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Abstract: This work focuses on developing and applying Encrypted Lyapunov-based Model Pre-
dictive Control (LMPC) in a nonlinear chemical process network for Ethylbenzene production. The
network, governed by a nonlinear dynamic model, comprises two continuously stirred tank reactors
that are connected in series and is simulated using Aspen Plus Dynamics. For enhancing system
cybersecurity, the Paillier cryptosystem is employed for encryption–decryption operations in the
communication channels between the sensor–controller and controller–actuator, establishing a secure
network infrastructure. Cryptosystems generally require integer inputs, necessitating a quantization
parameter d, for quantization of real-valued signals. We utilize the quantization parameter to quantize
process measurements and control inputs before encryption. Through closed-loop simulations under
the encrypted LMPC scheme, where the LMPC uses a first-principles nonlinear dynamical model, we
examine the effect of the quantization parameter on the performance of the controller and the overall
encryption to control the input calculation time. We illustrate that the impact of quantization can
outweigh those of plant/model mismatch, showcasing this phenomenon through the implementation
of a first-principles-based LMPC on an Aspen Plus Dynamics process model. Based on the findings,
we propose a strategy to mitigate the quantization effect on controller performance while maintaining
a manageable computational burden on the control input calculation time.

Keywords: model predictive control; cybersecurity; encrypted control; semi-homomorphic encryption;
quantization; process control

1. Introduction

With the rapid advancement of technology and the increasing integration of de-
vices, networked cyber–physical systems, particularly those utilizing SCADA (Supervisory
Control and Data Acquisition) technology, have become integral components of critical
infrastructure across industries, such as energy, water, transportation, and manufacturing.
These systems enable efficient monitoring, control, and automation of complex processes,
enhancing productivity and operational efficiency. However, the increased connectivity
and integration of SCADA systems with corporate networks and the Internet have ex-
posed them to potential cyber threats. A breach or compromise in these systems can have
severe consequences, including the disruption of essential services, physical damage, finan-
cial losses, and even threats to public safety. Recent advances in cyberattack techniques
and the growing sophistication of threat actors have further highlighted the criticality of
implementing robust cybersecurity measures.

Various real-world examples underscore the importance of cybersecurity in networked
cyber–physical systems and SCADA environments. For instance, the Stuxnet worm, dis-
covered in 2010, specifically targeted SCADA systems in Iranian nuclear facilities. Stuxnet
infiltrated Iranian PLCs (Programmable Logic Controllers), gathering data about industrial
systems and causing the fast-spinning centrifuges to burn out [1]. Another notable incident
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is the Ukrainian power grid cyberattack in 2015, where hackers successfully compromised
SCADA systems, leading to widespread power outages affecting thousands of people.
In a recent incident in May 2021, the Colonial Pipeline, a major fuel pipeline operator in
the United States, fell victim to a ransomware attack. The attackers infiltrated Colonial
Pipeline’s network through the DarkSide ransomware. They encrypted the company’s
systems and demanded a ransom payment in exchange for the decryption keys. As a
result, Colonial Pipeline shut down its operations, leading to disruptions in fuel supply
and causing a significant economic impact.

Despite significant advancements in addressing cybersecurity challenges within the
information technology (IT) domain, the operational technology (OT) domain is still catch-
ing up in terms of progress. IT primarily focuses on the software component of systems,
encompassing network infrastructure and data management. In contrast, OT ensures the
smooth operation of critical infrastructure, including power grids, smart meters, and distri-
bution systems. Notably, cyberattacks targeting OT systems tend to have more severe and
far-reaching consequences compared to those in IT. These attacks can lead to outcomes such
as shutdowns, outages, leakages, and even explosions. Consequently, standards develop-
ment organizations like the National Institute of Standards and Technology (NIST) [2] have
devised essential cybersecurity research roadmaps. These roadmaps serve as frameworks
designed to identify and mitigate the impact of cyberattacks, thereby exerting a notable
influence on the security protocols adopted across various industries.

While significant research efforts continue to focus on diverse domains, such as
the creation of machine learning-based cyberattack detectors [3–6], the design of backup
controllers in a two-tier safety-performance control architecture [7], the recovery of pro-
cess states following a cyberattack [8], and the development of cyberattack-resilient con-
trollers [9,10], one critical and fundamental research issue remains unresolved: the estab-
lishment of universally implementable secure data transmission lines in any cyber–physical
networked system, without requiring controller modifications, the installation of backup
control systems, the development of system-specific detection mechanisms, or tailor-made
solutions for individual platforms. A promising solution to address this issue is utilizing an
encrypted control system. This approach offers a versatile and effective solution for enhanc-
ing data security and confidentiality. It can be easily implemented across various systems
without necessitating system-specific modifications, thereby addressing the fundamental
challenge of secure data transmission in networked systems.

Regarding encrypted control, extensive research has been conducted in the field of
linear control systems, with control computations performed in a fully encrypted space.
The fundamental concept behind such systems is multiplicative homomorphism, which
enables multiplication operations to be executed in an encrypted medium using complex
cryptosystems, like ElGamal [11]. However, such operations in an encrypted space can
be computationally demanding and not applicable to systems governed by complicated
nonlinear dynamics where nonlinear controllers may be needed, limiting their widespread
adoption. Alternatively, a more viable approach could involve using encryption to secure
data transmission lines. The data collected by the sensors can be encrypted, subsequently
transferred, and decrypted at the controller, which can be isolated and fortified against
potential security breaches. Therefore, within the context of this research, we consider that
the edge computer, responsible for executing controller computations within a SCADA
architecture, operates within a completely secure cyber–physical setting due to encryption
of the sensor-to-controller and controller-to-actuator signals. Specifically, in our formu-
lation, the controller can compute the control action in plaintext, eliminating the need
for convoluted calculations in an encrypted space. Subsequently, the control action can
undergo encryption before transmission to the actuator, where the encrypted control action
is decrypted and executed. This method avoids computationally demanding operations
in an encrypted space and is effectively implementable in systems employing advanced
process control schemes for nonlinear systems, such as Model Predictive Control (MPC).



Processes 2023, 11, 2501 3 of 22

Since its inception, the chemical industry has extensively adopted Model Predictive
Control (MPC) due to its effectiveness in achieving closed-loop stability and optimizing
key performance metrics and its capability to handle multiple inputs and outputs and
accommodate constraints on system states and inputs. These benefits arise from employing
a mathematical model of the system to predict future behavior and optimize control inputs
accordingly. However, implementing MPC necessitates decryption at the controller to
obtain the essential information required for prediction and optimization. In an industrial
setting, an edge computer, accessible remotely by the sensors and actuators through the
network, can perform nonlinear MPC computations. The objective is to utilize encryption
techniques to establish secure connections between the sensors–edge computer and edge
computer–actuators. The referenced work [12] provides a comprehensive exploration of
the design of an encrypted Model Predictive Control framework, as well as the influence
of quantization on system performance. Building upon that foundation, in this work,
we go a step further by implementing the encrypted Lyapunov-based Model Predictive
Control (LMPC) scheme in a large-scale chemical process network used for Ethylbenzene
production, using an Aspen Plus Dynamics-based process model in conjunction with a
first-principles-based LMPC to showcase that the influence of quantization can surpass
the impact of plant/model mismatch. Moreover, this study conducts a comprehensive
and innovative investigation to assess how encryption–decryption affects the computation
time required for computing the control action. By thoroughly examining the impact of
the quantization parameter selected for encryption on the computation time, this research
aims to provide new perspectives and deeper insights into the practical implications of
data encryption. To our knowledge, prior investigations have not explored the implications
of an encrypted MPC scheme in the aforementioned domains.

To apply the encrypted LMPC, we develop two distinct nonlinear dynamical models:
one utilizing Aspen Plus Dynamics V12 and the other based on first-principles model-
ing fundamentals. In Section 4, we conduct closed-loop simulations for the Aspen Plus
Dynamics model, employing the first-principles model-based encrypted LMPC for vari-
ous quantization parameters. Further, we investigate the impact of these parameters on
controller performance and put forth a proposal to mitigate quantization errors and their
effects on controller performance. Additionally, in Section 5, we explore the influence
of encryption–decryption on the total control input calculation time. Expanding on the
previous recommendation, we provide clear guidance on implementing the encrypted
LMPC approach. This implementation ensures a feasible computation time for control
action computation (with encryption) while establishing secure communication pathways
between the sensor–controller and controller–actuator components, without compromising
the performance of the controller.

2. Preliminaries
2.1. Notation

The Euclidean norm of a vector is denoted by the symbol ‖·‖. The notation xT

represents the transpose of the vector x. The standard Lie derivative L f V(x) is defined as
the partial derivative of the function V(x) with respect to x multiplied by the vector field
f (x), L f V(x) := ∂V(x)

∂x f (x). The sets R, Z, and N refer to the sets of real numbers, integers,
and natural numbers, respectively. Additionally, ZM and Z∗M represent the additive and
multiplicative groups of integers modulo M, respectively.

The set subtraction operation is denoted by “\”, meaning that A\B represents the set
of elements in A that are not in B. A function f (·) is said to be of class C1 if it is continuously
differentiable in its domain. A continuous function α : [0, a)→ [0, ∞) is considered to be in
the classK if it is strictly increasing and only evaluates to zero at zero. The function gcd(i, j)
denotes the greatest common divisor, which returns the largest positive integer that divides
both i and j without leaving a remainder. On the other hand, lcm(i, j) represents the least
common multiple of the integers i and j.
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2.2. Class of Systems

In this work, we primarily focus on a specific category of systems known as nonlin-
ear continuous-time systems with multiple inputs and multiple outputs (MIMO). These
systems represent a set of first-order ordinary differential equations (ODEs) that exhibit
nonlinear behavior. The general representation of these systems is

ẋ = F(x, u) = f (x) + g(x)u (1)

The system is described by a state vector x = [x1, x2, . . . , xn] ∈ Rn and a control input
vector u ∈ Rm. The inputs applied to the system are subject to certain bounds, defined
by the set U ⊂ Rm, where U := u ∈ U|umin,i ≤ ui ≤ umax,i, ∀; i = 1, 2, · · · , m. The values
umin,i and umax,i represent the minimum and maximum limits for each manipulated input,
respectively. The functions f (·) and g(·) are assumed to be sufficiently smooth vector and
matrix functions, respectively. For the sake of simplicity and without sacrificing the general
applicability, we make the assumption that f (0) = 0, thereby considering the origin as a
steady state of the nonlinear system described by Equation (1). For convenience, we set
the initial time to zero throughout the paper (t0 = 0). In addition, we introduce some
notation: the space of continuous functions that map the interval [a, b] to Rn is denoted by
C([a, b],Rn). We also define the set S(∆) as the collection of piece-wise constant functions
with a period of ∆.

2.3. Achieving Stability through Lyapunov-Based Feedback Control

We assume the existence of a feedback controller denoted as u = Φ(x) ∈ U to
achieve exponential stability at the origin within the system described by Equation (1).
This exponential stability is characterized by the presence of a continuously differentiable
control Lyapunov function denoted as V(x), satisfying the following inequalities for all x
within an open neighborhood D around the origin [13,14]:

c1|x|2 ≤ V(x) ≤ c2|x|2, (2a)

∂V(x)
∂x

F(x, Φ(x)) ≤ −c3|x|2, (2b)∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ c4|x| (2c)

where c1, c2, c3, and c4 are positive constants. The method presented in the referenced
work [15] offers an approach to construct a stabilizing controller that satisfies the desired
criteria. For the nonlinear system of Equation (1), the closed-loop stability region is char-
acterized as a level set of the Lyapunov function V. This stability region Ωρ is defined as
Ωρ := {x ∈ D|V(x) ≤ ρ}, where ρ > 0.

2.4. Paillier Cryptosystem

In this research article, we utilize the Paillier cryptosystem [16] to apply encryption
and decryption to process measurements (represented as x) and control inputs (represented
as u). The Paillier cryptosystem is a partially homomorphic encryption scheme that en-
ables performing addition operations within the encrypted message space. However, the
primary rationale for utilizing the Paillier cryptosystem in this paper is its computational
efficiency compared to other cryptosystems, such as ElGamal or AES, rather than its partial
homomorphic property. Like most cryptosystems, the Paillier cryptosystem operates by
encrypting plaintext data presented in the form of non-negative integers. The encryption
process commences with the generation of public and private keys. The public key is used
to encrypt integer messages and produce ciphertexts. Conversely, the private key decrypts
the ciphertexts and recovers the original integer messages. The generation of the public
and private keys in the Paillier cryptosystem follows a specific set of steps:
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1. Select two large random prime integers (p and q) satisfying the condition
gcd(pq, (p− 1)(q− 1)) = 1.

2. Calculate the product of these integers, denoted by M = pq.
3. Select a random integer g such that g ∈ Z∗M2 , where Z∗M2 is the multiplicative group

of integers modulo M2.
4. Calculate λ = lcm(q− 1, p− 1).
5. Define L(x) = (x− 1)/M.
6. Check the existence of the following modular multiplicative inverse:

u = (L(gλ mod M2))−1 mod M.
7. If the inverse does not exist, return to step 3 and select an alternative value for g. In

the event that the inverse does exist, we obtain the public key (M, g) and the private
key (λ, u).

After obtaining the keys, we distribute the public key to the intended recipients that
perform the encryption process. Similarly, we share the private key exclusively with the
authorized recipients responsible for decrypting the data. The process of encryption–
decryption consists of the following steps:

EM(m, r) = c = gmrM mod M2 (3)

where r ∈ ZM is a random integer and c is the ciphertext obtained after encryption of m.
The decryption process of the ciphertext c ∈ ZM2 , is performed as follows:

DM(c) = m = L(cλ mod M2)u mod M (4)

2.5. Quantization

In order to utilize the Paillier cryptosystem, it is necessary to represent the input
data to be encrypted as natural numbers. However, it is important to note that the signal
measurements provided before encryption are typically in the form of floating-point num-
bers. Consequently, a mapping procedure becomes essential to convert these floating-point
numbers into elements within the set ZM. This procedure involves quantization, where a
quantization parameter denoted by d is chosen to perform the quantization operations [17].

To achieve this objective, we adopt signed fixed-point numbers in binary represen-
tation. The quantization parameters l1 and d refer to the total number of bits and the
number of fractional bits, respectively. Using these quantization parameters, we construct
a set denoted as Ql1,d. This set encompasses rational numbers ranging from −2l1−d−1 to
2l1−d−1 − 2−d, with each rational number separated by a resolution of 2−d. A rational num-
ber q belonging to the set Ql1,d can be expressed as follows: q ∈ Ql1,d, where ∃β ∈ {0, 1}l1

and q = −2l1−d−1βl1 + ∑l1−1
i=1 2i−d−1βi. To map a real number data point a to the set Ql1,d,

we employ the function gl1,d given by the following equation:

gl1,d : R→ Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q| (5)

This function allows us to determine the closest quantized rational number to a given
real number data point. Following this quantization step, the quantized data are mapped
to a set of integers using bijective mapping denoted as fl2,d [17]. This mapping ensures that
the quantized data are transformed into a subset of the message space ZM. The bijective
mapping can be defined as

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(6)

The encryption process involves encrypting integer plaintext messages using the set
Z2l2 , and the resulting ciphertexts can be decrypted back into the same set Z2l2 . Once the
controller and actuator receive the encrypted signals, the ciphertexts undergo decryption to
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extract integer plaintext messages that represent quantized states and inputs, respectively.
Consequently, it becomes essential to remap these decrypted plaintext messages back to
the set Ql1,d. The inverse mapping, denoted as f−1

l2,d, is defined as follows:

f−1
l2,d : Z2l2 → Ql1,d (7)

f−1
l2,d(m) :=

1
2d

{
m− 2l2 if m ≥ 2l2−1

m otherwise
(8)

To demonstrate encryption and decryption, we can refer to Figure 1. For this example,
the chosen quantization parameter, total number of bits, and bijective mapping parameter
are d = 3, l1 = 18, and l2 = 30. Let us consider the rational number a = −1.31752 which
is the input data to be encrypted to illustrate the encryption–decryption process and the
effect of quantization.

𝑎 = −1.31752

	𝑞 = −1.375

𝑔!!,#(𝑎)

<phe.paillier.EncryptedNumber 
object at 0x7f1d2ac99300>

m	= 1,073,741,813

	𝑞 = −1.375

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

𝑓!",# 𝑞

𝑓!",#
$% 𝑚

m	= 1,073,741,813

Figure 1. Illustration of encryption–decryption applied to a floating-point real number.

3. Design of the Encrypted MPC

In the envisioned closed-loop architecture of the encrypted MPC, as depicted in
Figure 2, the sensor signals x(t) are subjected to encryption before being sent to the model
predictive controller (MPC). After obtaining the encrypted data, it undergoes decryption,
resulting in quantized states x̂(t). These quantized states serve as the initial values for the
plant model within the MPC at time t. The MPC subsequently computes optimized inputs
u(t), which are encrypted prior to transmission to the actuator. After the actuator receives
the encrypted signals as input, the encrypted input is decrypted, leading to a quantized
input û(t) that is applied to the process.

The above closed-loop design introduces two sources of errors. Firstly, a quantization
error in the sensor-MPC communication link, resulting from the mapping of the state data
from R to Ql1,d. Additionally, the MPC-actuator communication link introduces an input
quantization error caused by the conversion of input data from the set of real numbers R
to Ql1,d. These quantization errors are bounded and can be characterized by the mapping
equation of Equation (5), ensuring that

|x(t)− x̂(t)| ≤ 2−d−1 (9a)

|u(t)− û(t)| ≤ 2−d−1 (9b)
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where d is the quantization parameter used for mapping in Equation (5). Firstly, taking
into account the impact of quantization-induced input errors, the dynamical model of the
MPC employs a nonlinear system, represented by Equation (1), which can be expressed
as follows:

ẋ = F(x, û) = f (x) + g(x)û

= f (x) + g(x)(u + e)
(10)

where e = û(t)− u(t) and
|e| ≤ 2−d−1 (11)

Secondly, an error in the control input, u = Φ(x) ∈ U, will emanate as the MPC
receives x̂ instead of the actual state x. This error will be bounded by the underlying
equation, where L1 > 0:

|Φ(x̂)−Φ(x)| ≤ L1|x̂− x| ≤ L12−d−1 (12)

Reference [12] discusses and establishes the stability of the proposed control loop with
encrypted data transfer, providing assurance for the closed-loop system stability even in
the presence of encryption, under certain conditions.

Figure 2. Illustration of the data transfer process in an encrypted MPC system.

Remark 1. The error in the quantization operation occurs when the target value to be quantized
is not found exactly in the set Ql1,d, which consists of quantized values with a certain resolution
determined by the quantization parameter, denoted as d. The resolution between elements in this set
is given by 2−d. To determine the upper bound of the error, let us focus on a specific value, denoted as
x1, that needs to be quantized. We assume that x1 falls within the range of y1 and y1 + 2−d, where
y1 and y1 + 2−d represent quantized values in the set Ql1,d. The quantization process involves
comparing the distance between x1 and y1 with the distance between x1 and y1 + 2−d. If the
distance between x1 and y1 is smaller than the distance between x1 and y1 + 2−d, then x1 is mapped
to y1. Otherwise, it is mapped to y1 + 2−d. The error in quantization is then bounded by half
the resolution, which is equal to |y1 + 2−d − y1|/2 = 2−d−1. This implies that the maximum
difference between the quantized value x̂1, and the actual value x1, is 2−d−1.

Encrypted Lyapunov-Based MPC

This section presents a formulation of the feedback MPC for the closed-loop design of
the nonlinear system described by Equation (1), considering secure sensor–controller and
controller–actuator communication links. Control actions will be applied to the nonlinear
system using a sample-and-hold approach with a sampling period of ∆ [18,19]. The
proposed MPC formulation is outlined as follows:
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J = min
u∈S(∆)

∫ tk+N

tk

L2(x̃(t), u(t))dt (13a)

s.t. ˙̃x(t) = F(x̃(t), u(t)) = f (x̃) + g(x̃)u (13b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (13c)

x̃(tk) = x̂(tk) (13d)

V̇(x̂(tk), u) ≤ V̇(x̂(tk), Φ(x̂(tk)), if x̂(tk) ∈ Ωρ̂\Ωρmin (13e)

V(x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N), if x̂(tk) ∈ Ωρmin (13f)

Within the framework of the Lyapunov-based MPC, referred to as LMPC, the predicted
state trajectory is represented as x̃, the sampling time is denoted by ∆, and the prediction
horizon encompasses a number of sampling periods indicated by N. The LMPC algorithm
computes the optimal input sequence u∗(t|tk) for the entire prediction horizon t ∈ [tk, tk+N).
The first input of this sequence is subsequently transmitted to the actuator for application
to the system within the interval t ∈ [tk, tk+1).

In the encrypted LMPC design, the MPC uses quantized states x̂ for predicting the state
trajectory, Equation (13a) integrates the cost function over the entire prediction horizon,
and it computes the optimized control inputs for the entire prediction horizon. However,
the actuator only applies the control inputs corresponding to the first prediction horizon
and repeats this process at each sampling instance. Equation (13b) represents the dynamic
system model used by the LMPC. Equation (13c) represents the constraints imposed on
the control inputs. The constraint in Equation (13d) initializes the plant model described
in Equation (13b) with quantized states. If the state x(tk) at time tk lies within the set
Ωρ̂ \Ωρmin , where ρmin represents a level set of V in proximity to the origin, the Lyapunov
constraint outlined in Equation (13e) steers the closed-loop state x(tk) of the nonlinear
system presented in Equation (10) toward the origin. Once the closed-loop state x(tk) enters
the region Ωρmin , the constraint specified in Equation (13f) ensures that this state remains
within Ωρmin throughout the entire prediction horizon.

4. Application to a Chemical Process Operating at an Unstable Steady State Using
Aspen Plus Simulator

In this section, we demonstrate the application of the proposed encrypted LMPC
to a large-scale chemical process. To begin, we construct two dynamic models for a
chemical process. We develop the first dynamic model using Aspen Plus Dynamics V12,
while the second model is based on first-principles modeling fundamentals. Aspen Plus
Dynamics is a high-fidelity software that can be used for the detailed dynamic simulation
of chemical processes in an operating region around a stable or unstable steady state,
which is not possible in steady-state simulation software for chemical processes, and hence,
can be considered as the closest representation of the actual process dynamic behavior.
Furthermore, first-principles-based MPC computations can be performed on a computer
in SCADA systems using Python. As a first-principles model can be derived for most
processes even in the absence of data and can be simulated readily with available solvers,
the Aspen Plus Dynamics model and first-principles-based Python code can be considered
as a “standard metric” to quantify and analyze specific aspects of MPC. In this work, we
use a distinct model to simulate the chemical process from the model incorporated into the
LMPC to demonstrate the impact of quantization and compare it with the plant/model
mismatch. We design both models without any input or state delays. Subsequently,
closed-loop simulations are performed in the Aspen Plus Dynamics model using the first-
principles model-based LMPC. Finally, we replace the LMPC with an encrypted LMPC,
and closed-loop simulations are conducted and discussed.

4.1. Process Description

The process considered is the production of Ethylbenzene (EB) from Ethylene (E)
and Benzene (B) as reactive raw materials. The main reaction, labeled as “primary”, is a
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second-order, exothermic, and irreversible reaction that occurs alongside two additional
side reactions. This reaction scheme is illustrated in Equation (14) and takes place in two
non-isothermal, well-mixed continuous stirred tank reactors (CSTR). The chemical reactions
involved are as follows:

C2H4 + C6H6 C8H10 (primary) (14a)

C2H4 + C8H10 C10H14 (14b)

C6H6 + C10H14 2 C8H10 (14c)

The state variables are the concentrations of Ethylene, Benzene, Ethylbenzene and
Di-Ethylbenzene and the reactor temperature, for each CSTRi, i = (1, 2), respectively,
which in deviation terms is:
xT = [CE1 − CE1s , CB1 − CB1s , CEB1 − CEB1s , CDEB1 − CDEB1s , T1 − T1s, CE2 − CE2s , CB2 −
CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s]

The subscript “s” denotes the steady-state value. The rate of heat removal for each
reactor [Q1 −Q1s, Q2 −Q2s] is the manipulated inputs to our process, which are bounded
by the closed sets [−104 kW, 2 × 103 kW] and [−1.5 × 104 kW, 5 × 103 kW], respectively.

The control objective is to maintain the operation of both the CSTRs at their unstable
steady state under the encrypted LMPC using the quantized states and inputs in compu-
tation and actuation. Because the rate of heat removal for each CSTR is the manipulated
input, the reactor temperature state variables are directly affected by it. However, the
manipulated inputs do not directly influence the concentration states. Instead, they follow
open-loop trajectories, gradually converging to their respective steady-state values as the
reactor temperatures approach their steady-state values.

To identify the stability condition of the operating steady state, we conducted an open-
loop simulation in Aspen Plus Dynamics. We initiated the simulation using the steady-state
values as initial conditions, and the control inputs were held constant at their respective
steady-state values (0 in deviation form) throughout the simulation. After running the
simulation for 10 h of process time, the system states converged to a distinct stable steady
state, providing clear evidence that the selected operating condition is an unstable steady
state. The main reason behind choosing this unstable steady state as the operating condition
was its ability to yield the highest amount of Ethylbenzene, our desired product, at steady
state, at the outlet of the second CSTR.

4.2. Dynamic Model in Aspen Plus Dynamics

We develop the process model for this system using Aspen Plus and Aspen Plus
Dynamics V12. These are high-fidelity simulators used for complex chemical process
modeling. The two CSTRs are connected in series, such that the output of the first reactor
affects the second reactor but not vice versa. Initially, the process model is created in Aspen
Plus, and a steady-state simulation is performed and validated by examining material and
energy balances. Subsequently, dynamic simulations of the process are conducted in Aspen
Plus Dynamics, enabling a thorough analysis and control of its dynamic behavior. The
construction of both the steady-state and dynamic models follows the following procedure
in detail:

1. Inlet stream configuration: We enter the inlet stream components, concentrations,
and temperatures into Aspen Plus and supply it to each reactor through Hexane
solutions with flow rates F1 and F2. Using Hexane ensures the inlet flows remain
in the liquid phase at the feeding temperature. CE, CB, CEB, and CDEB represent the
concentrations of Ethylene, Benzene, Ethylbenzene, and Di-Ethylbenzene in the inlet
stream, respectively. Ti, ρi, Vi, are the temperature, liquid density, and volume of
CSTRi, i = 1, 2. CP represents the mass-specific heat capacity of the liquid mixture
and is assumed to remain constant throughout the process in both reactors. Table 1
specifies the process parameters used. The subscript “o” denotes the state in the inlet
stream, and “s” indicates the steady-state conditions.
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2. Pressure drop selection: Valves play a crucial role in establishing a dynamic model for
Aspen Plus Dynamics, as they serve as connectors between components and regulate
fluid flow by controlling the pressure drop across the system. A suitable pressure drop
specifies the flow direction, ensuring a smooth simulation run. In our model, valves
v1, v2, v3, and v4 are assigned pressure drops of 5, 5, 2, and 14 bars, respectively.

3. Reaction and reactor specification: We define the reaction parameters and stoichiom-
etry in Aspen Plus. All reactions mentioned in Equation (14) are selected in the
kinetic specifications of both the CSTRs. We set the initial pressure of each CSTR
to 15 bar and equip them with a heating/cooling jacket to provide or remove heat
at a rate denoted by Qi, where i represents the reactor number. The initial tempera-
tures of the first and second CSTRs are 350 K and 400 K, respectively. These settings
ensure that the reactants and products remain in the liquid phase throughout the
process. After completing the reaction specification for both reactors, we carry out a
steady-state simulation.

4. Reactor geometry: Before exporting the steady-state model from Aspen Plus to Aspen
Plus Dynamics, it is necessary to define the reactor geometry. In our model, the vessels
are of the vertical type with flat heads, and each CSTR has a length of ten meters.

5. Pressure verification: To ensure the accuracy of the dynamic model, perform a pressure
check using the integrated Aspen Plus pressure checker. This step verifies that no
errors arise during the dynamic process. Once the steady-state model successfully
passes the pressure check, we export it to Aspen Plus Dynamics for further analysis
and simulation.

6. Dynamic model initialization: Level controllers are added to each reactor to maintain
them at the desired capacity. We perform a steady-state simulation to determine
the steady-state values of the dynamic model. The values obtained are listed in
Equation (14). Further, we specify the initial values of the states in both reactors for
the dynamic simulation. Through an initialization run, we ensure the values entered
are thermo-kinetically consistent with the model specifications.

7. Manipulated input configuration: For external control of the manipulated variables
Q1 and Q2 (heat duty of reactor 1 and 2, respectively) during the dynamic simulation,
the heating type of the reactors is switched to constant heat duty. With these adjust-
ments, the dynamical process model is now fully established. Figure 3 depicts the
corresponding model flow sheet.

Table 1. Parameter values, steady-state values, and model configuration of the Aspen model.

T1o = T2o = 350 K T1s = 321.15 K
V1 = V2 = 60 m3 T2s = 442.99 K
F1 = 43.2 m3/h F2 = 47.87 m3/h
CEo1 = 4.43 kmol/m3 CE1s = 4.33 kmol/m3

CBo1 = 5.54 kmol/m3 CB1s = 5.55 kmol/m3

CEo2 = 4.02 kmol/m3 CE2s = 0.196 kmol/m3

CBo2 = 5.02 kmol/m3 CB2s = 1.31 kmol/m3

CEB1s = 0.53 kmol/m3 CEB2s = 4.22 kmol/m3

CDEB1s = 8.76× 10−4 kmol/m3 CDEB2s = 0.0078 kmol/m3

k1 = 1.528× 106 m3 kmol−1 s−1 E1 = 71,160 kJ/kmol
k2 = 2.778× 104 m3 kmol−1 s−1 E2 = 83,680 kJ/kmol
k3 = 0.4167 m3 kmol−1 s−1 E3 = 62,760 kJ/kmol
ρ1 = 639.153 kg/m3 ρ2 = 607.504 kg/m3

∆H1 = −1.04× 105 kJ/kmol ∆H2 = −1.02× 105 kJ/kmol
∆H3 = −5.5× 102 kJ/kmol Cp = 2.411 kJ kg−1 K−1

Q1s = −1074.63 kW Q2s = −6768.83 kW
Cp = 2.411 kJ kg−1 K−1 R = 8.314 kJ kmol−1 K−1

Heat transfer option Dynamics
Temperature approach 77.33 K
Heat capacity of coolant 4.2 kJ kg−1 K−1

Medium holdup 1000 kg
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Figure 3. Aspen Plus Dynamics model flow sheet.

4.3. First-Principles Model Development

By applying the concepts of mass and energy balances, the first-principles model for
the CSTRs is developed. Specifically, the dynamic model of the first CSTR is represented by
the following ODEs:

dCE1

dt
=

(F1CEo1 − Fout1 CE1

V1
)− r1,1 − r1,2 (15a)

dCB1

dt
=

(F1CBo1 − Fout1 CB1

V1
)− r1,1 − r1,3 (15b)

dCEB1

dt
=
−Fout1 CEB1

V1
+ r1,1 − r1,2 + 2r1,3 (15c)

dCDEB1

dt
=
−Fout1 CDEB1

V1
+ r1,2 − r1,3 (15d)

dT1

dt
=

(T1o F1 − T1Fout1)

V1
+

3

∑
j=1

−∆Hj

ρ1Cp
r1,j +

Q1

ρ1CpV1
(15e)

where Fout1 = F1. The dynamic model of the second CSTR is represented by the follow-
ing ODEs:

dCE2

dt
=

(F2CEo2 + Fout1 CE1 − Fout2 CE2

V2
)− r2,1 − r2,2 (16a)

dCB2

dt
=

(F2CBo2 + Fout1 CB1 − Fout2 CB2

V2
)− r2,1 − r2,3 (16b)

dCEB2

dt
=

Fout1 CEB1 − Fout2 CEB2

V2
+ r2,1 − r2,2 + 2r2,3 (16c)

dCDEB2

dt
=

Fout1 CDEB1 − Fout2 CDEB2

V2
+ r2,2 − r2,3 (16d)

dT2

dt
=

(T2o F2 − T1Fout1 − T2Fout2)

V2
+

3

∑
j=1

−∆Hj

ρ2Cp
r2,j +

Q2

ρ2CpV2
(16e)

where Fout2 = F1 + F2, and the reaction rates are calculated by the following expressions:

ri,1 = k1e
−E1
RTi CEi CBi (17a)

ri,2 = k2e
−E2
RTi CEi CEBi i = 1, 2 (reactor index) (17b)

ri,3 = k3e
−E3
RTi CDEBi CBi (17c)

Remark 2. When constructing a dynamic model based on first-principles fundamentals involving
multiple ordinary differential equations (ODEs), there may be multiple potential steady states. It is
crucial to design the dynamic model in a manner that ensures convergence to the desired steady state.
It should be noted that the steady states obtained from the first-principles model may differ from those
obtained using the Aspen model. Therefore, our approach involves expressing the first-principles
dynamic model equations in the form ẋ = F(x, u)− F(xs, us) = f (x)− f (xs)+ g(x)u− g(xs)us.
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Here, xs and us correspond to the steady-state values of the state variables and control inputs,
respectively. These values are determined by the Aspen model through simulation. Writing the
equations in this form guarantees that the first-principles model will converge to the desired steady
states obtained from the Aspen model, particularly when dealing with multiple distinct steady states.

4.4. Linking the Dynamic Models

To establish a seamless data transfer between the Aspen model (Aspen Plus Dynamics
V12) and the first-principles model-based LMPC (Python code), we program a script in
Aspen Plus Dynamics. This script reads the calculated control inputs, exported as text files
by the Python code responsible for computing the control inputs. Additionally, it facilitates
the export of the state variable values from Aspen Plus Dynamics as text files read by the
Python code. This data exchange occurs at each sampling time, establishing a robust data
transfer link between the Aspen model and the first-principles-based LMPC.

Remark 3. As discussed in Section 4.1, the MPC model (first-principles based) used for predicting
future states and optimizing control inputs differs from the Aspen dynamic model, where we apply
the controller. To address this model mismatch, we analyze the combined and relative effects of the
quantization errors, which arise from encryption–decryption and can further amplify the model
mismatch error. Our analysis reveals that the quantization error is bounded by half the resolution
(resolution/2). For instance, when the quantization parameter chosen is d = 1, the resolution is 0.5,
and the upper bound of the error between the actual and quantized values is resolution/2 or 0.25.
Hence, for higher quantization parameters, the impact of the quantization error on the overall model
mismatch error is negligible. It is important to note that quantization introduces a bounded error in
the states, thereby limiting the extent of the model mismatch error.

4.5. Implementing the Encrypted LMPC

Before implementing encryption–decryption in a process, it is crucial to carefully
choose the values: d1, l1, and l2. After closely examining the maximum and minimum
permissible values of the states and inputs, we determine the number of integer bits,
l1 − d1. The largest value in the set Ql1,d is obtained using the formula 2l1−d1−1 − 2−d1 ,
while the smallest value is −2l1−d1−1. The quantization parameter d1 should be selected
based on factors, such as the desired accuracy and the range of the state and input values.
Additionally, a value for l2 should be selected such that l2 is greater than l1. These steps
complete the hyperparameter selection process.

After following the aforementioned steps, we determine that, for the example dis-
cussed in this section, l1 − d is calculated to be 15. The values of l1 and d need to be
selected accordingly. In the set Ql1,d, rational numbers are separated by a resolution of
2−d, meaning that a higher value of d leads to lower quantization errors. For simulation
purposes, we vary the values of d from 1 to 8, resulting in l1 ranging from 16 to 23. It is
important to ensure that l2 > l1 for the bijective mapping, so we choose l2 = 30. After
determining all the quantization-related parameters, we proceed to quantize the states and
inputs. Subsequently, we encrypt them using the Paillier Encryption algorithm. The imple-
mentation of Paillier Encryption is carried out using the “phe” module in Python, specifically
PythonPaillier [20]. The first-principles model, described by Equations (15) and (16), serves
as the process model in the LMPC framework. To solve the optimization problem, we
utilize the Python module of the IPOPT software, version: ASL (20190605) [21].

Remark 4. IPOPT, Interior Point OPTimizer, is a software tool designed specifically for solving
nonlinear optimization problems. It employs an iterative method known as the interior point method,
which focuses on finding the optimal solution by gradually moving toward the interior of the feasible
region. To solve the optimization problem, IPOPT employs a series of iterations. In each iteration, it
updates a sequence of points that satisfy the given constraints and improve the value of the objective
function. This process involves calculating descent directions based on the gradient and Hessian of
both the objective function and the constraints. IPOPT considers both the feasibility and optimality
of the solution, striving to find a point that not only satisfies the constraints but also optimizes the
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objective function. Throughout the iterations, IPOPT utilizes a barrier function to handle inequality
constraints and a penalty function to handle equality constraints. It also incorporates a line search
procedure to determine the appropriate step length and employs backtracking techniques to ensure
convergence toward the optimal solution. In our study, the nature of the MPC formulation leads to
a non-convex optimization problem. This signifies that the optimum achieved through the IPOPT
optimizer is a local optimum, rather than a global one. The optimization process begins with a
designated starting input trajectory based on predicted values for the extended horizon (beyond the
first input trajectory calculation) from the prior iteration. Furthermore, the optimizer is guided by a
prescribed tolerance error and an upper limit on the number of iterations. The optimizer will persist
in its pursuit of an improved solution until either of these conditions is met. If the optimizer is unable
to calculate an optimal solution, the computed solution from the backup controller (P-controller)
will be substituted for that specific sampling instance.

To implement encryption in a practical setting, it is crucial to ensure that the sampling
time ∆ exceeds the combined maximum of the encryption–decryption time required for
all the states and control inputs, as well as the maximum time needed for computing the
control action at each sampling instance for all the considered quantization parameters,
denoted as d. This requirement can be expressed by the following equation:

∆ > max (Enc-Dec time) + max (MPC computation time)

∀ d = {1, 2, 3, 4, 5, 6, 7, 8}
(18)

During the implementation of the encrypted MPC design in the SCADA systems,
where encrypted sensor measurements and control actions are transmitted through the
network, the time spent on signal transmission is generally not substantial due to the
rapid and efficient nature of networked communication. However, this efficiency comes
at the risk of susceptibility to cyberattacks. To mitigate this potential vulnerability, this
study encrypts these communication channels and assesses the repercussions of encryption.
Consequently, the formula provided above does not incorporate the factor of signal trans-
mission time as well as issues with asynchronous, delayed measurements that have been
studied in past works [22,23]. The sampling time ∆ is carefully selected as 30 s, considering
the aforementioned condition to ensure proper implementation. The integration step hc is
chosen as (10−2 × ∆) to evaluate the cost function of the LMPC through the first-principles
model. The positive definite matrix P in the control Lyapunov function V = xT Px for
this system is taken as P = diag[200 500 2500 10 0.25 1000 1000 500 1 0.5] based on
extensive simulations. A prediction horizon of N = 6 is employed in the LMPC framework.
To ensure stability in the LMPC, we set the criterion ρmin = 2 to determine when the states
have reached stability. Additionally, a contractive constraint of the form V̇ ≤ −kV is uti-
lized for Equation (13f), where the value of k is chosen as 0.15. The weight matrices Q1 and
Q2 in the LMPC cost function are chosen as Q1 = diag[5 5 650 5 2.5 25 25 100 2 6] and
Q2 = diag[5 × 10−6 1.25 × 10−5], respectively. The cost function is defined as
L2(x(t), u(t)) = xTQ1x + uTQ2u.

4.6. Utilizing MPC over Traditional Control

In this section, we substantiate the utilization of Model Predictive Control (MPC) by
conducting a comparative analysis between the MPC and the simpler p-control strategy.
P-control allows control actions to be computed directly in encrypted states, eliminating the
requirement for decryption at the controller through complex multiplicative homomorphic
algorithms, such as the ElGamal cryptosystem. The MPC strategy is a more advanced
control method that uses a mathematical model of the system to predict future behavior
and optimize control actions accordingly. It requires decryption at the controller to obtain
the necessary information for prediction and multi-constrained, nonlinear optimization,
which cannot be performed in an encrypted space.

Figure 4 showcases its enhanced performance, with lower undershoot and faster
settling time observed for the temperature of CSTR 1. Further, the temperature of CSTR 2
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exhibits a significant reduction in overshoot by almost 50% and converges over 1 h before
the p-control, within a settling limit of 0.25 K. Moreover, the evaluation of the normalized
sum of the controller cost function (L2(x(t), u(t))) over the closed-loop simulation rein-
forces the advantage of MPC over p-control, by the respective values of 0.86 and 1. These
findings underscore the necessity of adopting MPC, as it offers reduced overshoot and
undershoot, a faster settling time of state variables, and enhanced cost efficiency.
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Figure 4. Temperature state and input profiles of p-control (red solid line) and MPC (green dashed
line) strategies employed using the Aspen dynamic model.

Remark 5. As mentioned earlier in Section 2.4, the Paillier cryptosystem is a partially homomorphic
encryption scheme that does not support multiplication operations in an encrypted space. Therefore,
in the above section, we mention using the ElGamal cryptosystem, which supports multiplicative
homomorphism. Although the Paillier cryptosystem supports addition operations in an encrypted
space, we do not utilize this property in our study. The Paillier cryptosystem is primarily selected
for encryption due to its lower computational complexity compared to the ElGamal cryptosystem.
This choice reduces the time and computational effort required for encryption–decryption processes.

4.7. Simulation Results of the Encrypted LMPC

We apply the encrypted LMPC to the Aspen dynamic model, initialized from the follow-
ing point:

x0 = [−1.11 kmol/m3 −1.16 kmol/m3 −0.3 kmol/m3 −8.76× 10−6 kmol/m3 28.85 K
0.49 kmol/m3 0.56 kmol/m3 −1.85 kmol/m3 −7.77× 10−6 kmol/m3 −43 K]

We then observe the closed-loop simulation results for d = 1, 4, 8. A process time
of 4 h allows both the states and control inputs to reach their respective steady-state
values. Figures 5–7 display the temperature state and input profiles.
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Remark 6. As indicated in Section 4.1, the concentration states in the reactors exhibit open-loop
trajectories as the reactor temperature converges to its steady-state value. Consequently, the presence
or absence of encryption does not significantly affect these states because the manipulated input, i.e.,
the heat removed from the reactors, has no direct influence on the concentration states. Therefore, in
this section, we focus solely on displaying the temperature states and control inputs, as encryption
noticeably influences them.
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Figure 5. Temperature state and input profiles of the LMPC with encryption (red solid line) and
without encryption (green dashed line) for the Aspen dynamic model, with d = 1.

For a quantization parameter of d = 1, it is evident that the state T1 − T1s does not
precisely converge to its steady-state value, instead exhibiting small oscillations around
it throughout the 4 h process time. Also, the state T2 − T2s demonstrates nearly double
the overshoot with encryption and oscillates around the steady-state values, similar to
the previous state. Further, quantized control inputs Q1 − Q1s and Q2 − Q2s experience
significant oscillations under the encrypted MPC, rendering it incapable of effectively
stabilizing the closed-loop system within a small neighborhood Ωρmin around the origin.
Although, it does stabilize the system within the larger neighborhood Ωρ̂. This behavior
can be attributed to the quantization error resulting from the quantization of the state
measurements. Thus, we establish that errors due to quantization can be more significant
than plant/model mismatch errors as the MPC without encryption and with a higher
quantization parameter, d = 8, is stabilized within the small neighborhood Ωρmin around
the origin. As indicated in Remark 7, the quantization error associated with the quantized
control input can be deemed negligible. However, the quantization error emanating from
the quantized states is significant given the range in which they lie during the closed-loop
simulation. For d = 1, the quantized states are separated by a resolution of 2−1 or 0.5,
leading to a high quantization error. When running simulations with the quantization
parameter d = 4, we no longer observe oscillatory motions in the temperature states, and
the magnitude of oscillations for the quantized inputs is much smaller compared to the
case where d = 1. Furthermore, the amplitude of overshoot observed in the state variable
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T2− T2s remains nearly unchanged when encryption is applied, and the system also reaches
the steady state more rapidly.
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Figure 6. Temperature state and input profiles of the LMPC with encryption (red solid line) and
without encryption (green dashed line) for the Aspen dynamic model, with d = 4.

It is important to note that as the quantization parameter increases, resulting in a
lower resolution, the states and inputs converge more quickly and exhibit reduced oscilla-
tions. Therefore, a higher quantization parameter improves the convergence behavior and
decreases fluctuations in the state and control input profiles. Specifically, when d = 8, the
closed-loop trajectories of the temperature states and control inputs become nearly identical
between the cases with encryption and without encryption. In other words, the impact of
encryption on the system’s behavior diminishes significantly as the quantization parame-
ter increases, ultimately resulting in almost indistinguishable closed-loop trajectories for
both scenarios.

Remark 7. The total quantization error can be attributed to the state quantization rather than the
control input quantization, because the magnitudes of the quantized control inputs generally fall
within the order of magnitude three. For the case d = 1, representing the lowest quantization, the
maximum permissible error in the control input calculated by the MPC (before encryption) and
applied by the actuator (after decryption) is 0.25, corresponding to half of the resolution. This error
is considered negligible compared to the overall control input. As a result, the error arising from
the quantization of control inputs is insignificant, particularly for the specific example considered.
However, it is crucial to acknowledge that if the control inputs have smaller magnitudes, the error
resulting from the quantized control inputs would significantly impact the controller’s performance.
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Figure 7. Temperature state and input profiles of the LMPC with encryption (red solid line) and
without encryption (green dashed line) for the Aspen dynamic model, with d = 8.

5. Effect of the Quantization Parameter d and Encryption–Decryption on the Total
Computational Time

This section discusses the impact of the quantization parameter, d, and encryption–
decryption on the total control input calculation time. For an encrypted MPC, the total
control input calculation time comprises two main components: the time required by the
MPC to calculate the control action and the total time spent on encrypting–decrypting the
state variables and control inputs.

5.1. Effect of the Quantization Parameter d on Computational Time

Table 2 provides an overview of the computation time required for the complete
encryption–decryption process, considering a range of quantization parameters, d = [1, 8].
The table also offers a detailed breakdown of the time required for each sub-process
involved. Analyzing Table 2, it becomes apparent that the computational time for the entire
encryption–decryption process shows consistent values across the quantization parameters
within the range d = [1, 8].

However, as discussed in Section 4, a higher quantization parameter proves more
advantageous for the LMPC. Specifically, for d = 8, the trajectories of the temperature
states and control inputs closely resemble those without encryption. In contrast, for d = 1,
there is a noticeable difference between the cases with and without encryption.

Furthermore, this table also reveals that the majority of the computational time is
allocated to the encryption step, followed by the decryption step. Mapping the inputs
to quantized states (gl1,d), bijective mapping ( fl2,d) and inverse mapping ( f−1

l2,d) contribute
only a negligible fraction of the total time at each sampling instance. Although the com-
putational time remains consistent across the quantization parameters, the number of
search operations at each sampling instance increases linearly with the quantization pa-
rameter. This observation is presented in Table 3. Additionally, the time and number of
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operations required to generate the set Ql1,d grow exponentially by increasing the quan-
tization parameter, d. However, it is vital to note that this step is performed only once
at the beginning of the process and is not repeated at each sampling instance. Conse-
quently, selecting a higher quantization parameter remains favorable, as the operational
time for encryption–decryption at each sampling instance remains unchanged, and a higher
quantization parameter yields significantly improved results.

Table 2. Time required to encrypt–decrypt the 10 states and 2 inputs at a single sampling instance.

d gl1,d Time fl2,d Time Enc. Time Dec. Time f−1
l2,d Time Total Time

1 4.8× 10−4 s 2.6× 10−4 s 2.49 s 0.72 s 2.9× 10−4 s 3.204 s

2 4.5× 10−4 s 2.9× 10−4 s 2.48 s 0.71 s 3.1× 10−4 s 3.190 s

3 4.7× 10−4 s 2.7× 10−4 s 2.48 s 0.7 s 2.8× 10−4 s 3.179 s

4 4.8× 10−4 s 2.9× 10−4 s 2.48 s 0.71 s 2.8× 10−4 s 3.182 s

5 5.3× 10−4 s 2.7× 10−4 s 2.5 s 0.71 s 2.8× 10−4 s 3.214 s

6 5× 10−4 s 2.9× 10−4 s 2.47 s 0.71 s 3.2× 10−4 s 3.182 s

7 5.1× 10−4 s 3× 10−4 s 2.49 s 0.71 s 3.3× 10−4 s 3.194 s

8 5.4× 10−4 s 2.9× 10−4 s 2.5 s 0.73 s 3.1× 10−4 s 3.225 s

Remark 8. An alternative approach to mitigate the initial high computational time, especially when
a higher quantization parameter d is selected, is to pre-generate the set Ql1,d before commencing the
process operation with encryption–decryption on the hardware. By generating this set prior to the
first sampling instance, we can avoid the need for additional time allocation during the actual control
process. As mentioned in Section 5, as the quantization parameter increases, the time required
to generate Ql1,d grows exponentially. Therefore, pre-generating the set is particularly beneficial
in reducing the computational overhead during the initial sampling instance when dealing with
larger quantization parameters. This approach allows for the utilization of higher quantization
parameters without being hindered by the drawback of increased computational time in the first
sampling instance.

Table 3. Operations required for gl1,d, generating Ql1,d, and time required to generate Ql1,d.

d Operations for gl1,d Operations to Generate Ql1,d Time to Generate Ql1,d

1 192 65,534 0.02 s

2 204 131,070 0.04 s

3 216 262,142 0.07 s

4 228 524,286 0.15 s

5 240 1,048,574 0.29 s

6 252 2,097,150 0.55 s

7 264 4,194,302 1.11 s

8 276 8,388,606 2.27 s

5.2. Effect of Encryption–Decryption on the Total Computational Time

Figure 8 shows that encryption–decryption takes approximately 45–65% of the total
time required to calculate the control inputs for an encrypted LMPC, which is the sum of
the time needed for MPC control action computation and encryption–decryption (of the
10 states and two control inputs). Moreover, this result is consistent over the quantization
parameters d = {1, 2, 3, 4, 5, 6, 7, 8}. This substantiates the fact that the decision regarding



Processes 2023, 11, 2501 19 of 22

the choice of a quantization parameter does not necessarily result in a substantial alteration
of the ratio between the time devoted to encryption–decryption and the total duration of
MPC computation.
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Figure 8. Ratio of the total time spent for encryption–decryption to the sum of the total time required
for MPC computation and encryption–decryption at each sampling instance.

As previously discussed in Section 4.5, it is essential to select a sampling time, ∆,
that exceeds the combined maximum duration of the encryption–decryption process and
the MPC computation time for any given sampling instance. This criterion applies to all
considered quantization parameters. For the example examined in this study, the minimum
required sampling time was determined to be 9 s. Consequently, a sampling time of 30 s
was selected, which exceeded the minimum requirement.

Remark 9. Maintaining system stability and ensuring effective control requires avoiding exces-
sively large sampling times, particularly in cases where the system operates at an unstable steady
state and has bounded control inputs. Going beyond a certain threshold in sampling time can
impede the ability of the controller to successfully regulate the system. To validate this concept, we
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conducted an experiment on the example discussed in Section 4. We applied LMPC control without
encryption and increased the sampling time for the process in 30 s increments. The results showed
that the controller achieved the desired steady state for a sampling time up to 2.5 min. However,
extending the sampling time to 3 min prevented the controller from achieving the desired outcome.
This observation emphasizes the significance of selecting an appropriate sampling time that ensures
effective control action and system stability.

Remark 10. In order to maintain manageable encryption–decryption times within an encrypted
control system network, it is essential to choose computationally efficient cryptosystems, such as
the Paillier cryptosystem. Cryptosystems like ElGamal and AES impose higher computational
requirements on process control hardware, resulting in longer encryption and decryption times.
Consequently, this leads to the need for longer sampling times. Further, in practical applications,
it may be feasible to reduce the prediction horizon of the MPC for encrypted control as long as it
does not significantly impact the performance of the controller. These adjustments enable shorter
sampling times while still meeting encryption requirements.

Remark 11. When dealing with large-scale processes with hundreds or thousands of measurements,
it would be advisable to employ a distributed SCADA architecture across multiple locations or nodes
within the network. Furthermore, encryption of state measurements at the sensor can be performed
in parallel rather than in series. When we report the encryption time in this paper, it is the total
time needed for encrypting each sensor signal and control input in series, not in parallel. This could
be performed in a parallel manner across multiple devices for larger systems to reduce the effective
computational time needed.

Remark 12. To deal with asynchronous or delayed signals in an encrypted setting, the signals
would be encrypted prior to transmission and decrypted upon receipt, with the actuator designed to
apply control inputs in a sample-and-hold manner, whereby the preceding control input trajectory
continues to be implemented until the recalculated input trajectory is received. Because quantization
with encryption has a consistent computational duration, an appropriate sampling time would be
chosen based on its knowledge and time needed to compute the control input, as demonstrated in
Equation (18). However, because the formula given to decide the sampling time does not take into
account the time spent for signal communication or signal delays, which are very specific to the
process setting, sensors used, and communication channels established, the time spent between
asynchronous measurements or for signal delays could be known or approximated to select an
appropriate sampling time.

6. Conclusions

In this work, we developed and applied an Encrypted Lyapunov-based Model Pre-
dictive Control (LMPC) scheme to a large-scale chemical process network involved in the
production of Ethylbenzene. By employing the encrypted LMPC, we conducted closed-
loop simulations for different quantization parameters and identified errors resulting from
quantization. We illustrated that the effect of quantization could be more profound than
plant/model mismatch when a low quantization parameter is chosen. To mitigate the im-
pact of quantization, we proposed using a higher quantization parameter, specifically d = 8.
Furthermore, through a comprehensive analysis of the duration of encryption–decryption
at each sampling instance, we observed that the computational burden on the control
input calculation time remained consistent across all tested quantization parameters. This
finding supports the recommendation of employing a higher quantization parameter, as
it not only minimizes the impact of quantization errors but also ensures secure commu-
nication between the sensor–controller and controller–actuator, thus enhancing system
cybersecurity without compromising the performance of the controller. The current re-
search necessitates MPC computations to be executed within a fully secure cyber–physical
environment, aimed to thwart cyberattackers from compromising the decrypted plaintext
input signals and control inputs computed by the MPC prior to encryption. An avenue for
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future research could involve adapting the encrypted MPC architecture to operate within
a less secure context. Additionally, another promising area for future investigation could
entail implementing encrypted MPC while incorporating data reconciliation mechanisms
amidst a cyberattack scenario. Notably, the works referenced [6,9,24,25] in this context have
explored such aspects within non-encrypted settings.
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