long-to-medium 
axis ratio e; (b) Medium-to-short axis ratio f; (c) Sphericity ψ; (d) Convexity Cv; (e) Shape coefficient 
M. 

The Zingg classification method [36] was employed to categorize the crushed rocks 
into four groups: discoids, spheroids, blades, and rods. The statistical findings of the pro-
portion are presented in Figure 5. As depicted in the figure, the distribution of the four 
categories is as follows: discoids (52.604%), spheroids (8.168%), blades (25.162%), and rods 
(14.073%). These results suggest that the discoid characteristics of the crushed rocks are 
more prominent overall. This is mainly caused by geological processes; namely, the over-
lying strata are layered sedimentary rocks. In addition, the establishment of a quantitative 
relationship between particle shape and the structure of a particle packing system is hin-
dered by an excessive number of shape indicators. Consequently, many scholars have at-
tempted to use a single shape indicator to characterize particle shape. For instance, they 
have used the mean value of sphericity and roundness or the dimensionless indicator 
shape coefficient M to describe the degree of irregularity in the particle shape [37,38]. 
Therefore, in this study, the Pearson correlation coefficient method [39] was employed to 
analyze the correlation between the equivalent diameter D of crushed rock and its shape 
indicators. The correlation hotspot maps of different shape indicators of crushed rock 

Figure 4. Statistical distributions of various shape indicators of crushed rock: (a) Long-to-medium
axis ratio e; (b) Medium-to-short axis ratio f ; (c) Sphericity ψ; (d) Convexity Cv; (e) Shape coefficient M.

The Zingg classification method [36] was employed to categorize the crushed rocks
into four groups: discoids, spheroids, blades, and rods. The statistical findings of the
proportion are presented in Figure 5. As depicted in the figure, the distribution of the
four categories is as follows: discoids (52.604%), spheroids (8.168%), blades (25.162%), and
rods (14.073%). These results suggest that the discoid characteristics of the crushed rocks
are more prominent overall. This is mainly caused by geological processes; namely, the
overlying strata are layered sedimentary rocks. In addition, the establishment of a quantita-
tive relationship between particle shape and the structure of a particle packing system is
hindered by an excessive number of shape indicators. Consequently, many scholars have
attempted to use a single shape indicator to characterize particle shape. For instance, they
have used the mean value of sphericity and roundness or the dimensionless indicator shape
coefficient M to describe the degree of irregularity in the particle shape [37,38]. Therefore,
in this study, the Pearson correlation coefficient method [39] was employed to analyze the
correlation between the equivalent diameter D of crushed rock and its shape indicators.
The correlation hotspot maps of different shape indicators of crushed rock were obtained,
as shown in Figure 6. Typically, when the absolute value of the Pearson correlation coef-



Processes 2023, 11, 2611 8 of 17

ficient between two parameters is less than 0.2, there is considered to be no correlation.
Conversely, when the absolute value of the correlation coefficient exceeds 0.6, a strong
correlation between the two parameters is observed. The following points are shown in
Figure 6. (1) The correlation coefficients of equivalent diameter D with the long-to-medium
axis ratio e, medium-to-short axis ratio f, sphericity ψ, convexity Cv and shape coefficient
M are 0.099, −0.182, 0.068, 0.011, and −0.051, respectively, and the absolute values of the
correlation coefficients are less than 0.2, indicating that there is no significant correlation
between the shape indicators of crushed rocks and their particle size. (2) The correlation
coefficients between the shape coefficient M and e, f, ψ, and Cv are 0.627, 0.707, −0.817
and −0.792, respectively, and the absolute values of the correlation coefficients are greater
than 0.6, indicating that the shape coefficient M is an effective indicator to characterize the
shape characteristics of crushed rock in different scales. Therefore, it is particularly useful
in studying the spatial structure characteristics of underground reservoir water storage
space in coal mines.
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3.2. Variation Law of Storage Coefficient

Figure 7 shows the relationship curves between the average storage coefficient, average
contact force of the packing model and shape coefficient M of crushed rock. The results in
Figure 7 demonstrate that the average storage coefficient and average contact force of the
packing model increase exponentially as the shape coefficient M increases. The correlation
coefficient R2 values are all above 0.996. The laboratory test measured an average storage
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coefficient of 0.322, which aligns with the average storage coefficient obtained through
these numerical packing tests using irregular rigid blocks. This verifies the reliability of the
numerical simulation results. Within the range of the values studied, the maximum increase
in the storage coefficient is 50.1%, and the maximum increase in the average contact force is
11.7%. This indicates that the irregular shape of crushed rock leads to a stronger average
contact force and a larger water storage space. When the shape of particles changes from
spherical to non-spherical (e.g., with a shape coefficient M of 1–2.5), the irregularity of
particle shape has a significant impact on the void structure and contact force. Consequently,
the average storage coefficient of crushed rock increases rapidly as the shape coefficient M
increases. As the particle shape becomes more irregular (e.g., with a shape coefficient M of
2.5–3.5), the influence of particle shape irregularity on the void structure and contact force
gradually decreases. In other words, the shape effect of the particle diminishes, resulting in
a slow increase in the average storage coefficient with the increase in the shape coefficient
M. By combining statistical analysis of the shape characteristics of crushed rock in coal
mine underground reservoirs, the quantitative relationship between the shape coefficient
M and the storage coefficient can offer a scientific basis for predicting the average storage
coefficient. This relationship can also assist in designing and planning the storage capacity
of underground reservoirs, among other applications.
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Figure 8 shows the distributions of storage coefficient at different spatial heights in
the packing system of crushed rock. As depicted in Figure 8, the storage coefficient of each
layer in the packing model decreases approximately linearly as the spatial height increases.
Moreover, the decrease is smaller when the shape coefficient M is larger. Specifically, when
M equals 1.0, 1.5, 2.5, and 3.5, the maximum decrease in the storage coefficient is 15.815%,
12.464%, 9.862%, and 8.634%, respectively. This phenomenon can be attributed to the fact
that the overlying stress on the packing system of crushed rock is significantly higher than
its self-weight stress (which is less than 0.5 MPa). Consequently, the lower part of the
packing model is less affected by the overlying stress, resulting in a looser configuration
compared to the upper part. Therefore, the storage coefficient decreases as the spatial
height increases.
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3.3. Variation Law of Fractal Dimension of Water Storage Space

Fractal dimension has been widely used to describe the structural characteristics of
complex voids in real porous media and geotechnical particle systems [40]. The void fractal
dimension is generally larger when the void is larger and more uniformly distributed.
However, the void fractal dimension is mainly affected by the variation of void ratio and
may not accurately reflect the complexity of the void structure. On the other hand, the void
boundary fractal dimension describes the shape of the boundary between particles and
voids, and it focuses on the characteristics of void size and distribution [41]. Therefore,
this study specifically examines the void fractal dimension Fp and void boundary fractal
dimension Fi of water storage spaces to better understand the complexity of the void
structure.

The three-dimensional box counting dimension method [42] was used to calculate the
void fractal dimension Fp and the void boundary fractal dimension Fi of water storage
space in six numerical packing tests. The grid edge length was set to be δk, and the number
of grids needed to cover the void area Nk was counted. The spatial structure of water
storage space is considered to have self-similarity when a linear relationship is shown
in the bi-logarithmic coordinates (lgδk, lgNk). Taking the numerical test M = 2.5 as an
example, local voids and void boundaries in packing systems of crushed rock and their
δk-Nk logarithmic curves are shown in Figure 9. The relationship between δk and Nk can
be observed in Figure 9, where both variables exhibit a linear decrease. The correlation
coefficients R2 values for all cases are greater than 0.984, indicating that the spatial structure
of water storage space demonstrates self-similarity and exhibits clear fractal characteristics.
Consequently, the void fractal dimension Fp and the void boundary fractal dimension Fi
can be utilized to quantitatively depict the distribution and complexity of voids in water
storage space.

The relationship curves between the fractal dimensions of water storage space and
shape coefficient M of crushed rock are shown in Figure 10. The following can be seen.
(1) The void fractal dimension Fp and the void boundary fractal dimension Fi exhibit a
power exponential growth trend with the shape coefficient M. The correlation coefficients
R2 values are greater than 0.986, indicating that as the shape coefficient M increases, the
water storage space gradually expands and the internal voids become more unevenly
distributed. This implies that the structure of the water storage space becomes more
complex. This complexity arises from the fact that irregular particle shapes facilitate
the formation of larger cavities within the packing model, thereby increasing the overall
voidage and its complexity. Within the range of values studied, the influence of the shape
coefficient M, which represents the irregularity of crushed rock shape, on the void fractal
dimension and the void boundary fractal dimension gradually decreases. Therefore, it can
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be concluded that the influence of shape coefficient M has a saturation effect. (2) The void
fractal dimension Fp ranges from 2.659 to 2.711, and the void boundary fractal dimension
Fi ranges from 2.489 to 2.645, so the void connectivity and water storage space performance
are poor [6]. The increase in void fractal dimension Fp is limited to a maximum of 1.953%,
whereas the void boundary fractal dimension Fi can increase up to 6.433%. This discrepancy
occurs because the void fractal dimension is influenced by both the void ratio and the
complexity of the void structure. On the other hand, the void boundary fractal dimension is
more effective in representing the spatial complexity of water storage space. It is important
to note that the fractal dimension provides an overall characterization of the void structure
in water storage space. However, it does not provide information about the local void
structure characteristics or allow for a comparison of connectivity between different water
storage spaces. Therefore, in the next section, we will quantitatively characterize the local
structure of water storage space using a void network model.

Processes 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

The increase in void fractal dimension Fp is limited to a maximum of 1.953%, whereas the 
void boundary fractal dimension Fi can increase up to 6.433%. This discrepancy occurs 
because the void fractal dimension is influenced by both the void ratio and the complexity 
of the void structure. On the other hand, the void boundary fractal dimension is more 
effective in representing the spatial complexity of water storage space. It is important to 
note that the fractal dimension provides an overall characterization of the void structure 
in water storage space. However, it does not provide information about the local void 
structure characteristics or allow for a comparison of connectivity between different water 
storage spaces. Therefore, in the next section, we will quantitatively characterize the local 
structure of water storage space using a void network model. 

  Void 

Particle 

 

 
Void boundary 

 
(a) (b) 

  
(c) (d) 

Figure 9. Local voids and void boundaries in packing systems of crushed rock and their δk-Nk loga-
rithmic curves in a numerical test of M = 2.5: (a) Local voids; (b) Void boundaries; (c) δk-Nk logarith-
mic curve of voids; (d) δk-Nk logarithmic curve of void boundaries. 

 

Figure 9. Local voids and void boundaries in packing systems of crushed rock and their δk-Nk

logarithmic curves in a numerical test of M = 2.5: (a) Local voids; (b) Void boundaries; (c) δk-Nk

logarithmic curve of voids; (d) δk-Nk logarithmic curve of void boundaries.

Processes 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

The increase in void fractal dimension Fp is limited to a maximum of 1.953%, whereas the 
void boundary fractal dimension Fi can increase up to 6.433%. This discrepancy occurs 
because the void fractal dimension is influenced by both the void ratio and the complexity 
of the void structure. On the other hand, the void boundary fractal dimension is more 
effective in representing the spatial complexity of water storage space. It is important to 
note that the fractal dimension provides an overall characterization of the void structure 
in water storage space. However, it does not provide information about the local void 
structure characteristics or allow for a comparison of connectivity between different water 
storage spaces. Therefore, in the next section, we will quantitatively characterize the local 
structure of water storage space using a void network model. 

  Void 

Particle 

 

 
Void boundary 

 
(a) (b) 

  
(c) (d) 

Figure 9. Local voids and void boundaries in packing systems of crushed rock and their δk-Nk loga-
rithmic curves in a numerical test of M = 2.5: (a) Local voids; (b) Void boundaries; (c) δk-Nk logarith-
mic curve of voids; (d) δk-Nk logarithmic curve of void boundaries. 

 
Figure 10. Relationship curves between fractal dimensions of water storage space and shape coeffi-
cient M of crushed rock.



Processes 2023, 11, 2611 12 of 17

3.4. Variation Law of Void Network Structure

The void network model is an equivalent model for reconstructing the complex void
space structure, where the void is simplified as a sphere, the throat is simplified as a
thin rod, and the void space is simplified as a series of sphere–rod-connected network
structures [43,44]. Using the void network model, the void geometry topology and spatial
distribution characteristics of water storage space can be effectively described.

The water storage space is divided into “sphere” voids and “stick” throats to analyze
its spatial structure characteristics. The specific construction process of the void network
model for water storage space is shown in Figure 11. The water storage space (void
structure) of the packing system of crushed rock was extracted first. Then, the void network
model of the water storage space was obtained using the Maximal Ball method [43]. Voids
and throats were divided by setting a sphere radius ratio of 0.7. If a maximum sphere
radius is 0.7 times or more of the maximum sphere radius of its previous generation, it was
identified as a void. Vice versa, if it was less than 0.7 times, it was considered as a throat. The
minimum segmentation threshold value was set at 0.7 for the throat channel. Additionally,
the minimum segmentation threshold was set to 0.017 m, which is approximately 1/6 of the
smallest particle size [45]. Finally, the main characteristic parameters of the void network
model (void radius, void coordination number, void shape factor, and throat radius) were
calculated and analyzed. The void radius represents the size of a void, while the throat
radius represents the size of the connecting channel between voids, which determines
the connectivity between voids. The void coordination number indicates the number of
connected throats, effectively reflecting the strength of void connectivity. The void shape
factor describes the degree of irregularity in the void space and affects the manner and
speed of fluid flow in water storage space. A larger void shape factor indicates a more
regular void shape.
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of crushed rock; (b) Extraction of water storage space; (c) Division of water storage space; (d) Void
network model.

The packing system of crushed rock with shape coefficients M = 1.0, 1.5, 2.5, and 3.5
were used as examples to construct a void network model. The main characteristic parame-
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ters of the model were statistically calculated, and the results are shown in Figure 12. By
comparing Figure 12a–d, the following can be observed. (1) Compared to the non-spherical
particle system, the distributions of the void radius, throat radius, void coordination num-
ber, and void shape factor in the spherical particle system are more concentrated. The peak
values of the distribution curves are also larger. This indicates that the small-scale void
radius and throat radius in the spherical particle system are higher than those in the non-
spherical particle system. Additionally, the water storage space is smaller, the connectivity
among voids is lower, and the void space is more irregular. (2) For non-spherical particles
(real crushed rock), the distribution curves of the void radius and throat radius gradually
become wider with the increase in shape coefficient M (Figure 12a,b). The void radius
distribution is mainly concentrated around 0.2 m, while the throat radius distribution is
mainly concentrated around 0.1 m. On the other hand, the distribution curves of the void
shape factor show a trend of gradual concentration (Figure 12d) with the main concentra-
tion around 0.01–0.015. The distributions of void coordination number remain relatively
unchanged with a concentration around 9.0 (Figure 12c). This means that as the shape of
crushed rock becomes more irregular, there is a higher proportion of large-scale void radius
and throat radius in the packing system, indicating a more irregular void space. However,
there is no significant effect on the connectivity of voids.
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4. Discussion

The macroscopic properties of the particle system always depend on its own local
structure characteristics [46], and the particle shape directly affects the interparticle contact
behaviors [47], which in turn leads to significant differences in its local structure. In order
to further investigate the impact of different shape coefficients on the spatial structure
characteristics of underground reservoir water storage space in coal mines, a correlation
analysis was conducted. This analysis examined the relationship between the shape coeffi-
cient M of crushed rock, the storage coefficient, and the average characteristic parameters
of the void network model. The results, shown in Figure 13, indicate that both the shape
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coefficient M and storage coefficient are positively correlated with the average void radius
and average throat radius, with correlation coefficients exceeding 0.8. Additionally, they
are negatively correlated with the average void shape factor, with correlation coefficients
less than −0.6. However, there is no significant correlation between the shape coefficient
and the average void coordination number. The shape of crushed rock plays a significant
role in determining the overall structure characteristics of water storage space. It affects the
local void radius, throat radius, and void shape factor of the packing system. Irregularly
shaped crushed rocks have a greater ability to prevent sliding and rotation within a specific
area [48], thus enhancing the interlocking effect among them. This interlocking effect [49]
facilitates the formation of larger cavities. Consequently, larger local voids result in larger
connecting channels among voids, leading to increased inhomogeneity in the distribution
of water storage space and voids. The complex structure characteristics of underground
reservoir water storage space are underpinned by interactions between crushed rocks and
between crushed rocks and their geological environment. Therefore, a comprehensive
consideration of the specific engineering geological conditions, stress environment and
crushed rock shape has a crucial role in the deep understanding and utilization of the
spatial structure characteristics of water storage space.
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5. Conclusions

(1) Crushed rock exhibits a lognormal distribution in its shape characteristic parameters at
different scales, with a predominant discoid shape, which accounts for more than 50%.
The shape coefficient M can be utilized as a comprehensive indicator to characterize
the shape characteristics of crushed rock.

(2) Within the range of the values studied, the average storage coefficient and average
contact force of the packing system of crushed rock both increase exponentially as
the shape coefficient M increases, and the increase is 50.1% and 11.7% from M = 1 to
3.5, respectively. The storage coefficient decreases as the spatial height of the packing
model increases. Additionally, the decrease is smaller when the shape coefficient M
is smaller.

(3) Within the range of the values studied, the spatial structure of water storage space
exhibits self-similarity, the void fractal dimensions are all distributed in the range
of 2.659 to 2.711, and the void boundary fractal dimensions are all distributed in
the range of 2.489 to 2.645. The void fractal dimension is influenced by both the
void ratio and the complexity of the void structure, while the void boundary fractal
dimension is more effective in representing the spatial complexity of water storage
space. The complexity of the water storage space structure and the inhomogeneity of
void distribution both increased gradually with the increase in the shape coefficient M.

(4) When comparing the non-spherical particle system with the spherical particle system,
it is observed that the spherical particle system has smaller water storage space, lower
connectivity among voids, and more irregular void space. In the non-spherical particle
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system, the water storage space becomes larger as the shape of crushed rock becomes
more irregular, resulting in more irregular void space. However, there is no significant
effect on void connectivity. The shape of crushed rock has a significant impact on the
overall structure characteristics of water storage space. It influences the local void
radius, throat radius, and void shape factor of the packing system.

This study is more conceptual and does not pay attention to the geology and that
the lithological and structural geological peculiarities may influence the results of the
spatial structure characteristics of underground reservoir water storage space. Therefore,
the influence of particle gradation, strength, lithology and other factors on the storage
coefficient, water storage spatial structure and mechanical characteristics in more coal
mines will be further investigated to reveal its meso-control mechanism.
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