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Abstract: Drilling-fluid loss has always been one of the challenging issues in the field of drilling
engineering. This article addresses the limitations of a single fluid-loss pressure mechanism model
and the challenges in predicting positive drilling-fluid-loss pressure. By categorizing fluid losses of
various types encountered during drilling, different geological formations associated with distinct
mechanisms are considered. The actual drilling-fluid density in the wellbore at the time of fluid-loss
occurrence is taken as a reference value for calculating the positive drilling-fluid-loss pressure of
the already drilled well. Building upon this foundation, a combined model utilizing the Sparrow
Search Algorithm (SSA) and Long Short-Term Memory (LSTM) neural network is constructed.
This model effectively explores the intricate nonlinear relationship between well logging, logging
engineering data, and fluid-loss pressure. By utilizing both data from the already drilled wells
and upper formation data from ongoing drilling, precise prediction of positive drilling formation
fluid-loss pressure can be achieved. Case studies demonstrate that the approach established in
this paper, incorporating upper formation data, reduces the average absolute percentage error of
fluid-loss pressure prediction to 2.4% and decreases the root mean square error to 0.0405. Through the
synergy of mechanistic models and data-driven techniques, not only has the accuracy of predicting
positive drilling formation fluid-loss pressure has been enhanced, but also valuable insights have
been provided for preventing and mitigating fluid losses during drilling operations.

Keywords: mechanism model; leakage pressure; SSA-LSTM; during the drilling process

1. Introduction

Deep and ultradeep oil and gas resources represent the primary frontier for future
energy supply. However, due to the intricate and ever-changing geological conditions in
these depths, coupled with inadequate predrilling knowledge of subsurface formations,
drilling operations frequently encounter challenges such as leaks, surges, collapses, and
sticking, among other downhole complexities. Among these issues, wellbore leakage
has emerged as one of the most prevalent complexities in recent years. This not only
escalates drilling costs and diminishes drilling efficiency but also poses a significant risk of
wellbore collapse, surges, and even blowouts, leading to major safety incidents [1–3]. At
the drilling site, the occurrence of fluid loss is typically determined by monitoring changes
in drilling-fluid volume and the flow rate at the wellhead. Wang [4] discussed the leakage
judgment under different working conditions and found that the leakage law of drilling
fluid also varies under different working conditions. Sun et al. [1] pointed out that the
leakage channel, leakage pressure, and leakage rate are the three main characteristics of
oil-well leakage. Accurately determining the nature of the leakage will strongly support
the scientific screening of leak prevention and blockage technologies. However, due to the
complexity of underground rock formations and the complexity and variability of pressure
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systems, accurately predicting the leakage pressure of complex and volatile formations
remains a challenge, and there is currently no complete set of leakage pressure prediction
methods [5,6].

In previous studies, the rupture pressure as a safe drilling-pre-fluid density window
can no longer meet engineering requirements, and it is necessary to use accurate leakage
pressure as its upper limit. In the traditional leakage pressure mechanism model, Zhang
et al. [7] established a mechanical model for the intersection of cracks and the wellbore
based on the stress state of the wellbore-surrounding rock. However, the solution of
this model is complex, and its applicability is poor. Subsequently, Fang [8] proposed a
method for calculating formation leakage pressure based on logging data, and Zhai et al. [9]
conducted research on the prediction and control model of shale-induced fracture leakage
pressure. They proposed a dynamic model for leakage pressure based on leakage time, rate,
and other factors, and demonstrated the accuracy of the model. However, the occurrence
of drilling-fluid leakage is not only related to the formation leakage pressure and wellbore
pressure but also to construction parameters and human factors. Therefore, traditional
methods based on wellbore pressure balance have certain limitations.

With the continuous indepth integration of machine learning, big data, and other
technologies in the field of petroleum engineering, the data-driven method for identifying
and early warning of lost circulation risk shows obvious advantages over traditional model
methods. Mohammad Sabah et al. [10] conducted research on intelligent prediction models
such as decision trees (DT), adaptive neural fuzzy inference systems (ANFIS), artificial
neural networks (ANN), and genetic algorithms multilayer perception hybrid artificial
neural networks (GA-MLP), and confirmed that machine learning has certain advantages in
predicting leakage. Pang et al. [11] selected 16 comprehensive logging parameters with the
strongest correlation with drilling loss rate for model training and established a complex
relationship between logging parameters and mud loss rate through a subgaussian mixed
density network, confirming that the model can evaluate drilling loss risk in real-time.
Matinkia et al. [12] validated multiple models using logging data, and the results showed
that convolutional neural networks (CNN) models have significant advantages in feature
extraction, especially for data with high volatility such as logging data. Song et al. [13]
conducted research on the LSTM and back propagation (BP) combined model, and took
the formation pore pressure of two wells (the whole well section is considered as the true
value) as the training set and one as the verification, proving the feasibility and accuracy of
the model. In summary, there are two major difficulties in constructing a leakage pressure
profile. First, the model has numerous parameters that are difficult to determine, resulting
in poor generalization ability; The second is that the model is simple but lacks accuracy.
However, it is obvious that a single model can no longer meet the needs of safe drilling
in the project. This paper builds a leakage pressure profile for the whole well section
by evaluating the actual leakage of drilled wells and using different mechanism models
for different types of leakage. By constructing a drilled leakage pressure profile using
mechanism methods, it serves as a machine-learning data sample for predicting leakage
pressure while drilling in the drilling formation. The selected LSTM model can perform
feature learning well. Considering the impact of model hyperparameters on prediction
results, this paper uses the SSA algorithm to optimize hyperparameters, striving to achieve
higher accuracy of the model during the drilling process.

2. Methodology
2.1. Applicability Analysis

This study is based on ultradeep wells on land and aims to calculate the leakage
pressure of various fractures, karst caves, and high permeability formations using various
mechanism models. The actual data of leakage is included in the mechanism model
validation, providing more accurate leakage pressure data for the drilled formations. The
SSA algorithm optimizes the parameter search by simulating sparrows’ foraging behavior
and is suitable for various optimization problems. The LSTM model performs well in time-
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series data analysis; therefore, it also has potential value in other tasks that require time
correlation modeling, such as weather forecasting, financial data analysis, and other fields.
In addition, this method provides insights for research in other geological engineering
fields. This cross-domain migration potential will help expand the applicability of our
method. The SSA-LSTM model used provides a good solution for predicting the leakage
pressure in forward drilling.

2.2. Background Introduction to Block L

The high and steep structures in this block belong to the mountain front and mountain
area [14], with adverse surface terrain conditions and underground structures coexisting.
The strong folding and orogeny not only make the terrain height difference change greatly
but also make the high and steep structure appear from the surface, making the stratum
dip angle very large. Due to long-term erosion of surface water and weathering, fractures
and karst caves are developed, and lost circulation is very serious. According to the
statistical data of the leakage layer rock core in high and steep structures, the opening
size, distribution shape, and filling material of the cracks vary greatly, with significant
differences [15], but generally speaking, there are the following rules: from Shaximiao
to Xujiahe, the leakage channels are mainly porous leakage channels. When drilling into
poorly cemented sandstone and mudstone formations, permeability leakage often occurs;
on the main part of the structure, due to long-term surface-water erosion and weathering,
the leakage channels are mainly karst caves and large fractures, the width of the fractures
is generally more than 10 mm, and most of them are nonfilling inclined fractures with an
inclination of more than 30◦ and extend far to the depth of the stratum. Some of them
are connected to the surface. When encountering such lost circulation channels, very
serious well losses occur, and handling them is also quite difficult [16]. In addition, the
geological environment of the block also has old strata exposed to the surface, weathered
mountain gravel, and mostly broken surface of the old strata. Due to differences in the
sedimentary age, sedimentation time, and fragmentation of the surface rocks, there are
significant differences in the horizontal distribution of strata, resulting in the frequent
occurrence of leakage in mid-to-shallow formations. When encountering faults during
drilling, there is a phenomenon of venting, which can be confirmed by logging curves to
indicate the development of fractures in this section, which can easily lead to malignant
leakage.

There are a total of 12 wells in the selected block. Based on the analysis of the
actual drilling situation, almost every layer of the wells in Block L, from the Penglai town
formation to the Changxing Formation, has experienced well leakage, with a depth ranging
from the surface to below 5000 m. However, the severity of well leakage varies greatly
among different formations. According to the reasons for the leakage, it can be divided
into fracturing leakage, expansion leakage, and differential pressure leakage. After detailed
statistics, a total of 259 leaks occurred (multiple leaks at the same depth in continuous
operations are recorded as one leak), and, according to different operating conditions, 66%
of them were lost during the drilling process, as shown in Figure 1. The main layer is the
Qianfo Cliff Formation, with a depth concentration of 1800–3300 m. The leakage type is
mainly differential pressure leakage, up to 69%, as shown in Figure 2.
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2.3. Drilled Leakage Pressure Model

In response to the above statistical results, it is necessary to conduct indepth research
and construct a set of leakage pressure prediction methods during the drilling process.
This article takes the cause of leakage as the classification standard and uses different
mechanism models for different leakage formations. Since regardless of the type of leakage,
the leakage pressure can be regarded as the drilling fluid column pressure in the wellbore
when the formation experiences leakage, which means that the drilled leakage pressure
profile calculated based on traditional mechanism models needs to be corrected. Research
has shown that the values of some model coefficients are also a challenge, and the examples
provided in this article have already provided some model parameters in Section 3.1. The
specific process is shown in Figure 3.
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2.3.1. Critical Crack Width Leakage Model

For extended leakage [17], a critical crack width leakage model is adopted, which
assumes the existence of a critical crack width. When the crack width is less than the critical
crack width, the drilling fluid will form a sealing layer with a certain pressure-bearing
capacity inside the crack, and the drilling fluid will filter normally; when the fracture
width exceeds the critical fracture width, it will be converted into fracture leakage. The
deformation of cracks follows a power function form, and the flow of drilling fluid in
cracks follows a cubic law. The relationship between crack width and effective stress is as
follows [17]:

ω = ω0

{
A
[(

σ

σ0

)a
+ 1
]}−1

(1)

where, ω is the dynamic width of the crack, mm; ω0 is the crack width when the wellbore
pressure is equal to the formation pressure, mm; σ is the effective stress on the vertical crack
surface, MPa; σ0 is the effective stress on the vertical fracture surface when the wellbore
pressure is equal to the formation pressure, MPa; A and a is an undetermined coefficient;
therefore, there is no reason.

Taking a single vertical joint as an example, ignoring the stress concentration around
the wellbore, the relationship between the wellbore fluid column pressure and the effective
normal stress on the fracture surface is obtained as follows [15]:

σ = σh − p′f (2)

where, p′f is the effective liquid column pressure in the wellbore, MPa; σh is the minimum
horizontal principal stress, MPa.

Combine Equations (1) and (2) above to obtain the relationship between the dynamic
width of fractures and the pressure of the drilling-fluid column:

ω = ω0

{
A

[(
σh − p′f
σh − Pp

)a

+ 1

]}−1

(3)

From the equation, it can be seen that there is a positive correlation between the
dynamic width of fractures and the wellbore fluid column pressure. When the crack



Processes 2023, 11, 2608 6 of 14

width reaches the critical crack width, fractured leakage occurs underground. The leakage
pressure calculation model [17] based on the critical crack width ωc is:

PL1 = σh −
(

ω0

Aωc
− 1
) 1

a (
σh − Pp

)
(4)

where, PL1 is the crack propagation pressure, MPa; ωc is the critical crack width, mm; Pp is
the formation pore pressure, MPa.

2.3.2. Permeability Leakage Model

For permeability leakage [18], drilling-fluid leakage can be reflected by the Porome-
chanics formula. Assuming that the borehole is regular, it can be regarded as cylindrical.
Since the drilling fluid is generally non-Newtonian fluid, when the Bingham model is used
to describe the Rheology Constitutive equation of the drilling fluid, the relationship be-
tween the pressure and flow rate of drilling-fluid seepage can be expressed as the following
formula [18]:

PL2 = Pp +
QL × 103ηp

2πkh
ln

re

rh
+

7
6000

τ0

√
φ

5k
(re − rh) (5)

where, QL is the average flow rate of drilling-fluid leakage, L/s; ηp is the plastic viscosity
of Bingham plastic, Pa·s; τ0 is the yield stress of Bingham plastic, Pa·s; φ is the porosity of
the formation; therefore, there is no reason; PL2 is the permeability leakage pressure, MPa;
k is the formation permeability, D; rh is the wellbore radius, m; re is the leakage radius of
the formation, m; h is the thickness of the leakage layer, m.

2.3.3. Fracture Pressure Model

Usually, due to excessive pressure in the drilling-fluid column or rapid increase in
drilling-fluid density in the well, a large amount of pressure is formed, exceeding the
maximum pressure-bearing capacity of the weak layer underground, leading to rock
fracture and the formation of cracks, or the expansion of closed cracks in the rock, resulting
in leakage [19]. The intact formation did not experience fracturing during the drilling
process, therefore, its value is approximately equal to the fracturing pressure value, as
shown in Equation (7). However, based on the analysis of well history data in this block,
when the practical drilling-fluid density is much less than, fracturing leakage still occurs,
which is mostly related to insufficient pressure-bearing capacity when drilling to thin
and weak layers or lithological interfaces. Therefore, this article modifies Equation (6) by
assigning a correction coefficient.

PL3 = Pf = 3σh − σH − αPp + St (6)

PL3 = KiPf = Ki(3σh − σH − αPp + St) (7)

where, Pf is the formation fracture pressure, MPa; St is the tensile strength of the rock, MPa;
PL3 is the fracturing leakage pressure, MPa; α is the effective stress coefficient, dimension-
less; Ki Correction coefficient for different depths, with a value range of 0.55~0.92.

2.3.4. Statistical Leakage Model

Differential pressure leakage refers to the presence of large-scale fractures, karst caves,
and fracture karst-cave networks connected to the wellbore. Multiple pressure systems
coexist in the L block where fractures intersect. In order to obtain the differential pressure
of drilling-fluid leakage, the first step is to refer to well history data and classify the leakage
based on the cause. Then, the leakage pressure difference and leakage rate are calculated
and fitted for this type of differential pressure leakage; the fitting model is as follows [8]:

PL4 = Pp + ∆p = Pp + KQn (8)
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where, PL4 is the differential leakage pressure, MPa; ∆p is the leakage pressure difference,
MPa; Q is the leakage rate, m3/h; n is the fitting coefficient, dimensionless.

2.3.5. Minimum Horizontal Principal Stress Model

In traditional understanding, a complete formation without leakage can only occur
when hydraulic fracturing occurs during drilling. However, for the development of frac-
tures in this block, the stability of the rock layer is poor, and the leakage pressure is much
lower than the fracturing pressure. Therefore, this article adopts the minimum horizontal
principal stress model for the formation without leakage accidents. The minimum hor-
izontal principal stress model believes that, for the formation with bedding, joints, and
closed fractures, the fluid pressure that causes the crack to open only needs to overcome the
ground stress on the vertical crack surface; that is, the leakage pressure is approximately
equal to the minimum horizontal principal stress [20].

PL5 = σh = (
µ

1− µ
+ ω)(σz − αPp) + αPp (9)

where, PL5 the leakage pressure determined for the small horizontal principal stress model,
MPa; ω is the stress coefficient of horizontal construction, dimensionless; µ is Poisson’s
ratio, dimensionless; σz is the pressure of the overlying rock layer, MPa.

2.4. Data-Driven Approach

The process of oil drilling is a continuous process of generating data and deepening
our understanding of reservoirs. The acquisition of underground data is very valuable, and
how to fully explore the connections between data has become an urgent problem to be
solved. Incorporating logging and engineering data into leak-pressure prediction provides
a new approach. This article uses data from drilled wells as training samples, and it is a
feasible method to calculate the leakage pressure of drilling wells. However, in order to
achieve ideal prediction accuracy, adding data from the upper strata of the drilling well
(previous drilling) to the previous samples will effectively improve model accuracy. At the
same time, using an SSA algorithm to optimize LSTM hyperparameters can eliminate the
blindness of manually setting parameters and improve timeliness.

2.4.1. SSA-LSTM Model

SSA [21] is an algorithm proposed in 2020, inspired by sparrows’ predatory and
antipredatory behavior. This algorithm has advantages such as avoiding falling into local
optima, fast convergence speed, high convergence accuracy, and strong search ability. The
algorithm and its variants have good performance in continuous optimization problems.
The modeling process of this algorithm can be summarized as follows: assuming that
the position of each sparrow is x = {x1, x2, . . . , xD}, its fitness is f = f [x1, x2, . . . , xD],
the population of sparrows is set to m, and n sparrows with the best population position
are selected as producers in each generation, while the remaining m-n are selected as
scavengers. Compared to other sparrows, individuals with higher fitness will prioritize
the discovery of food. In addition, producers will always find abundant food and provide
directions for all scavengers to search for food. Therefore, producers will obtain a larger
search range. Therefore, the producer’s location update is as follows (10). If R2 is less than
ST, then there are no predators and producers begin to conduct more extensive searches;
If R2 is greater than or equal to ST, it indicates that a certain number of sparrows have
discovered predators, and an alarm is issued. All sparrows in the population must fly to
safer areas to forage.

Xt+1
i,j =

{
Xt

i,j · exp( −i
α·itermax

), R2 < ST;
Xt

i,j + Q · L, R2 ≥ ST;
(10)
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where, Xi,j is the position information of the i th sparrow in the j th dimension; t is the
current number of iterations; α is a random number between (0, 1]; itermax is a constant;
R2 is the alarm value, which belongs to the range [0, 1]; ST is the safety threshold, which
belongs to the range [0.5, 1]; Q is the value of a simple random distribution; L is a 1× d
matrix with each element of 1.

The position of the scavengers is shown in Equation (11) below. When i > n/2, it
means that the i th scavenger with lower adaptation is not getting food, so at this time the
scavengers need to fly to other places to find food. When the sparrows realize the danger,
they will abandon the immediate food and enter the warning state; the specific expression
is shown in Equation (12) below.

Xt+1
i,j =

 Q · exp(
Xt

worst−Xt
i,j

i2 ), i > n/2;

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+, otherwise;
(11)

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣, fi > fg

Xt
i,j + K · (

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

), fi = fg;
(12)

where, Xworst is the current global worst position; Xt+1
P is the optimal position of the

producer at the t + 1th iteration; A is a matrix of 1× d with elements in the range [−1, 1]
and which has to satisfy A+ = AT(AAT)−1; K is a randomized measure and belongs to
the range [−1, 1]; β is a step control parameter with a random normal distribution; ε is
a minimal constant which avoids the error of having a zero denominator in the division;
Xbest is the current globally optimal position; fi is the fitness value of an individual sparrow
at this point in time; fw and fg are the current global worst and best fitness, respectively.

If fi > fg, it means that at this time the sparrow is at the edge of the population, and
there is a great possibility of being attacked by predators. If fi = fg, it means that the
sparrows located in the center of the population have found the danger; in order to avoid
being preyed upon, they need to approach the other sparrows.

LSTM [21] is a kind of recurrent neural network with complex and powerful asymp-
totic processing ability. Due to the existence of before and after correlation of logging
data, the model can extract the logging sequence feature data along the depth, respectively,
forward and backward, and the change rule of formation pressure before and after depth
extraction. xt and xt−1 represent the input states at the current time and before time respec-
tively; Ht and Ht−1 denote the current time and the previous time; Ct and Ct−1 represent
the cell states that send the current time and the previous time, respectively. σ denotes
the sigmoid activation function with the range of [0, 1] and Tanh is the hyperbolic tangent
function with the range of [−1, 1].

First, the LSTM decides what information to discard from the cell state through the
forgetting gate. The formula is as in Equation (13):

ft = σ
(

W f · [ht−1, xt] + b f

)
(13)

ft is the output of the oblivious gate; W f is the weight matrix of the oblivious gate;
b f is the bias term of the oblivious gate. Next, the LSTM determines the information that
needs to be updated through the input gate according to Equation (13):

it = σ(Wi · [ht−1, xt] + bi) (14)

it is the output of the input gate, Wi is the weight matrix of the input gate, and bi is the
bias term of the input gate. Then we update the cytosolic state Ct. The candidate cytosolic
state Ĉt and the current cell state Ct are expressed as Equations (15) and (16).

Ĉt = tanh(Wc · [ht−1, xt] + bc) (15)



Processes 2023, 11, 2608 9 of 14

Ct = ftCt−1 + iiĈt (16)

where, Wc is the weight matrix of the candidate vector, and its deviation is represented
by bc. Finally, the LSTM determines the output information state of the unit through the
output gate. The output of the output gate is shown in Equation (17):

Ot = σ(Wo · [ht−1, xt] + bo) (17)

Ot is the output of the output gate; Wo is the weight matrix output gate; bo is the bias
term of the output gate. The hidden state output of the LSTM unit is shown in Equation (18):

ht = Ottanh(Ct) (18)

However, the hyperparameters of this model have a significant impact on the model,
and during the drilling process, different parameters should be used at different intervals or
lithological layering. Considering the effectiveness of the drilling process and the addition
of new knowledge in the drilled section, the practical sparrow algorithm is a good way to
optimize the hyperparameters of the model. The optimization process is shown in Figure 4:

Processes 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 4. SSA-LSTM algorithm flowchart. 

2.4.2. Data Preparation and Evaluation Indicators 
The burrs or abrupt changes in logging and logging curves may be abnormal jumps, 

or they may indeed be sudden changes in the rock environment. In order to eliminate the 
influence of abnormal data on correlation and model, data smoothing is also required be-
fore this, and a fast Fourier transform smoothing method is used. Normalization pro-
cessing takes into account the dimensional impact between data at different scales and 
normalizes the logging data to a range of 0~1. After normalization, the logging data 

iy  is 
shown in Equation (19). 

min( ) ,1
max( ) min( )

i i
i

i i

x xy i n
x x
−= < <

−
 (19)

where, 
iy  is the normalized logging data at the corresponding depth 

iH , and ix  repre-
sents the original logging data at the measured depth 

iH . 
The maximum information coefficient (MIC) is used to measure the degree of corre-

lation between two variables x  and y , as well as the strength of linearity or nonlinear-
ity. Compared to conventional Pearson correlation analysis, MIC is more suitable for com-
plex nonlinear relationships and has the advantages of low computational complexity and 
higher robustness. The range of values for the MIC correlation coefficient is [0, 1], and the 
closer it is to 1, the stronger the correlation. 

The mean absolute percentage error (MAPE  ) [13] and root mean square error (
RMSE ) of the indicator are shown in Equations (20) and (21), respectively. 

 2
1

1 ( )N
i ii

RMSE y y
N =

= −  (20)


1

100% N i i
i

i

y yMAPE
N y=

−=   (21)

3. Example Analysis and Comparison 
3.1. Examples of Lost Pressure in Drilled Wells 

A total of twelve wells have been drilled in this block. This article uses two wells as 
validation to simulate the drilling process, while the rest are adjacent wells. Through the 
calculation of formation pore pressure and leakage pressure in the previous section, three 
adjacent well-pressure profiles were constructed and compared based on the actual leak-
age situation in the well history. The following is an example of the L4 well calculation, as 

Figure 4. SSA-LSTM algorithm flowchart.

2.4.2. Data Preparation and Evaluation Indicators

The burrs or abrupt changes in logging and logging curves may be abnormal jumps,
or they may indeed be sudden changes in the rock environment. In order to eliminate the
influence of abnormal data on correlation and model, data smoothing is also required before
this, and a fast Fourier transform smoothing method is used. Normalization processing
takes into account the dimensional impact between data at different scales and normalizes
the logging data to a range of 0~1. After normalization, the logging data yi is shown in
Equation (19).

yi =
xi −min(xi)

max(xi)−min(xi)
, 1 < i < n (19)

where, yi is the normalized logging data at the corresponding depth Hi, and xi represents
the original logging data at the measured depth Hi.

The maximum information coefficient (MIC) is used to measure the degree of corre-
lation between two variables x and y, as well as the strength of linearity or nonlinearity.
Compared to conventional Pearson correlation analysis, MIC is more suitable for complex
nonlinear relationships and has the advantages of low computational complexity and
higher robustness. The range of values for the MIC correlation coefficient is [0, 1], and the
closer it is to 1, the stronger the correlation.
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The mean absolute percentage error (MAPE) [13] and root mean square error (RMSE)
of the indicator are shown in Equations (20) and (21), respectively.

RMSE =

√
1
N ∑N

i=1 (ŷi − yi)
2 (20)

MAPE =
100%

N ∑N
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (21)

3. Example Analysis and Comparison
3.1. Examples of Lost Pressure in Drilled Wells

A total of twelve wells have been drilled in this block. This article uses two wells as
validation to simulate the drilling process, while the rest are adjacent wells. Through the
calculation of formation pore pressure and leakage pressure in the previous section, three
adjacent well-pressure profiles were constructed and compared based on the actual leakage
situation in the well history. The following is an example of the L4 well calculation, as
shown in Figure 5. The well has experienced a total of 27 losses, with the types of losses
being expansionary and differential pressure losses:
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(1) At 674 m–1397 m (from Penglaizhen Formation to Suining Formation), microfrac-
tures coexist with large-scale fractures. For example, at 1008 m, extended leakage occurs.
When the wellbore pressure is equal to the formation pressure, the crack width is 0.5 mm,
the critical crack width is 2.5 mm, the formation pore pressure is 10.56 MPa, the minimum
horizontal principal stress is 16.85 MPa, A is 0.15, a is 6, and the leakage pressure at this
depth is calculated to be 11.61 MPa;

(2) Intermittent permeability leakage occurs in a large section from 1398 m to 1890 m
(Shang Shaximiao Formation). The leakage well section is long, the leakage volume is
large, and the leakage rate is low, but the success rate of plugging is high. At 1398 m,
the average leakage flow is 0.56 L/s, the plastic viscosity is 0.035 Pa·s, the permeability is
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0.25 D, the hole radius is 0.22 m, the average leakage half diameter is 5 m, the porosity is
3%, the drilling-fluid yield stress is 7 Pa·s, the formation pore pressure is 12.56 MPa, and
the leakage pressure is 16.55 MPa;

(3) There are many large-scale fractures in the 3475–4361 m (artesian well group)
formation, resulting in lateral differential pressure leakage. The leakage rate is relatively
high, and the leakage amount is relatively large. Based on the actual differential pressure
leakage situation of adjacent wells (C5, C6, C7), the relationship between pressure difference
and leakage rate is obtained as follows: ∆P = 1.47Q0.562.

3.2. Data Sample Instance

In order to demonstrate the improvement effect of the previous drilling data on the
drilling formation model, this article constructed adjacent well data sample 1 and sample 2
integrated into the drilled formation, respectively, to predict the leakage pressure while
drilling. MIC analysis included a total of 19 feature parameters, excluding parameters
with a correlation less than 0.4 and retaining 12 parameters with a strong correlation with
leakage pressure such as DEPTH, MwIN, MwOUT, and Inlet Resilience for model training,
as shown in Figure 6. Similarly, the L4 well was used as validation, and training sets were
constructed using L5, L6, and L9. The constructed sample dataset 1 (8294 × 11) and the
data from the first two wells of L4 were integrated into the drilled dataset (12,197 × 11).
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3.3. SAA-LSTM Model Parameter Settings

The first layer neuron range is [5–150], the second layer neuron range is [5–150], and
the dropout ratio is [0.05–0.8]. The batch size is [8–32], the sparrow algorithm searches for
the optimal combination are (10, 20, 0.6788, 8), the sparrow population size is set to 20, and
the maximum number of iterations is 100. The proportion of producers in the population is
20%, and its safety threshold is 0.8.
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3.4. Comparison of Positive Drilling Model Predictions

Through the data samples and model construction constructed in the previous section,
the comparison results of Figure 7 were obtained, and the two predicted results were
compared with the actual leakage pressure. Using only drilled data samples for training,
testing was conducted on a positive drilling well (with a depth range of 4450–7200 m).
Sample 1 showed an RMSE of 0.053 and a MAPE of 2.8%. However, for a positive drilling
well, incorporating the upper drilling data can reduce the RMSE to 0.0405 and the MAPE
to 2.4%. And this data sample can better reflect the leakage pressure situation of vulnerable
formations (pressure profile fluctuations). Furthermore, it has been proven that accurate
prediction of leakage pressure is difficult, and using adjacent well data as samples alone can-
not effectively characterize the situation of leakage pressure in normal drilling, especially
in areas with uneven lateral distribution of the formation. After adding the upper strata
data, this not only proves the applicability of the SSA-LSTM model but also demonstrates
the impact of data quality on its results.
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4. Conclusions

This article proposes a method for predicting the leakage pressure during the drilling
process, which utilizes various traditional mechanism models to calculate the leakage
profile of the drilled well. The constructed leakage samples are used as the output of the
machine-learning model to achieve the inversion of the leakage pressure in the drilling for-
mation while drilling. In order to highlight the importance of upper formation information
in drilling, we also compared two different datasets and obtained the following summary:

1. The leakage situation of the block was analyzed, and a leakage pressure mechanism
model suitable for the entire well section of the block was obtained. Instead of using
a single model to calculate the leakage pressure, different models are used for different
leakage formations to build the leakage pressure of the whole well section. And the actual
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leakage situation will be checked, and the accurate calculation of the leakage pressure of
the drilled well will provide a basis for the training of the forward drilling model;

2. The constructed well leakage profile data can be used as the output of the model to
effectively predict the leakage pressure of the drilling formation. Different data samples
have been constructed to prove that incorporating the upper formation data of the drilling
into the samples can effectively improve the accuracy of the model, with an RMSE of only
0.0405 and a MAPE of only 2.4%. And it can better reflect the leakage pressure of vulnerable
formations (pressure-profile fluctuations);

3. Future work will start with software integration of input features and combined
models, integrating more logging while drilling data into the model, and achieving leakage
pressure prediction by combining geological and engineering data. We will always keep
up with onsite requirements and integrate this method into the software to achieve risk
prediction of drilling leakage and assist in adjusting the drilling construction plan.
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