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Abstract: In recent years, lithologic oil and gas reservoirs have become an important target in
continental hydrocarbon-bearing basins. Geophysical prospecting technology using seismic data
is an indispensable tool for oil and gas exploration. However, while previous work has paid much
attention to the seismic responses of reservoirs (sandstones), the seismic responses of depositional
sequences composed of sandstone–mudstone cycles are not well understood in reservoir prediction.
This problem seriously restricts efficient oil–gas exploration and development. The Cretaceous
Baxigai Formation in the Yingmaili area, west of the Tabei Uplift, is an important exploration target
for lithologic oil and gas reservoirs in the Tarim Basin. The Baxigai Formation is deeply buried with
thin thickness. The Baxigai Formation in the study area is divided into a lower sandstone section and
an upper mudstone section. Braided river delta sand bodies are developed in the lower sandstone
section, and braided river delta sand bodies and beach bar sand bodies are developed in the upper
mudstone section. According to the difference in the depositional sequences in different zones,
five types of the vertical combination style of sandstone and mudstone were identified. Through
seismic forward modeling, the seismic response variance of the five kinds of sequence models was
established. Then, the amplitude attributes were extracted via wavelet decomposition to reflect the
distribution of sandstone–mudstone in different zones. This could help predict the vertical and
horizontal distributions of different depositional sequences and the sandstones in these sequences.
During the sedimentary period of the upper mudstone section of the Baxigai Formation, the beach
bar sand bodies were distributed along the northeast coast. The thin sand bodies pinched out along
the up-dip direction to form favorable lithologic traps, which has important significance for lithologic
reservoir exploration.

Keywords: depositional model; seismic forward modeling; wavelet decomposition; Baxigai Formation;
Tabei Uplift; Tarim Basin

1. Introduction

With the continuous progress of the exploration of oil and gas reservoirs, lithologic
oil and gas reservoirs have become important targets in continental hydrocarbon-bearing
basins. The subsurface sandstone distribution could be well related to the scale of hydro-
carbon reservoirs. However, due to the complex sedimentary cycles and strong reservoir
heterogeneity, how to further clarify the scale of thin sandstone reservoirs to achieve greater
exploration results is still not well illustrated. The spatial distribution pattern of deep-
buried, subsurface, thin sand bodies has become a crucial challenge that restricts efficient
exploration and development in continental basins. In recent years, geophysics technolo-
gies, such as wavelet decomposition and reconstruction [1–8], stratigraphic slicing, multi-
attribute fusion, spectral decomposition, and attribute inversion, have emerged for the
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recognition and prediction of thin sandstone and have achieved certain applications [9–19].
Although sandstone characteristics have been given much consideration, the vertical com-
bination style of the subsurface sandstone–mudstone in the depositional sequence has still
not been well considered in previous research.

The Cretaceous strata in the west of the Tabei Uplift is a set of clastic depositional
systems, including the Shushanhe Formation, Baxigai Formation, and Bashijiqike Forma-
tion, from bottom to top. The Shushanhe Formation has lacustrine sedimentary records
composed of thick mudstone and thin siltstone and is a set of fine-grained clastic rock
deposits. The overall thickness of the Shushanhe Formation is between 50 m and 350 m.
The Bashijiqike Formation is a delta sedimentary body that accumulated via thick–very
thick sandstone with a thin layer of inter-bedded mudstone [20]. The Baxigai Formation
developed a transitional depositional record between the lacustrine and delta facies. The
Baxigai Formation sandstone reservoir is mainly terrigenous clastic rocks, and the lithology
is dominated by fine sandstone, followed by siltstone and medium sandstone. The rock
types are feldspar lithic sandstone and lithic feldspar sandstone, with low compositional
maturity. In the study area, the thickness of the Baxigai Formation is 40 m~60 m, with a
burial depth of 4850–5200 m (average burial depth exceeding 5000 m), and it has a stable
distribution throughout the study area [21]. The Cretaceous Baxigai Formation in the
western part of the Tabei Uplift is one of the key exploration targets. As early as 2008, thin
sandstone reservoirs, with a thickness of only 2.5 m, were discovered in the Cretaceous
Baxigai Formation of the research area [22]. Since 2016, multiple horizontal wells have been
drilled in this 1 m–4 m thick, thin layer of sandstone, all of which have achieved substantial
production of industrial oil and gas flows. This further confirms that the thin sandstone of
the Baxigai Formation has good exploration and development potential [23,24]. Conven-
tional geophysical methods based on 3D seismic data are widely used to predict the spatial
distribution of thin sand bodies [25,26] for hydrocarbon exploration.

This study focuses on the seismic responses of the depositional sequence composed of
sandstone–mudstone cycles using core, wireline log curves, and 3D seismic data. The study
aims were as follows: (1) to describe and interpret the depositional characteristics of delta–
lacustrine deposits and sandstone–mudstone sequences in different zones; (2) to design
corresponding geological models to carry out seismic forward modeling for determining
the seismic responses of different vertical depositional sequences in different zones of the
study area; and (3) to use wavelet decomposition and reconstruction technology to extract
the amplitude attributes and summarize the relationship between the seismic attributes
and subsurface geological deposits. Then, the horizontal distribution of the thin-bed sand
bodies was clarified in the Baxigai Formation. This study could have implications for sand
body prediction in other continental basins with similar geological conditions.

2. Geological Setting

The Tarim Basin is China’s largest oil–gas-bearing basin, with an area of about
560,000 square kilometers. It is a large, superimposed basin composed of the Paleozoic
craton basin and the Mesozoic–Cenozoic foreland basin. It is in the northwest of China, sur-
rounded by the Tianshan Mountains, Kunlun Mountains, and Altun Mountains [27,28]. The
basin can be divided into seven first-order structural units: three uplifts and four depres-
sions from north to south, which are the Kuqa Depression, Tabei Uplift, North Depression,
Central Uplift, Taxinan Depression, Tadongnan Depression, and Tanan Uplift [29,30]. The
research area is in the western Tabei Uplift. The Tabei Uplift is a first-order structural unit
located in the north of the Tarim Basin, northwest China. Tectonically, it is the transitional
area between the Kuqa foreland basin and the Craton basin. It is located between the Kuqa
Depression and the North Depression. The Tabei Uplift includes three secondary-order
structural units: the Yingmaili Low Uplift, Lunnan Low Uplift, and Luntai Uplift (Figure 1).
From the perspective of basin formation, the Tabei Uplift is a “residual paleo uplift” of
the Paleozoic craton [31,32]. After several tectonic movements, from the Cretaceous, Tabei
Uplift gradually evolved into a north-dipping low slope and was completely covered by
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the Cretaceous Baxigai Formation after the Cretaceous Shushanhe Formation depositional
period [33,34]. The research area mainly includes the Yingmaili Low Uplift and the western
part of the Luntai Low Uplift area. The Karayuergun structural belt, YM7 fault structural
belt, Yangtake fault structural belt, and YM46 low-amplitude structural belt are developed.
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Figure 1. Structural map and the location of the study area in western Tabei Uplift.

The source of sediments of the Baxigai Formation comes from the southeast of the
basin [35–37]. The Baxigai Formation is mainly developed as a large braided river delta and
lacustrine system. The delta originates from the southeast and gradually pinches out to the
northwest. According to the lithological characteristics within the study area, the Baxigai
Formation can be classified into two lithological sections: 1© a lower sandstone section,
mainly composed of sandstone layers, with thin mudstone intercalated in local areas; and
2© an upper mudstone section, mainly composed of relatively thick mudstone, with locally

developed thin sandstone layers of 1 m–4 m thickness (Figure 2). This set of thin sandstone
layers is the oil exploration target layer of this study. According to core routine analysis
experiments and logging data, it is known that thin sandstone is often found in reservoirs
with medium–high porosity and medium–high permeability, with porosity mainly varying
from 15% to 24%, with an average of about 20%. The permeability mainly varies from 1 to
500 mD, with an average of about 250 mD.
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Figure 2. Well-logging interpretation of Baxigai Formation of Well YM467 in the study area.

3. Data and Methods

The datasets used in this study were 3D seismic surveys that cover the central part
of the study area (3174 km2), well-logging data from 114 boreholes, and core data from
3 boreholes. The 3D seismic surveys were in SEG-Y format, and well-logging data were in
LAS format in this study. The particle size analysis data and core photographs used in this
study were derived from the database of PetroChina Tarim Oilfield Company.

The characteristics of lithofacies from the different depositional sequences were de-
scribed and interpreted using core descriptions and well-logging curves in the Baxigai
Formation. On this basis, the vertical depositional sequences of the Baxigai Formation
from the proximal to distal part were summarized to obtain a vertical combination style of
sandstone–mudstone. Through comprehensive analyses of the vertical combination style of
sandstone–mudstone in different zones, seismic forward modeling was conducted for de-
termining the seismic response characteristics of different kinds of depositional sequences.

Then, wavelet decomposition was used to extract multi-wavelet series in the medium-
and high-frequency bands. This process reconstructs and synthesizes new seismic data
volumes, and RMS amplitude attributes were extracted. The corresponding relationship
between seismic attributes and the geological characteristics of the vertical depositional
sequences from well-tied profiles was investigated. With the assistance of those processes,
the vertical and horizontal distributions of deposits were investigated through sedimentary
facies and sandstone isopach figures. A depositional model for the Baxigai Formation
thin-bedded sandstones was proposed for further hydrocarbon exploration.

4. Results
4.1. Facies Interpretation in Different Depositional Sequences
4.1.1. Depositional Facies of the Lower Sandstone Section

Lithofacies’ type and sequence combination are the main basis for distinguishing sedi-
mentary architecture. In this study, cored wells in the Yingmaili area were comprehensively
analyzed for lithofacies. Based on factors such as color, gravel diameter, and structure that
can reflect sedimentary origin and environment, lithofacies of the lower sandstone section
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can be divided into 12 types: (1) massive bedding medium sandstone (Figure 3a) often
occurs in underwater distributary channel deposits and reflects the sedimentary character-
istics of tractive flow. The hydrodynamic force during the sedimentation period was strong;
(2) erosion surface medium–fine sandstone (Figure 3b) is generally developed in rivers
and alluvial fan environments and reflects rapid deposition under strong hydrodynamic
conditions; (3) medium sandstone with rip-up mud clasts (Figure 3c) is frequently found in
underwater distributary channel deposits and reflects strong hydrodynamic conditions;
(4) massive bedding fine sandstone (Figure 3d) generally appears in distributary channel
deposits, reflecting the sedimentary characteristics of tractive flow with strong and sta-
ble hydrodynamic forces; (5) trough cross-bedding fine sandstone (Figure 3e) generally
appears in the river environment and various channel deposits; (6) medium sandstone
with residual deposits (Figure 3f) usually occurs in fluvial sedimentary environments,
and fine-grained sediments are carried away and coarse-grained sediments are retained,
reflecting strong hydrodynamic conditions; (7) inclined bedding siltstone (Figure 3g) is
more common in rivers flowing into lakes, reflecting unidirectional flow and weaker hy-
drodynamic conditions; (8) ripple cross-bedding siltstone (Figure 3h) is mostly deposited
in the mouth bar and far sand bar of the delta front and is formed by the action of relatively
high-energy water flow; (9) mudstone (Figure 3i) is mostly deposited in inter-distributary
bays of delta fronts and formed in a clean water environment; (10) massive bedding silt-
stone (Figure 3j) generally appears on top of underwater distributary channel deposition;
(11) parallel bedding fine sandstone (Figure 3k) often appears in underwater distributary
channel deposition. The hydrodynamic force during the sedimentation period was strong
and stable; (12) scouring and filling structure medium sandstone (Figure 3l) is generally
developed in rivers and alluvial fan environments and undergoes rapid sedimentation
under strong hydrodynamic conditions.
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Figure 3. Core pictures of YM46-1, YD701well in the lower sandstone section of the Baxigai Formation:
(a) Well YM46-1, 5172.1 m; medium sandstone massive bedding; (b) Well YM46-1, 5173.5 m; medium–
fine sandstone with erosion surface (marked by black dotted line) and muddy clast (marked by
yellow dotted lines); (c) Well YM46-1, 5174.6 m; medium sandstone with rip-up mud clasts (marked
by yellow dotted lines); (d) Well YM46-1, 5175.4 m; fine sandstone massive bedding; (e) Well YM46-1,
5176.1 m; fine sandstone trough cross-bedding (marked by yellow dotted lines); (f) Well YM46-1,
5179.4 m; medium sandstone with the residual deposit (marked by black dotted lines) and fine gravel;
(g) Well YD701, 4973.63 m; siltstone inclined bedding (marked by yellow dotted lines); (h) Well
YD701, 4974.12 m; siltstone ripple cross-bedding; (i) Well YD701, 4980.3 m; mudstone; (j) Well YD701,
4981.8 m; massive bedding; (k) Well YD701, 4984.29 m; fine sandstone parallel bedding (marked by
yellow dotted lines); (l) Well YD701, 4986.2 m; medium sandstone scouring and filling structure with
gravel (marked by yellow dotted lines).



Processes 2023, 11, 2481 6 of 18

According to the core description, the lower sandstone section of the Baxigai Formation
in the study area is formed in the braided river delta sedimentary environment, and
the sedimentary facies such as subaqueous distributary channel, mouth bar, and inter-
distributary bay can be identified (Figure 3).

The subaqueous distributary channel is mainly composed of gray-brown fine sand-
stone. Typical sedimentary structures include scouring surfaces, massive bedding, and
parallel bedding (Figure 3). The particle size probability cumulative curve mainly consists
of a saltation transport section and a suspension transport section (Figure 4c).
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Figure 4. Typical characteristics of sand body development in the lower sandstone section of the
Baxigai Formation.

Taking wells YD701 and Y46-1 as examples, the content of saltation transport is very
high (>90%), and the sandstone is well sorted, with a total suspension of less than 10%.
The sandstone deposition is mainly characterized by saltation transport (Figure 4c). The
wireline log curves are mainly box-shaped and bell-shaped (Figure 4a,b).

The river mouth bar is mainly composed of brown fine sandstone–siltstone, with
developed inclined bedding, and ripple cross-bedding. (Figure 3). The particle size grad-
ually coarsens upwards. The logging curve is mainly funnel-shaped (Figure 4b). The
inter-dis–tributary bay is mainly brown mudstone with thin thickness, often alternating
with siltstone (Figure 4b).

4.1.2. Depositional Facies of the Upper Mudstone Section

Lithofacies of the upper mudstone section can be divided into Three types: (1) parallel
bedding siltstone (Figure 5a) represents a high-energy depositional environment, and the
hydrodynamic force during the sedimentation period was strong and stable; (2) wavy
cross-bedding siltstone (Figure 5b) is formed by the action of strong energy water flow,
affected by waves and tides, and is mostly deposited in lake environments; and (3) massive
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bedding–Parallel bedding fine sandstone (Figure 5c) for which the hydrodynamic force
during the sedimentation period was strong.
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Figure 5. Core pictures of YM471H well in the upper mudstone section of the Baxigai Formation:
(a) Well YM471H, 5201.65 m; siltstone parallel bedding (marked by yellow dotted lines); (b) Well
YM471H, 5202.33 m; siltstone wavy cross-bedding (marked by yellow dotted lines); (c) Well YM471H,
5204.55 m fine sandstone massive bedding–parallel bedding (marked by yellow dotted lines).

The thickness of the sand body in the upper mudstone section of the study area
is relatively thin (1 m–4 m) (Figure 6a), which is significantly different from the lower
sandstone section. The sandstone develops in lacustrine mudstone as interlayers. The
lithology is mainly light-brown fine sandstone, with the internal development of wave-
formed sand cross-bedding, parallel bedding, and massive structure. The probability
accumulation curve of particle size is mainly composed of a two-stage equation, which
mainly develops two populations: saltation and suspension. The hydrodynamic force is
relatively strong, and it is often developed in the beach bar sand body, with good sorting
(Figure 6b). The logging curves are mainly funnel-shaped and composite box-shaped. In
most areas of the study area, only single-stage sand bodies are developed vertically in the
upper mudstone section. According to the above analysis, clastic rock beach bar deposits
were formed in the upper mudstone member of the Baxigai Formation in the study area.
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4.1.3. Vertical Style of Depositional Sequences

Through the comparison of typical sedimentary profiles from proximal to distal
direction, from the Yingmaili to the Yudong area, the lower sandstone section evolved
from a large set of sandstone to finger-shaped sand with mudstone inter-bedded, isolated
vertically. Among them, the thickness of the lower sandstone in the Yingmaili area is about
20 m (Wells YM46 and YM463). From the west of Well YM467, sandstone is gradually
inter-bedded by mudstone. In the Yudong area (Well YD1), the sandstone gradually varies
into a finger-shaped distribution, with a total thickness of about 15 m. In the Yangta area
(Well YT8), the sand body at the front of the braided river delta is transformed by lake
waves into the beach bar sand body, and several sets of sand bodies are developed vertically
with thin thickness; the thickness of the single-stage sand body is about 2–4 m (Figure 7).

The distribution characteristics of sand bodies in the upper mudstone are significantly
different from those in the lower sandstone section. Delta front sand deposits are developed
in the Well YM4 area in the southwest of the study area. After entering the Well YM463
area in the northwest distal direction of the delta deposition, the sandstone development
significantly pinched out, mainly consisting of shallow lake mudstone deposition. Shallow
lake thin-layer beach bar sand bodies are developed near Well YM467-YM8, with a thickness
of about 1 m–4 m. The sand bodies have a small distribution range and poor continuity
and are interbedded with mudstone vertically. There are different vertical combination
styles of sand and mudstone from the proximal to the distal area of the delta-lacustrine
deposition (Figure 7).

4.2. Seismic Responses of Different Vertical Depositional Sequences
4.2.1. Forward Simulation Based on Different Sand and Mudstone Combination Styles

Based on the above understanding of the development style of sandstone–mudstone
associations, seismic forward modeling was conducted to clarify the seismic response
characteristics of the sandstone bodies. Firstly, geological models were designed based on
the development pattern of sand bodies to determine the lithology parameters. From the
distribution profile of the sand bodies mentioned above (Figure 7), the lower sandstone sec-
tion develops with block-shaped–finger-shaped sand layers, and the thickness varies from
southeast to northwest. The upper mudstone section gradually thickens from southeast to
northwest and locally develops with thin layers of sandstone.

A corresponding model was constructed based on the distribution characteristics of
typical sand body profiles (Figure 8a), clarifying the lithological combination of sand and
mudstone, stratigraphic structure, distribution patterns, and their velocity parameters.
According to multiple well data statistics, the average thickness of the sandstone (top plate)
of the Bashijiqike Formation, the mudstone (bottom plate) of the Baxigai Formation, and the
mudstone (bottom plate) of the Shushanhe Formation is set at 40 m. The average thickness
of the proximal massive sandstone, massive sandstone, and distal finger-shaped sand of
the Baxigai Formation are 38 m, 20 m, and 14 m, respectively. The thickness of the thin
layer of sand in the upper mudstone section is 3 m. In addition, the sandstone velocity
is set to 3600 m/s~3700 m/s, and the mudstone velocity is 3900 m/s~4000 m/s. Due to
the good reservoir properties of the sandstone in the study area, the sandstone velocity
is smaller than that of the mudstone. From the geological model profile, it can be seen
that the vertical combination relationship of the Baxigai Formation can be divided into
five types of combination models from southeast to northwest. Model 1 is a thin layer
of upper mudstone and thick sandstone (Well YM4), Model 2 is a medium-thick layer of
upper mudstone and a medium-thick layer of sandstone (Wells YM46, YM463, and YM468),
Model 3 is a medium-thick layer of upper mudstone, a thin layer of sandstone and massive
sand (Well YM467), Model 4 is a medium-thick layer of upper mudstone, a thin layer
of sandstone and finger-shaped sand (Well YM8), and Model 5 is a thick layer of upper
mudstone and finger-shaped sand (Well YD1).
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Figure 8. Seismic forward modeling of restructured sand bodies in the Baxigai Formation: (a) geology
model schematic diagram; (b) seismic model profile; (c) actual seismic profile.

Based on this, the forward modeling and actual seismic well profile are divided into
four zones (Figure 8b,c), clarifying the corresponding relationship and amplitude response
characteristics between each zone and the geological model (Figure 9). In Zone 1, which
corresponds to Model 1 (thin-layer mudstone and lower thick sandstone), there is a weak
peak amplitude at the top of the thick sand. Zone 2 corresponds to the range of Model 2
(medium-thick upper mudstone and lower medium-thick sand), where the peak and valley
amplitudes of block sand waves are the strongest. In Zone 3, corresponding to Model 3
(medium-thick upper mudstone, thin sandstone, and lower thick sandstone) and Model 4
(medium-thick upper mudstone, thin sandstone, and lower finger-shaped sand), the peak
and valley amplitudes of the thin sandstone section are relatively weak compared with
those of Zone 2. In Zone 4, corresponding to Model 5 (thick mudstone and finger-shaped
sandstone), the amplitude of the wave peak below the finger-shaped sandstone section is
weaker. The important exploration target layer in the study area, the thin sand layer in the
upper mudstone section of the Baxigai Formation, is mainly distributed in Zone 3.

4.2.2. Wavelet Decomposition and Reconstruction

The basic principle of wavelet decomposition and reconstruction technology is to use
seismic time–frequency decomposers to decompose seismic traces into wavelet sets with
different main frequencies and time components in the time and frequency domains. Then,
for different geological targets, single-wavelet sets with different frequencies or a certain
frequency band are selected, and finally, based on multi-wavelet convolution models, new
seismic profiles or data volumes are reconstructed and generated [38,39]. The seismic
traces decomposed and reconstructed using wavelet transform are more conducive to the
precise interpretation of geological targets, and the seismic attributes extracted based on
reconstructed seismic traces are more conducive to identifying complex hidden reservoirs,
improving the accuracy of reservoir prediction.
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Figure 9. Amplitude variation diagram of the seismic profile along the top and bottom wave peaks
and their inter-wave trough of the Baxigai Formation.

In this study, wavelet decomposition and reconstruction technology based on a match-
ing pursuit algorithm were used to process the original seismic trace and obtain the
reconstructed seismic trace. According to the thin reservoir target information of the
known wells, the original seismic traces in the study area were decomposed into a series
of wavelet sets using the matching pursuit method, and the multi-wavelet series in the
medium- and high-frequency bands, which can reflect the thin reservoir, was selected from
them. The wavelets in the medium- and low-frequency bands (less than 30 Hz) related to
the strong reflection caused by lithologic changes were discarded, and new seismic traces
were reconstructed.

On a single well, the seismic calibration of Well YM466 was selected for comparative
analysis and presentation of results (Figure 10). Due to the significant differences in
lithology, velocity, and wave impedance between the sandstone of the Bashijiqike Formation
(high-porosity sandstone with lower velocity) and the upper mudstone section of the
Baxigai Formation, the synthesized records and actual seismic peak amplitudes of the top
boundary of the Baxigai Formation are both strong. However, the thin sandstone of the
upper mudstone section is close to the lithological interface, making the seismic responses
of the thin sandstone (marked in yellow color) hidden in the strong wave-peak reflection.
Therefore, it is difficult to identify the reflection characteristics of thin sandstone from actual
seismic traces. Through comparison, the seismic traces obtained via wavelet decomposition
and reconstruction eliminate the blocking effect of strong wave-peak reflection at the top of
the Baxigai Formation. This highlights the seismic amplitude variation characteristics of
lithological association related to thin sandstone layers (Models 3 and 4) (Figure 10). It is
also more conducive to tracking and identifying thin reservoirs using seismic data.
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Figure 10. The well seismic calibration comparison of thin sandstone of Well YM 466 restructured in
the Baxigai Formation.
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Considering the profiles, the wavelet decomposition and reconstruction profile with
the same well section position as the forward model profile (Figure 8) was selected for
comparison with the original seismic profile (Figure 11).
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Figure 11. Comparison between wavelet decomposition and reconstruction profile and original
seismic profile: (a) wavelet decomposition profile; (b) original profile.

Well YM8 and Well YM462 in the figure are areas of thin-bedded sandstone devel-
opment. After wavelet decomposition and reconstruction, the strong peak reflection
amplitude at the top of the Baxigai Formation restructuring is overall weakened. From
Well YM46 to Well YM463, there is no thin-bedded sandstone, and the wave-peak reflection
amplitude is overall strengthened (Figure 11a). Therefore, the amplitude of the seismic
reflection corresponding to different lithological combinations has significant differences.
Correspondingly, from the original seismic profile, the top of the Baxigai Formation has
a single strong wave-peak event, and lateral tracking revealed that the change in the
amplitude of the top wave peak was relatively small, making it difficult to identify the
amplitude change characteristics caused by lithological combination changes (Figure 11b).
This method improves the visual resolution of thin sand layer identification.

4.2.3. RMS Amplitude Attribute

Based on wavelet decomposition and reconstruction of seismic data volume, the RMS
amplitude attribute of the upper mudstone section (including thin sandstone) was extracted
to clarify the amplitude attribute characteristics related to the lithology of thin sandstone
in the upper mudstone section. Through the comparison of attribute plane features in the
study, the RMS amplitude attribute extracted from the 15 ms time window below the top
boundary of the Baxigai Formation could reflect lithological variation (Figure 12). The RMS
amplitude plane distribution has obvious zonal characteristics, and its amplitude value
changes are consistent with the seismic forward modeling results (Figure 8c).

From northwest to southeast, the amplitude attribute is divided into four-zone (red
and yellow; low-value zone), three-zone (green; high-value zone), two-zone (blue and light
blue; high-value zone), and one-zone (green, red, and yellow; low-value zone) areas. The
three-zone area is the thin-bedded sandstone development zone (beach bar) in the upper
mudstone section of the Baxigai Formation. The distribution boundary is shown in the
figure (Figure 12). Based on the forward simulation results, it can be concluded that the
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RMS amplitude attribute extracted from the wavelet decomposition and reconstruction
data volume can better reflect the distribution characteristics of thin-bedded sandstone.
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Figure 12. RMS amplitude attribute plane of thin sandstone section extracted based on wavelet
decomposition.

5. Discussion
5.1. Distribution Characteristics of Sandstone in District

Based on the information gained from the RMS amplitude attribute extracted through
wavelet decomposition processing, combined with the sedimentary facies interpretation,
the lateral boundaries of sandstone were identified. This process also allowed us to obtain
sedimentary facies distribution of the lower sandstone section and the upper mudstone
section of the Baxigai Formation in the study area (Figure 13). Compared with previous
studies based on seismic attribute extraction in the Baxigai Formation [28], this study
focuses on descriptions of the thin-bed sandstone reservoirs on a finer scale to obtain more
details of the deposition.

During the deposition of the lower sandstone section of the Baxigai Formation in the
study area, the braided river delta had a wide sedimentary range. The delta plain and
delta front were distributed from the southeast to the northwest. The deltaic sand body
was distributed in a lobed shape (Figure 13a), with a large scale. During the sedimentary
period of the upper mudstone section, the delta in the study area was retrograded, and
the development range and scale of the sand body were significantly reduced (Figure 13b).
The delta front sand body transformed into a thin layer of beach bar sandstone, mainly
distributed in a northeast–southwest trending strip. The sandstone was in an isolated state
surrounded by shallow lake mudstone deposits.

5.2. Distribution Model of Thin Sand Bodies in the Upper Mudstone Section

Previous studies have shown that the Cretaceous Baxigai Formation was deposited
in a sedimentary transition period. After the development of the ancient uplift in the
Shushanhe Formation sedimentary period, the ancient uplift in the study area began to
be submerged, becoming a subaqueous low uplift, and river-dominated delta–lacustrine
deposits developed [33,40–42]. Although the previous models have revealed the conceptual
model of deltaic deposition, the facies distribution in finer scale and beach bar deposition
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have not been determined yet, due to limitations in the seismic data resolution. In this study,
new details of the deltaic deposits were found, and this could provide new implications for
reservoir exploration. Additionally, we believe more thin-bedded sandstone deposits with
similar conditions can be found in other continental basins.
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These deltaic deposits have a sedimentary process of progradation and later retrogra-
dation (Figure 14). During the sedimentary period of the lower sandstone section, the
distributary channel from the southeast rapidly progrades toward the center of the lacus-
trine basin. Due to the river-dominated process, the delta has a large distribution scale. In
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the proximal location, sand bodies developed continuously vertically. In the distal part of
the delta deposition, the thickness of the sand body decreased, and inter-bedded mudstone
could be found in the sedimentary records. During the deposition of the upper mudstone
section, the lake level rose, and the braided river delta sand body retrograded. Due to
the rise in the lake level and wave action, the delta front deposits formed a thin layer of
beach bar sand body. The genesis of sand bodies is closely related to the transformation of
waves and coastal currents in local areas [43–45]. The lower sandstone section and upper
mudstone section form five sandstone–mudstone combination styles in different areas
(Figure 14).
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The prediction of the thin-layer sand body reveals the lateral distribution character-
istics of sandstone in the upper mudstone section. This sedimentary model reveals the
distribution pattern of beach bar sandstone in the upper mudstone section. The top and
bottom layers of that sandstone are, respectively, composed of stable developed lacus-
trine mudstone. As the structural characteristics of the area are high in the south and
low in the north, the thin beach bar sand bodies in the upper mudstone section of the
northwest of the study area are pinched out in the upward direction, forming a favorable
zone for the development of lithologic traps, which has huge potential for lithologic oil
reservoir exploration.

6. Conclusions

1. The Baxigai Formation in the western part of Tabei Uplift mainly develops with
braided river delta deposits. The lower sandstone section develops with thick sand-
stone and finger-shaped sandstone in distributary channels. The sandstone in the
upper mudstone section gradually pinches out from southeast to northwest, and an
isolated thin layer of beach bar sandstone is developed in coastal areas.

2. Based on the spatial distributions of the lower sandstone section and the upper mud-
stone section, five combination styles were identified: thin-layer upper mudstone–
thick sandstone; medium-thick-layer upper mudstone–medium-thick sandstone;
medium-thick-layer upper mudstone–thin-layer sandstone-block sandstone; medium-
thick-layer upper mudstone–thin-layer sandstone–finger-shaped sandstone; and thick-
layer upper mudstone–finger-shaped sandstone.

3. Five seismic forward modeling models were established according to the sandstone–
mudstone combination style. The results correspond to four different seismic re-
sponses. Using wavelet decomposition and reconstruction techniques, multi-wavelet
series was determined in the medium- to high-frequency range. The seismic ampli-
tude variation characteristics of sandstone–mudstone combinations related to thin
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sandstone were determined. The RMS amplitude attribute was optimized to complete
the prediction of sandstone distribution.

4. Based on the seismic prediction of thin sandstone distribution, the sedimentary model
of thin-bedded sandstone in the upper mudstone section of the Baxigai Formation
was established. During the sedimentation period of the lower sandstone section,
the delta rapidly progrades toward the lacustrine basin. In the proximal location,
the sand bodies are continuously developed and relatively thick. At the distal part
in the downflow direction, the thickness of the sand body varies greatly, appearing
as a finger shape in profile. During the depositional period of the upper mudstone
section, the scale of the delta decreased. Deltaic deposits were transported by waves
and coastal currents to form beach bars.

5. The thin sand bodies in the upper mudstone section of the Cretaceous Baxigai For-
mation in the western Tabei Uplift could form lithologic traps, which have important
exploration and development value for lithologic oil reservoirs. The thin beach bar
sandstone is pinched out in the upward tilt direction, forming a favorable zone of the
lithologic traps.
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