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Abstract: An adsorbent was developed from agro-industrial residues derived from the seed husks of
Moringa oleifera Lam., in which the hydrochar process was used as it is a sustainable, low-cost and easy-
to-operate process. In comparison, a commercial adsorbent, activated charcoal from babaçu coconut,
was used. Both materials were characterized using SEM, FTIR, zeta potential and BET, showing their
morphologies, chemical compositions and textural analyses that proved the adsorption capacity of
each material. A cost study was also carried out regarding the production of the materials. For both
materials, an equilibrium study was carried out using the following contaminants: metformin, diuron,
methylene blue and lead. We aimed to study the use of agro-industrial waste as a new adsorbent
material, which was shown to have an average removal for all the contaminants tested of around
84.56–99.13%. The new adsorbent developed had many interactions with the studied contaminants,
allowing its use on a large scale since its production cost was low. The main objective of this study
was thus to compare a commercial activated charcoal with a biosorbent from agro-industrial waste,
prepared by the hydrochar method.

Keywords: sustainable material; emerging contaminants; production cost; product quality

1. Introduction

In recent years, the presence of micropollutants in water has become a major concern
worldwide. These pollutants, also known as emerging contaminants, are composed of
a wide variety of substances of both natural and anthropogenic origin. This category
encompasses a variety of substances, such as pharmaceuticals, pesticides, dyes, industrial
chemicals and heavy metals, among others [1–4]. These micropollutants are usually found
in low concentrations in water resources, ranging from ng L−1 to µg L−1. The low con-
centration and diversity of the compounds present in water not only make detection and
analysis procedures more complicated, but also make water treatment processes used for
supply and wastewater treatment more difficult [5–7].

Pesticides, widely used in modern agriculture, are considered one of the main sources
of environmental pollution due to the high amount of hazardous chemicals that are released
into the atmosphere, soil and water [8,9]. While these chemicals are used to increase
productivity and profits in the agricultural sector, they have a significant negative impact
on human health and biodiversity. Herbicides, fungicides and insecticides are the main
types of pesticides that are in use, and their toxicity varies widely depending on the
formulation, dose and exposure time [10].

Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substance widely used as an
algaecide and herbicide in the arylurea class, whose main effect is the inhibition of photo-
synthesis [11–13]. It is one of the most common and widespread herbicides in Brazil and,
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possibly, worldwide. Among the crops to which it is applied in the country, sugarcane and
corn stand out [14,15].

Chemicals known as pharmaceuticals are used for diagnostic, therapeutic, preventive
or disease-modifying purposes. This definition also encompasses veterinary pharmaceuti-
cals and illicit drugs [16,17]. A wide range of medicines for humans, such as antibiotics,
synthetic hormones, anti-inflammatories, statins and cytotoxins, are produced and con-
sumed, with some examples reaching annual production in the order of thousands of
tons [18,19]. When drugs reach the environment, they become a big problem, as their
accumulation causes serious damage [20].

The use of dyes in various industries, such as textiles, plastics and paper, generates
large volumes of colored effluents that have a direct impact on the environment, especially
when disposed of without proper treatment [21,22]. Methylene blue is an example of a
cationic dye commonly used in the dyeing of cotton, wool and silk, which can have negative
effects on human health and water quality. In addition to reducing sunlight infiltration
and affecting photosynthetic activity, dye ingestion can cause symptoms such as burning,
vomiting, diarrhea and gastritis [23,24]. It is essential for the industry to adopt sustainable
and responsible practices and to carry out proper treatment of these effluents to minimize
environmental impacts and protect public health [25].

Heavy metals are pollutants that are not biodegradable and accumulate in ground-
water and on the surface of the soil as residues from some industrial processes, such as
mining, painting and anti-corrosion coating [26]. Among them, lead (Pb(II)) is considered
one of the most toxic heavy metals due to its negative effects on the nervous system, blood
circulation, kidneys and human reproductive system [27,28]. Anthropogenic sources of
lead contamination include used batteries, lead smelting, tetraethyl lead industries, mining,
plating and the glass-ceramic industry. The excessive presence of Pb(II) in fresh water
poses a health risk and can contribute to serious diseases such as encephalopathy and
hepatitis [29,30].

These emerging contaminants have a high leaching potential, and these contaminants
are, for example, capable of contaminating groundwater and surface water. The presence
of traces of this substance is observed in several countries, such as Brazil, the United States,
China and Germany, among others [31].

When emerging pollutants reach surface- and groundwater, there is a great risk of
contamination, which may pose a threat to the health of the population that consumes
these waters. Unfortunately, conventional water treatment is often not sufficient to re-
move these contaminants, which has led to the development of more efficient alternative
methods [32,33]. Adsorption has proved to be a highly effective and reliable technique to
remove organic pesticides, and is based on the accumulation of substances on the surface of
a solid adsorbent. Among the advantages of using this method are their universal natures,
low cost and ease of operation [34].

Biosorption is a process that involves the use of biological materials to remove pol-
lutants from the environment, and has been the subject of numerous studies in the en-
vironmental area [35]. This is due to the interest in identifying effective and low-cost
bio-sorbents for removing pollutants. Agricultural residues are an attractive option for this
purpose, as they are rich in lignin and cellulose, which have many functional groups that
favor biosorption. In this context, the bark of Moringa oleifera Lam. has been considered a
promising adsorbent to remove pollutants from the environment [36].

Moringa oleifera Lam., originally from India, is a medium-sized plant that grows
in almost all types of soil, with greater development in tropical plains. Its seeds have
been widely used as a coagulant in the treatment of water for human consumption [37]. In
addition, previous studies have already shown that the bark of the plant has a high potential
for removing pollutants in aqueous samples, such as metals and organic compounds [38,39].

As these structures are located inside the adsorbent, their research and development
is limited by current experimental methods, which provide little information on the charac-
teristics of the activated carbon component. Therefore, current research is oriented towards
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the use of various analysis methods (mainly computational and physical–scientific or
chemical). Activated carbon is a porous carbonaceous material with continually expanding
applications in water treatment and desalination, wastewater treatment and air purification
due to its unique characteristics [40].

Activated carbon is a very diverse adsorbent material, including a high degree of
porosity and a high surface area, while up to 90% of it can be constituted by carbon. In
addition, the carbon structures contain the main functional groups responsible for the
ad-sorption of contaminants [41].

In recent years, there has been a growing interest in research on the use of biomass
as a precursor material and on conversion methods to produce useful materials. One of
the biomass conversion technologies is hydrothermal carbonization, which is a thermo-
chemical process used to produce hydrochar and other materials with high added
value [42–44]. Hydrochar is a carbonaceous material obtained from biomass subjected
to hydrothermal carbonization, which occurs through the reaction between the precur-
sor material and water in an autoclave, with temperatures between 150 and 260 ◦C and
self-generated pressures. The final product can be applied in several areas, including agri-
culture, due to its chemical and structural properties that favor the filtration and retention
of nutrients, the reduction in leaching and carbon fixation [45].

The objective of this work was to evaluate the adsorption capacity of the husks of
Moringa oleifera Lam. prepared by the hydrochar method, in comparison with commercial
activated carbon, for the removal of emerging pollutants present in contaminated waters,
in addition to verifying the costs associated with this technology.

2. Materials and Methods

The experiments were carried out at the Environmental Management, Control and
Preservation Laboratory at the Department of Chemical Engineering at the State University
of Maringá. The activated carbon used for comparison was donated by a company that
operates in the segment based in the city of Maringá in Paraná, Brazil.

2.1. Chemicals

To carry out the work, the following reagents were used: metformin with purity of
99% (Sigma-Aldrich®, Burlington, MA, USA), diuron with purity of 99% (Sigma-Aldrich®,
Burlington, MA, USA), methylene blue with purity of 99% (Neon), lead solution 99% (ACS)
and commercial activated charcoal from babassu husks (Bahia Carbon).

2.2. Preparation of Biosorbent

Initially, the Moringa oleifera Lam. husks were manually peeled and washed with
deionized water at 45 ◦C. Then, the pre-treated seeds were transferred to a 0.1 M nitric acid
solution for 1 h and dried in a micro-processed air oven (Digital Timer SX CR/42 Sterilifer,
São Caetano do Sul, Brazil) for 12 h. Finally, the material was placed in an oven (Jung
10.012) at 300 ◦C for 1 h [46]. After cooling, the material was ground and sieved to a size of
between 0.35 and 0.50 mm.

2.3. Preparation of Hydrochar

The process involved using agro-industrial residues from Moringa oleifera bark using
the hydrochar method in which a reactor (WT Accessories) was used.

Moringa oleifera Lam seeds were donated by the Federal University of Sergipe, in
Aracaju, Sergipe. Healthy seeds were selected and the husks were manually removed and
crushed in an industrial blender (Poli LS04MB, Skymsen, Brusque, Brazil). After separation,
the peels were washed with deionized water at a temperature of 60 ± 10 ◦C to remove
coarse impurities present and dried in a microprocessed oven with air circulation (Digital
Timer SX CR/42) at 105 ◦C for 12 h [46,47]. The adsorbent material is called crushed bark
(MOH).
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After this process, the material was homogenized and the hydrochars were produced
in a digital vertical autoclave with a residence time of 6 h at 100 ◦C and a pressure of 3 bar.
The MOH residue was used at a ratio of 1:100 (m/v) [48].

At the end of the period, already at room temperature, the hydrochars were separated
from the aqueous phase by filtration, washed with distilled water until a pH close to 6 was
reached and dried in an oven for 24 h at 105 ◦C. After that, the material was separated by
granulometry [49].

2.4. Characterization of Adsorbents

After preparing the MOH adsorbent and commercial activated carbon, several tech-
niques were used to characterize the adsorbents in terms of their textural, structural,
morphological and chemical composition. The analysis of the zeta potential used a particle
analyzer, DelsaTMNanoC (Beckman Coulter, Brea, CA, USA), using the ratio 1:1 (m/v) in
the range of pHs from 2 to 12, using solutions of HCl and NaOH 0.1M. Scanning Electron
Microscopy (SEM) was analyzed using a Field Emission Scanning Electron Microscope,
Quanta 250—FEG (FEI Company, Hillsboro, OR, USA). To carry out the analysis, the sam-
ples were coated with gold at a thickness of approximately 30 nm. N2 physiosorption was
performed (BET and BJH models). The samples had previously been dried in an oven for
24 h at 100 ◦C. Then, the samples were submitted to analysis of adsorption/desorption
isotherms recorded at the temperature of liquid nitrogen using the Nova 2000e equipment
(Quantachorme, Anton Paar, Graz, Autria). The samples had a pre-treatment at 120 ◦C for
6 h, in which they were left in a vacuum to remove all moisture and adsorbed species from
the surface of the material. Then, they were characterized by N2 adsorption/desorption
isotherms and Fourier transform infrared spectroscopy (FTIR) was used to identify the
functional groups present in the studied materials. The Fourier transform infrared spec-
troscopy technique was conducted using a Vertex 70v spectrophotometer (Bruker, Billerica,
MA, USA). To obtain the pellets, they were mixed in KBr at a ratio of 1:1000 (m/m), in the
spectral range of 4000 to 400 cm−1.

2.5. Kinetic and Equilibrium Study

Kinetic and equilibrium studies were carried out using batch tests separately for each
adsorbent, in which 0.03 g of MOH and commercial activated carbon were used in contact
with 30 mL of metformin, diuron, methylene and lead, all with a concentration of 30 mg L−1

using HPLC, in which their curves were prepared with the respective pure standards of
each solution; each contaminant was standardized at this concentration, so that all were
observed at the same concentration, minimizing the adsorption error that would have
been possible if the concentrations had been different for each of them. A stirring speed of
150 rpm, pH 7 and a controlled temperature of 25 ◦C were maintained. The time intervals
for withdrawing the aliquots of the analyzed samples were 5, 20, 30, 60, 120, 240, 360, 480,
600, 720, 900, 1080, 1260 and 1440 min, the time required for equilibrium to be reached.
The aliquots were filtered through cellulose acetate membranes (0.45 µm) and the final
concentrations of contaminants were determined to calculate the adsorption capacity; all
tests were performed in duplicate. The percentage of the removal of each contaminant was
calculated using Equation (1) as follows:

% removal =
Ci − C f

Ci
· 100% (1)

where Ci is the initial concentration and Cf is the final concentration, both in mg L−1.
With the final concentration of each sample, the adsorptive capacity (qe) in mg g−1

was calculated as shown in Equation (2):

qe =

(
Ci − C f

)
m

· V (2)
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where V is the volume of the triclosan solution (L) and m is the mass of the biosorbent
(g). To explain the kinetic models, classic models such as pseudo-first-order (PFO) and
pseudo-second-order (PSO) were employed.

2.6. Production Cost Analysis

Cost analysis was studied for both adsorbents to report all the expenses involved in
the production of the materials, that is, the financial outflows related to production were
analyzed. Thus, it was necessary to gather all the details of the expenses relating to the
production of the studied materials in order to report the final production cost of each
material.

3. Results and Discussion
3.1. Adsorbent Characterizations

Figure 1A,B show the zeta potential of each of the studied adsorbents.
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Figure 1. Zeta potential of (A) MOH and (B) activated carbon.

Note that Figure 1A,B show the values obtained for the zeta potential of both adsor-
bents at different pHs (2–12) [46]. It is observed that in Figure 1A, the isoelectric point
occurred close to pH 5.5, demonstrating that at a pH greater than 5.5 its charge is negative
and at a lower pH its charge is positive [47]. As for Figure 1B, the isoelectric point was
at pH 4; therefore, a pH lower than 4 has a positive charge and a pH greater than 4 has a
negative charge. And in both cases it is observed that the zeta potential was negative [48].
This means that the points used show an interaction between the studied contaminants
and their studied adsorbents.

Both samples underwent SEM analysis, in order to evaluate the morphology of the
studied materials, as shown in Figure 2A,B.
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It is observed that in Figure 2A, with 2000× magnitude, the MOH material has
cavities with defined and heterogeneous pores, favoring the adsorption of contaminants
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and confirming that the process used to produce the material is favorable for the adsorption
process; and in Figure 2B, with 2000× magnitude, there is a large number of pore cavities
and also heterogeneous pores that greatly facilitate the adsorption of contaminants and
allow greater use of the material [49,50].

A BET analysis of both materials was carried out in order to evaluate their porosity.
Because this specific area contributes to the adsorption of contaminants, Table 1 shows the
values obtained.

Table 1. BET analysis of the MOH and activated carbon.

MOH Activated Carbon

BET specific surface area (m2 g−1) 38.25 205.71
Average pore diameter (Å) 26.44 32.57

Total pore volume (cm3 g−1) 0.1293 0.4899
Micropore volume (cm3 g−1) 0.0996 0.4012
Mesopore volume (cm3 g−1) 0.0297 0.0887

Based on Table 1, the adsorbents studied have a relatively high area for the adsorption
process. According to IUPAC, porous materials can be classified as macropores, mesopores
and micropores. It is observed that both materials had a predominance of micropores; this
fact is important for the removal of contaminants that are often difficult to remove [51,52].

To determine the functional groups of the materials, FTIR analysis was performed for
the two adsorbents studied, as shown in Figure 3A,B.
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Figure 3. FTIR for (A) MOH and (B) activated carbon.

Note that in Figure 3A the MOH adsorbent material has a large and wide band of
3421–3329 cm−1, possibly indicating hydrogen bonding, a characteristic of organic mate-
rial [53]. The presence of the peak for the region of 2921 cm−1 demonstrates and determines
the presence of methylcellulose, due to the possibility of asymmetric stretching of the C-H
bond present in the CH2 group [54]. Note that in the performed spectrum it has a peak of
2809 cm−1, which refers to a symmetrical stretching of the C-H bond of the CH3 group. In
the region, the value of 1569 cm−1 is observed, with an increase in this relative area and
with the modification of the peak to the region of 1521 cm−1 [55]. This change is possibly
related to the stretching of the COO-bonds and also partly to the N-H deformation of the
amine groups, which may be secondary [56]. The peak region at 1072 cm−1 is characterized
by the C-O region, which includes the possible structures of lignin, cellulose and hemicellu-
lose, which make up all the analyzed material [57]. As for the FTIR of the activated carbon
(Figure 3B), an increase in intensity between 3540 and 3351 cm−1 is observed, characterizing
a typical (OH) absorption band, which is normally also associated with the presence of
hydrogen [58]. This absorption can be attributed to the predominant presence of the OH
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groups of phenols, since, in general, the significant presence of the (OH) of carboxylic
groups in AC is characterized by strong absorption, which extends up to 2892 cm−1 [59].
The increase in intensity between 1681 and 1593 cm−1 evidences the presence of C=O
carbonyl groups that exist in carboxylic acids, ketones and in cellulose itself [60]. The
presence of the band at approximately 1477 cm−1 can be attributed to vibrations of typical
aromatic rings in carbonaceous materials. The peak between 1068 and 1004 cm−1 can be
attributed to the stretching of the C-O bond corresponding to the vibrations of the phenolic
groups [61]. A lower intensity peak close to 673 cm−1 confirms the presence of ether and
lactone [62].

3.2. Kinetic and Equilibrium Study

The use of the natural pH of each sample was chosen so that there would not be any
kind of modification of the physical–chemical characteristics, which could alter the results.
The importance of kinetic and equilibrium studies for the adsorption process is essential to
understand the adsorption behavior of contaminants in relation to time, because in this
study the removal of the contaminant is reported in relation to the adsorbent studied, as
shown in Figures 4 and 5.
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In Figure 4, we show the kinetic studies and chemical balance of the four contaminants
used for the MOH, using the natural pH of each sample. The zeta potential reported that
the isoelectric charge was 5.5. In Figure 4A, the removal of the metformin is visualized. It
is observed that, in the initial moments of removal, significant removal occurred, possibly
demonstrating that there is a good interaction of the active sites with the metformin. As
the removal time passes, a slower removal is observed, since the active sites were probably
already saturated. Stability occurred in approximately 900 min, as, from that point on,
the equilibrium state of the reaction was characterized; that is, the active sites were fully
saturated and thus there was no interaction with the metformin, making it impossible for
new molecules to enter the cavities of the active site. The percentage of the removal was
93.54% with qe = 28.05 mg g−1. In Figure 4B, the removal of the contaminant diuron is
shown. It is observed that the contaminant also had a good interaction with the MOH.
In the initial moments, the removal occurred more slowly and, with the passage of time,
there was an interaction of the adsorbent with the contaminant. This fact can be explained
because diuron molecules are larger and possibly quickly saturated the cavities of the
active sites. Equilibrium occurred in 1200 min with a removal percentage of 84.56% with
qe = 25.36 mg g−1. Figure 4C shows the removal of the methylene blue dye, which had the
greatest interaction with the MOH. In the initial phase, there was a very expressive removal,
proving that the contaminant molecules quickly occupied the active sites of the material.
Over time, this interaction increased, reaching the equilibrium point at approximately
800 min and with a maximum removal of 99.13% with qe = 29.74 mg g−1. And in Figure 4D,
relating to the heavy metal lead, this contaminant had a high interaction with the studied
material. At the beginning of the removal process, it took place at a slower pace, since the
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difficulty of removing the contaminant is high. Over time, this interaction increased and
allowed the removal to take place, where it was verified that balance occurred in 700 min
and with a removal of 93.45% with qe = 28.04 mg g−1, proving that there was interaction
with the adsorbent. Briefly, the MOH, for the four contaminants studied, obtained a good
relationship and good removals. The PFO and PSO models for the MOH were determined
and are presented in Table 2.

Table 2. Kinetic models for biosorption by MOH.

Models Parameters Metformin Diuron Methylene Blue Lead

PFO

qe (mg g−1) 29.65 27.13 31.07 30.20
k1 (min−1) 0.008 0.013 0.009 0.015

R2 0.962 0.9703 0.991 0.957
χ2 0.189 0.234 0.218 0.245

PSO

qe (mg g−1) 25.17 21.22 30.78 27.45
k2 (g mg−1 min−1) 0.012 0.023 0.011 0.033

R2 0.907 0.921 0.934 0.893
χ2 0.267 0.328 0.437 0.578

Figure 5 demonstrates the removal of the same contaminants seen in Figure 4, but
with another adsorbent material, which in this case was activated carbon.

In Figure 5A, the removal of the metformin contaminant by the activated carbon is
observed. In this case, it is related to the high interaction of the material using the natural
pH of each sample. The zeta potential shows that the isoelectric charge was 4.0, and this
fact can also be explained with reference to Table 1. With the high number of cavities in
this studied material, the large number of pores quickly sequestered the metformin. It is
observed that balance occurred in approximately 600 min and with a removal of 97.05%
with qe = 29.5 mg g−1, proving that there is a high interaction between the adsorbent and
adsorbate. In Figure 5B, the activated carbon was used to remove the pesticide diuron,
which had a good interaction in the initial phase with high removal rates, as its molecules
are extensive and easy to remove initially. Over time, the diuron had its removal decreased
from its aqueous solution, and stability occurred in approximately in 500 min. Without it
having further significant variation in the removal percentage, it can be stated that there
was a state of equilibrium: the empty active sites were decreasing, which made it difficult
to adsorb the diuron molecules. After stability was achieved in the kinetic study, the
maximum removal percentage was 86.53% with qe = 25.90 mg g−1.

Figure 5C reports the use of the activated carbon to remove the methylene blue dye,
which is widely used in Brazil in textile industries for dyeing clothes, which consequently
generates a significant amount of effluent. It is observed that there are high rates of
removals in the initial phase, as there is an excellent interaction of the material with the
aqueous solution of the methylene blue, because the adsorbate molecule is considered
a macromolecule and with that high removals happen with the passage of time. With
time, the removal speed decreases because the cavities of the active sites become saturated,
making it difficult for new molecules to enter the adsorbent. The equilibrium study shows
that equilibrium occurred in approximately 300 min, that is, after that moment there
was no more interaction between the adsorbent and adsorbate; the removal reached the
value of 98.76% with qe = 29.61 mg g−1. In Figure 5D, the removal of the lead using the
activated carbon is shown. It is noted that in the initial moments there is also an interaction
between the adsorbent and adsorbate. With the passage of time, the adsorptive process
decreases, since the pores are saturated with the lead molecules, making it difficult to
remove the contaminant. Equilibrium occurs in approximately 900 min with no further
interaction between the adsorbent and adsorbate; the maximum removal of the contaminant
was 87.45% with qe = 26.4 mg g−1. In general, activated carbon is a good adsorbent for
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removing the four contaminants studied compared to MOH. The PFO and PSO models for
the active carbon were determined and are presented in Table 3.

Table 3. Kinetic models for biosorption by active carbon.

Models Parameters Metformin Diuron Methylene Blue Lead

PFO

qe (mg g−1) 32.34 27.76 32.10 27.86
k1 (min−1) 0.004 0.009 0.005 0.008

R2 0.973 0.981 0.994 0.975
χ2 0.109 0.156 0.153 0.147

PSO

qe (mg g−1) 30.72 24.55 28.83 23.67
k2 (g mg−1

min−1)
0.009 0.013 0.009 0.025

R2 0.942 0.954 0.962 0.913
χ2 0.203 0.293 0.374 0.278

3.3. Study Production Cost of Each Adsorbent

In Table 4, the production costs of each material used in this study are shown. The
costs are in the local currency of Brazil (BRL) and are presented below.

Table 4. Production costs of each material.

Activated Carbon
Production Cost (BRL/kg)

Activated carbon (commercial) 35.00
Total cost 35.00

MOH
Production Cost (BRL/kg)

Raw material (waste) 0.00
Water wash 1.25

Material drying 1.05
Crushing of the material 2.00

Hydrothermal reactor processing 3.25
Material drying 1.05

Granulometry separation 0.80
Total cost 9.4

It is observed that the commercial activated carbon has a final production price in
kg of BRL 35.00. The process is more expensive when compared to that required for the
MOH, because in the process the activation of the material is carried out, requiring a large
amount of reagent to carry out the process. But on the other hand, the material has a high
surface area, as seen in Table 1. In comparison, the MOH is a material developed from
agro-industrial waste through the hydrochar process, in which only water and pressure are
used in a given time [63]. The production cost in kg was BRL 9.4, approximately 3.72 times
lower than that of the activated carbon. As seen in Table 1, the material does not have a
high specific area compared to the activated carbon. However, its micropore volumes are
high and, therefore, the studied material has a good interaction with many contaminants,
which, consequently, can be removed. In turn, the MOH material was determined to have
low-cost production, profitability, easy production and interactions with contaminants that
need to be removed from the environment [64].

4. Conclusions

This study evaluated the production of an adsorbent from agro-industrial waste and
compared it with a commercial adsorbent, activated carbon. The MOH characterization
demonstrated that the material was a good alternative for large-scale production in the
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future. The study was carried out to remove emerging contaminants, namely, metformin,
diuron, methylene blue and lead, and showed removal rates ranging from 84.56 to 99.13%.
And in relation to the cost of producing the material, this was another important point
to evaluate, since the residue is completely discarded without commercial purposes and
the hydrochar production process is much cheaper than that for activated carbon, around
3.72 times lower. In addition, with high values of the total volume of mesopores, the
material becomes efficient, low-cost and easy to obtain, presenting a good potential as an
adsorbent and being suitable for use on a commercial scale in the future for water and
wastewater treatment.
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64. Bahşi, N.; Çetin, E. Determining of Agricultural Credit Impact on Agricultural Production Value in Turkey. Cienc. Rural 2020, 50,

e20200003. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5004/dwt.2022.28969
https://doi.org/10.1080/09593330.2019.1653381
https://doi.org/10.1080/09593330.2018.1508252
https://www.ncbi.nlm.nih.gov/pubmed/30084313
https://doi.org/10.1016/j.scitotenv.2020.143679
https://doi.org/10.1016/j.rser.2018.03.071
https://doi.org/10.1016/j.watres.2021.117186
https://doi.org/10.1016/j.jconrel.2016.06.017
https://www.ncbi.nlm.nih.gov/pubmed/27297779
https://doi.org/10.1007/s10450-016-9767-z
https://doi.org/10.1186/s13104-022-06039-7
https://doi.org/10.1016/j.heliyon.2020.e03546
https://doi.org/10.17159/0379-4350/2019/v72a34
https://doi.org/10.1016/j.jaap.2011.12.020
https://doi.org/10.1002/cjce.22756
https://doi.org/10.18860/neu.v12i2.8369
https://doi.org/10.1016/j.sjbs.2022.103284
https://doi.org/10.46488/NEPT.2021.v20i02.012
https://doi.org/10.1007/s13201-022-01723-2
https://doi.org/10.3390/nano12030298
https://doi.org/10.1016/j.toxrep.2023.01.011
https://doi.org/10.1016/j.jmrt.2020.03.041
https://doi.org/10.1111/padm.12718
https://doi.org/10.1590/0103-8478cr20200003

	Introduction 
	Materials and Methods 
	Chemicals 
	Preparation of Biosorbent 
	Preparation of Hydrochar 
	Characterization of Adsorbents 
	Kinetic and Equilibrium Study 
	Production Cost Analysis 

	Results and Discussion 
	Adsorbent Characterizations 
	Kinetic and Equilibrium Study 
	Study Production Cost of Each Adsorbent 

	Conclusions 
	References

