
Citation: Miadonye, A.; Amadu, M.

Theoretical Interpretation of pH and

Salinity Effect on Oil-in-Water

Emulsion Stability Based on Interfacial

Chemistry and Implications for

Produced Water Demulsification.

Processes 2023, 11, 2470. https://

doi.org/10.3390/pr11082470

Academic Editor: Urszula

Bazylinska

Received: 6 July 2023

Revised: 28 July 2023

Accepted: 11 August 2023

Published: 17 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Theoretical Interpretation of pH and Salinity Effect on
Oil-in-Water Emulsion Stability Based on Interfacial Chemistry
and Implications for Produced Water Demulsification
Adango Miadonye and Mumuni Amadu *

School of Science and Technology, Cape Breton University, Sydney, NS B1M 1A2, Canada;
adango_miadonye@cbu.ca
* Correspondence: mumuniamadu@hotmail.com

Abstract: The petroleum industry produces thousands of barrels of oilfield waters from the initial
stage driven by primary production mechanisms to the tertiary stage. These produced waters
contain measurable amounts of oil-in-water emulsions, the exact amounts being determined by
the chemistry of the crude oil. To meet strict environmental regulations governing the disposal
of such produced waters, demulsification to regulatory permissible levels is required. Within the
electric double layer theory, coupled with the analytical solutions to the Poisson–Boltzmann Equation,
continuum electrostatics approaches can be used to describe the stability and electrokinetic properties
of emulsions. In the literature, much of the surface charge density and zeta potential relationship to
emulsion stability has been confined to systems with less salinity. In this paper, we have exploited
the theoretical foundations of the electric double layer theory to carry out theoretical evaluations of
emulsion salinity based on zeta potential and surface charge density calculations. Most importantly,
our approaches have enabled us to extend such theoretical calculations to systems of the higher
salinity characteristic of oil-in-water emulsions found in oilfield-produced waters, based on crude oil
samples from the literature with varying surface chemistry. Moreover, based on the definition of acid
crude oils, our choice of samples represents two distinct classes of crude oils. This approach enabled
us to evaluate the stability of emulsions associated with these produced oilfield waters in addition to
predicting the potential of demulsification using demulsifiers. Given that the salinity range of this
study is that encountered with the vast majority of produced oilfield waters, the findings from our
theoretical predictions are perfect guides as far as emulsion stability is concerned.

Keywords: surface charge density; oil-in-water emulsion; salinity; degree of ionization; asphaltenes;
produced water

1. Introduction

Conventional sources of crude oil have fueled sustained global economic growth
since the discovery of crude oil in Pennsylvania in 1859 [1]. Accordingly, the exponential
growth in global demand for several decades has caused significant decline in conventional
deposits [2–5]. To sustain the vulnerable global supply chain, the development of uncon-
ventional oil resources consisting of heavy crude oil has for decades been considered a
technically and economically viable option [6,7]. While crude oil production has sustained
global economic growth, its production comes with measurable environmental footprints
in several aspects, including the pollution of both surface and underground water bodies
due to prevalent irresponsible disposal of oilfield-produced waters [8–10]. Consequently,
the cleanup of produced water before disposal is endorsed in the Environmental Protection
Agency (EPA) Act [11,12], and elsewhere [13,14].

An emulsion is a thermodynamically unstable [15–17] dispersion of one liquid phase
in another continuous liquid phase that can arise through a mechanically induced pro-
cess, such as the shear mixing/homogenization of the dispersed phase [18]. Therefore,
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considering the mechanically induced multiphase flow of oil, water, and gas phases in the
production tubing, the formation of oil-in-water and water-in-oil emulsions is possible [19],
as is possible in transportation pipelines [20,21]. Such emulsions are stabilized by different
processes [22], notable among them being the electrostatic stabilization processes [23–26].

Oil-in-water (O/W) emulsions are typically colloidal systems, consisting of oil droplets
dispersed in the continuous aqueous media of produced oilfield brines, and stabilized by
natural surfactant molecules (asphaltene), with particle sizes having mean diameters in
the range of 20–500 nm [27]. For large particles, the electrostatic forces in colloidal systems
are comparable to gravity and van der Waals forces, so it (gravity) is considered, while
for smaller particles, it is not [28]. Consequently, for such nanometric dimensions of oil
droplets, the excessively higher surface-to-volume ratio implies that electrostatic force
interactions, which are well quantified within the framework of continuum electrostatics,
will govern emulsion stability. At a given salinity of produced water, coupled with the
amphoteric nature of surface ionizable asphaltene, the formation of the electric double layer
is inherent [29]. Considering the fundamental structure of the electric double layer, the pH-
and salinity-dependent electrokinetic behavior of oil droplets in such emulsion systems
is governed by the potential at the surface of shear between the charged surface and the
aqueous solution [30]. Therefore, the zeta potential measurement using the electrophoretic
mobility of oil droplets in such systems [31] has been used as a theoretically and experi-
mentally acceptable metric for quantifying emulsion stability, where stronger electrostatic
repulsive forces inhibit coalescence and demulsification. For instance, asphalt emulsion
is the water-continuous dispersion of fine asphaltic cement with particle diameters in
the range 1–10 µm [32]. Highway pavement preservation works employ such emulsions
prepared from asphalt cement due to their lower application temperatures and versatility
for a broad range of pavement restoration applications [33]. In the food industry, emulsions
have been used to reduce transportation costs between production and the sales points,
where zeta potential has been used as a guide to ensuring stability [34].

In addressing the problem of emulsion stability, experimental measurement has proven
to be the preferred norm [34–37]. Considering the direct relationship between zeta potential
and surface charge density, theoretical models have been developed for each of them [38],
and for the relationship between them [39]. These theoretical relationships draw on the
fundamental tenets of the electric double layer theory, where salinity and its dependent
parameters, such as the Debye length, dielectric permittivity, and the double layer capaci-
tance, are well integrated. However, it turns out that while these models are sufficiently
robust, the vast literature resources on emulsion stability have always laid emphasis on
experimental designs based on theoretical foundations and a most recent determination
based on Molecular Dynamics simulation (MD) [40]. What is more, much of the litera-
ture is based on a low salinity regime, far lower than those of produced oilfield brines.
Therefore, given knowledge of produced oilfield brines and the electrokinetic parameters
of asphaltenes in produced oils, theoretical models of surface charge density and zeta
potential are attractive tools for the present paper, and its success will motivate researchers
in addition to underscoring the uniqueness of the electric double layer theory.

Heavy oil deposits have high concentrations of heteroatom components in the form of
high-molecular-weight asphaltenes [41] and organosulfur components [42]. Asphaltenes
have OH and carboxyl [43] and amine groups [44] that render them amphoteric in nature,
being able to develop electrostatic charges with varying pH, due to the existence of an
imminent point of zero charge pH [45]. Therefore, there is the potential for the stabilization
of oil-in-water emulsion due to the electrostatic repulsion between dispersed oil phases
that can be measured based on the zeta potential measurement technique [46]. Under
such conditions, the number density of the basic and acidic ionizable components of crude
oils (heteroatom components) will control the surface charge density at a given pH, and
so will the emulsion droplet sizes, implying that pH and droplet size distribution are
critical to determining the coalescence potential and emulsion stability [47–50]. Moreover,
Mehta and Kaur [51] believe that from the thermodynamic approach, the stability or
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instability of the emulsion is related to emulsion droplet size which depends on the surface
tension/surface charge density of droplets [52]. Recently, Bonto et al. [53] proposed a new
surface complexation model of the oil–water interface, where the importance of basic and
acidic groups of crude oils was emphasized. Their model integrates the chemistry of crude
oils by assuming that surface sites are linearly dependent on the total acid number (TAN)
and total basic number (TBN). In the literature, Nenningsland et al. [54] have researched the
effect of the basic molecule components of crude oil on the water–oil interface, reporting
changes in the interfacial tension (IFT) due to protonation below pH 5. However, the
decrease was less than that at a high pH favorable for the dissociation of the carboxylic
acids group, implying a lower surface affinity of the basic group than the naphthenic
acid, OH fraction [54,55]. Ameri et al. [56] have also demonstrated the effect of salinity
on oil–brine interfacial tension and its consequences on asphaltene stability, with the
most recent experimental demonstration of the salinity effect of asphaltene precipitation
being carried out [57]. Recently, a new model of the zeta potential of asphaltene was
presented that integrates the effect of the number density of basic, acidic, and OH groups
of asphaltenes [43]. The fundamental tenet of the model is that the ionizable (in aqueous
solution) carboxylic and hydroxyl groups present on the asphaltene molecule lead to their
charging. For cases of systems with added salt, there was a quantitative match of predicted
results with experimental results. In all the aspects of asphaltenes studied above, the
degree of ionization of the basic and acidic functional groups will play a major role on zeta
potential, surface charge density, and emulsion stability. All the mentioned physicochemical
properties will be further controlled by salinity and pH. However, to date, no literature has
been specifically devoted to the effect of salinity and pH on the extent of ionization of the
acidic and basic functional groups of asphaltene, which controls asphaltene–brine interfacial
chemistry. Moreover, the occurrences of these acidic and basic groups on asphaltenes have
been demonstrated spectroscopically [56]. The theoretical relationship between the degree
of ionization of a surface ionizable group and the scaled surface potential exists in the
literature [58], and the surface potential due to the ionized group can be theoretically
linked to the pH of the aqueous phase, using the Nernst equation [59]. Bonto at al. [53]
have published a study report that contains data on the surface concentrations of acidic
and basic groups of asphaltenes from different crude oils. Herein, we exploit the above
theoretical developments to study the effect of oilfield brine salinity and pH on the degree
of ionization of the basic and acidic functional groups of asphaltenes. We also used the
fundamental relationship between surface charge density and surface potential within the
electric double layer theory to derive the differential capacitance, and we showed how the
correlation between the product of potential drop and capacitance makes it possible to
calculate the electrokinetic surface charge density as the basis for capacitance calculation.
We further developed sound theoretical models based on interfacial chemistry, utilizing
the concepts of the electric double layer and surface complexation models as part of the
theoretical backgrounds for the study. Based on our theoretical models and that of the zeta
potential dependence on pH and surface charge density, we have discussed the emulsion
stability trends of different crude oils based on the composition of heteroatomic groups. The
uniqueness of our research work derives partly from the extension of the electric double
layer theory on surface charge density and zeta potential beyond the salinity ranges widely
encountered in the literature. Finally, we have discussed the implications for produced
oilfield water emulsion destabilization for oilfield wastewater treatments.

2. Backgrounds

In the literature, different models of asphaltenes have been proposed [60–63]. In
all cases of published literature, asphaltenes have been acknowledged to be among the
heteroatoms consisting of several fused benzene rings with polar functional groups [64],
with minor concentrations of trace metals [65,66]. However, the dominant roles of the
polar functional groups, namely the acidic [67] and basic ones [56], have been revealed by
spectroscopic studies, while the basic nature of asphaltenes in general has been experimen-
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tally justified [68]. Figure 1 shows model asphaltenes containing acidic and basic nitrogen
groups in addition to the resin and naphthenic acid components of crude oil [69].
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Figure 1. Examples of molecular structure: (a) asphaltene (adapted from a proposition for 51 ◦C
residue of Venezuelan crude, INTEVEP SA Tech. Rept.; (b) resin (Athabasca tar sand bitumen);
(c) naphthenic acid [69].

Naphthenic acids (NAs) generally refer to a family of cycloaliphatic carboxylic acids
found in crude oils with an empirical formula of CnH2n+zO2, n being the number of
carbon and z is zero or the negative even integer representing the hydrogen deficiency
(unsaturated degree) of the acid [70]. Consequently, the amphoteric nature of the OH
group of asphaltene and naphthenic acid, and that associated with the nitrogen basic group
of asphaltene imply the deprotonation and protonation of the OH and nitrogen groups,
respectively, at pH conditions characteristic of oilfield-produced waters. Therefore, the
polar and acidic groups of asphaltenes play a more vital role regarding interfacial activity
and solubility [71]. At high and low pH, the acidic and basic groups have been shown
to be increasingly charged [72], and since these surface charges will reflect the degree of
functional group ionizations, salinity, temperature, and surface charge density, we will
devote the next section to the integration of published theoretical concepts in the literature
to the development of a multi-parameter dependent equation that will link the degree
of ionization to the relevant physicochemical parameters of interest. Accordingly, the
following sections will also consider the fundamental concepts of surface charge and zeta
potential, which are intimately linked to interfacial properties of the oil-in-water emulsion.

3. Background Theories
3.1. Degree of Ionization

The ionization of surface functional groups is the principal cause of surface complex-
ation in colloidal systems and metal ion coordination to them [73] as well as adsorption
phenomena. The extent to which a surface functional group will ionize in its aqueous
environment is the degree of ionization [58,74]. Generally, oil-in-water emulsions contain,
presumably, oil particles dispersed in a continuous wastewater phase [75] with particle size
distributions that obey known statistical distribution functions [76]. Therefore, the surface
of oil bubbles/particles will contain ionizable acidic and polar groups with densities that
can be described by the following equations [77]:

NS−COOH = 0.602 ∗ 106 TAN
1000aoil MWKOH

(1)

NS−NH = 0.602 ∗ 106 TBN
1000aoil MWKOH

(2)
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In Equations (1) and (2), NS−COOH is the number density of acidic functional groups on
the crude oil surface [m−2], NS−NH is the number density of basic functional groups [m−2],
and aoil is the specific surface area of oil [m2g−1]; TAN and TBN are the total acid and
total base numbers, respectively, and MWKOH is the molecular weight of the potassium
hydroxide used in the determination.

The following Figure 2 shows the typical bubble/particle size distribution of oil-in-
water emulsion [78].
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From Figure 2, an emulsion with a narrow bubble size distribution that shows a pre-
dominant frequency can be used to obtain an idea about the relative importance of the sur-
face function group in emulsion stability. Thus, the following equation can be written for the
total number of sites of acidic and basic groups on crude oil for the oil-in-water emulsion:

NS−TCOOH = π
4πR3

pred

3

[
0.602 ∗ 106 TAN

1000aoil MWKOH

]
(3)

NS−TNH = π
4πR3

pred

3

[
0.602 ∗ 106 TBN

1000aoil MWKOH

]
(4)

In Equations (3) and (4), R3
pred is the radius of the most frequently encountered bubble [m].

Asphaltenes generally occur in nature as a mixture of molecules of different architec-
tures, characterized by the presence of a polycyclic aromatic core, aliphatic side groups,
and, frequently, different types of heteroatoms [79]. The heteroatoms may constitute
different functional groups that are continually being elucidated through methods such
as FT-ICR MS [80]. In general, the main heteroatom functional groups are as follows:
S: thiophene, sulfidic, sulfoxide; N: pyrrolic, pyridine, quinoline; and O: hydroxyl, car-
bonyl, carboxyl [81].

Considering an amphoteric oil surface with pH-dependent ionizable acidic and basic
groups [53], and following Nagy and Kónya [82], the following ionization reactions for the
acidic and basic groups of crude oil can be written as follows:

≡ COOH →≡ COO−1 + H+ (5)

Kint
COO−1 =

[
≡ COO−1

]
[H+]

[≡ COOH]
exp(−Fψ0/RT) (6)
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≡ NH + H+ →≡ NH+
2 (7)

Kint
NH+

2
=

[
≡ NH+

2
]

[≡ NH][H+]exp(Fψ0/RT)
(8)

In Equation (5) through Equation (8), ≡ COOH is the crude oil surface acidic func-
tional group concentration [molm−2], ≡ COO−1 is the deprotonated surface basic group
concentration [molm−2],

[
≡ COO−1

]
is the concentration of deprotonated surface group

concentration [molm−2], [H+] is the hydrogen ion concentration [M], ≡ NH is the sur-
face basic group concentration [molm−2],

[
≡ NH+

2
]

is the surface concentration of the
protonated surface group [molm−2], F is the Faraday constant [Cmol−1], ψ0 is the surface
potential due to surface charge [V], R is the universal gas constant [J/K], T is the thermo-
dynamic temperature, Kint

COO−1 is the intrinsic ionization constant for reaction 5 [M], and

Kint
NH+

2
is the intrinsic ionization constant for reaction 7 [M].

In this paper, we have considered the carboxyl group as the predominant ionizable
group in crude oil due to its presence in naphthenic acid, resins, and asphaltenes as has
been acknowledged elsewhere in relation to their effect on interfacial tension [83,84], their
relationship to produced water [85], and their connection to the acidity of crude oil [86].

At a given pH and salinity of produced wastewater, the degree of ionization of the
surface acidic and basic groups, which is the fraction that is ionized is given as follows [87]:

α = 0.5− 1(
1 + 10z(pH−pK)2.7zys

) (9)

In Equation (9), α is the degree of ionization of ionizable groups [-], pH is the negative
logarithm to base 10 of the hydrogen ion concentration of produced water [-], pK is the
logarithm to base 10 of the ionization constant of the surface ionizable group, z is the charge
(negative for the acidic site and positive for the basic site), and ys is the scaled potential
defined as follows [88]:

ys =
eψ0

TkB
(10)

In the above equation, kB is the Boltzmann constant [J/K] and e is the electronic charge [C].
Therefore, the total ionized acidic and basic sites can be obtained from Equations (3) and (4)

as follows:

NS−TCOOH−ion = απ
4πR3

pred

3

[
π

4πR3
pred

3

[
0.602 ∗ 106 TAN

1000aoil MWKOH

]]
(11)

NS−TNH−ion = απ
4πR3

pred

3

[
π

4πR3
pred

3

[
0.602 ∗ 106 TBN

1000aoil MWKOH

]]
(12)

3.2. Electric Double Layer Development in Oil-in-Water Emulsion Systems

Equations (11) and (12) imply an interfacial charge at the oil–water interface. The free
energy of the electric double layer is negative [89], so it develops spontaneously, where
the surface ionization of the ionizable groups on a colloidal particle causes the surface
adsorption of oppositely charged ions from the solution.

The Surface Complexation Model in geochemistry is a general concept considering
the interfacial equilibrium caused by the specific reactions of bulk species with active
surface groups [90]. In oil-in-water emulsion systems, oil is in contact with produced
wastewater (brine) and the implication for pH and salinity-dependent surface charge
density given by Equation (11) is that the adsorption of the solution ions onto variably
charged and dispersed crude oil particles will be thermodynamically feasible, resulting in
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surface complexation reactions. Therefore, there will be ionic interactions at the oil–water
interface [91]. Assuming a predominantly sodium chloride brine for oilfield waters [92],
the following equations describe the corresponding surface complexation reactions:

≡ COO−1 + Na+ →≡ COO−1Na+ (13)

Kabs
Na+ ≡

[
≡ COO−1Na+

]
[
≡ COO−1

][
Na+

] (14)

≡ NH+
2 + Cl− →≡ NH+

2 Cl− (15)

Kabs
Cl− ≡

[
NH+

2 Cl−
][

≡ NH+
2
][

Cl−
] (16)

In Equation (21) through Equation (24), Kabs
Na+ and Kabs

Cl−
are adsorption constants for

sodium and chloride ions, respectively [93], Na+ is the sodium ion, Cl− is the chloride ion, and[
COO−1Na+

]
and

[
NH+

2 Cl−
]

are concentrations of the respective surface species [molm−2].
The surface charge density (charge per surface area) is linked to the surface concentra-

tions of corresponding ionic species (the amount adsorbed at the interface per surface area).
Assuming an acidic- and basic-species-dominated oil–water interface with a predominantly
sodium chloride brine, the surface charge density is given as follows [90]:

σ = F
[
Γ
(
≡ NH+

2
)
+ Γ

(
≡ NH+

2 Cl+
)
−
(
≡ COO−1Na+

)
− Γ

(
≡ COO−1

)]
(17a)

In Equation (17a), σ is surface charge density [Cm2], F is the Faraday constant [Cmol1],
≡ NH+

2 is a surface protonated species [molm−2], ≡ NH+
2 Cl+ and ≡ COO−1Na+ are

surface complexes [molm−2], and ≡ COO−1 is a surface deprotonated species [molm−2].
For the acidic-group-dominated crude oil–brine interface, Equation (17a) reduces to

the following:

σ = F
[
Γ
(
≡ NH+

2 Cl+
)
−
(
≡ COO−1Na+

)
− Γ

(
≡ COO−1

)]
(17b)

Therefore, to account for the effect of salinity on surface charge density due to surface
complexation reactions, models of surface charge density exist in the thermodynamic
literature [88,94,95]. In this regard, if the distribution of the ionic charge in solution is
described by the Poisson–Boltzmann equation (PB), then the surface charge density satisfies
the Grahame equation as described by Behrens and Grier [95]:

σ(ψ0) =
2εrε0K

βe
sinh

(
βe
2

ψ0

)
(18a)

In Equation (18a), σ is the surface charge density [Cm−2], εr is the relative permittivity
of the aqueous phase [-], ε0 is the permittivity of space [Fm−1], and K is the inverse of the
Debye screening length [m−1].

Similar to Equation (18a), the surface charge density at the particle surface is given
as follows:

σ(ψ0) = (8εrε0cNAkBT)0.5sinh
(

βe
2

ψ0

)
(18b)

In Equation (18b), c is the bulk ion concentration [molm−3], NA is the Boltzmann
constant [JK−1], β is the reciprocal of the Boltzmann thermal energy [J−1K], and e is the
electronic charge [C].
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Equation (18a) gives the effective surface charge density due to the surface complexa-
tion effect resulting from the electrolytes in solution, and it represents the electrokinetic
surface charge density as opposed to the surface charge density.

Consequently, the concentration of surface species responsible for the bare surface
charge density due solely to the pH-dependent ionization of acid and basic groups can be
given by the following equations:

NS−COOH−ion = α

[[
0.602 ∗ 106 TAN

1000aoil MWKOH

]]
(19)

NS−NH−ion = α

[[
0.602 ∗ 106 TBN

1000aoil MWKOH

]]
(20)

The substitution of the expression for the ionization degree gives the following:

NS−COOH−ion =

[
0.5− 1(

1 + 10z(pH−pK)2.7zys
)][[0.602 ∗ 106 TAN

1000aoil MWKOH

]]
(21a)

NS−NH−ion =

[
0.5− 1(

1 + 10z(pH−pK)2.7zys
)][[0.602 ∗ 106 TBN

1000aoil MWKOH

]]
(21b)

In Equations (21a) and (21b), NS−COOH−ion and NS−NH−ion are the surface concentra-
tions of the ionized acidic and basic groups, respectively, at a given pH of brine/produced
oilfield water. Accordingly, the bare surface charge density due to the acidic and basic sites
can be written as follows:

NS−COOH−ion = e

[
0.5− 1(

1 + 10z(pH−pK)2.7zys
)][[0.602 ∗ 106 TAN

1000aoil MWKOH

]]
(22a)

NS−NH−ion = e

[
0.5− 1(

1 + 10z(pH−pK)2.7zys
)][[0.602 ∗ 106 TBN

1000aoil MWKOH

]]
(22b)

In the above equations, e is the electronic charge [C].
Equations (22a) and (22b) highlight the critical role that the chemistry of crude oil

plays due to the ionization of the surface acidic and basic groups, given the TAN and TBN,
which are the global characterization parameters for crude oils.

3.3. Zeta Potential Model (Define Zeta Potential)

In the electric double layer structure, the zeta potential is the potential at the shear
plane [96], and it can be obtained electrokinetically. Thus, using the measurement of zeta
potential vs. pH, and determining the pH at which the value is zero, gives the isoelectric
point of the solid surface. Behrens and Grier [95] developed the following model for
calculating the zeta potential due to surface charge density [95]:

(ζ) =
kT
e

ln
(
−σ

eΓ + σ

)
+

ln(10)
e/kBT

(pK− pH)− σ

C
(23)

In Equation (23), ζ is the zeta potential [V], Γ is the surface concentration [m−1],
C is the differential capacitance [Fm−1], pK is the logarithm to base 10 of the dissociation
constant of the surface acidic group, Γ is the surface concentration of the acidic group [m−1],
and kB is the Boltzmann constant [JK−1].

The capacity of the electric double layer to store energy is related to the differential
capacitance, and it is given by the free energy stored in the system after charging. On a per-
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unit-area basis, the energy density can be calculated by the reversible work of charging [97].
The differential capacitance is defined as the derivative of the surface charge density with
respect to the surface potential difference. It is given as follows [98]:

C =
dσ(ψ0)

d(ψ0)
(24)

In the above equation, ψ0 is the surface potential [V].
Based on Equation (18), the result of Equation (24) can be written in another form as

follows [99]:

C =
dσ(ψ0)

d(ψ0)
=
(

2cz2F2εrε0/RT
)0.5

cosh
(

zFψ0

2RT

)
(25)

In Equation (25), c is the concentration [molm−3], z is the ion valence, εr is the relative
permittivity [-], ε0 is the permittivity of free space [Fm−1], R is the universal gas constant
[JK−1], T is the absolute temperature, and F is the Faraday constant [Cmol−1].

4. Relevance of Theoretical Models to Oil–Water Interfacial Chemistry and
Emulsion Stability

The detailed background and theoretical developments of Section 3 can be exploited
for the further interpretation of the electrostatics of the oil–water interface in oil-in-water
emulsion systems. The following sections will be devoted to that.

4.1. Salinity- and pH-Dependent Surface Charge Density

To obtain a theoretical plot of the effective surface charge density at the oil–water
interface for oil-in-water emulsion systems, three fundamental parameters are required.
They are the point of zero charge pH of an oil surface, the number density of ionic species
in brine in contact with the oil phase, and the pH of brine. The number density, n [m−3], in
Equation (15) is calculated as follows:

n = INA (26)

where I is the ionic strength [100] [M] and NA is Avogadro’s number [M−1]

I = 0.5∑n
1 ciz2 (27)

In this Equation (27), ∑n
1 ci is the concentration of a species i [M], and z is the charge

on the ionic species and the summation is taken over all ionic species.
A model of surface potential based on the Gouy–Chapman model [101] exists in the

literature, but we will use the surface potential variation with the aqueous pH as given by
the Nernst equation as follows [102]:

ψ0 =
2.303kBT

e
(

pHpzc − pH
)

(28)

In Equation (28), pHpzc is the point of zero charge pH of the crude oil surface [-] and
pH is the negative logarithm to base 10 of the hydrogen ion concentration.

Hence the differential capacitance equation becomes the following:

C =
dσ(ψ0)

d(ψ0)
=
(

2cz2F2εrε0/RT
)0.5

cosh
(

zF
2RT

2.303kBT
e

(
pHpzc − pH

))
(29)

The Debye length is salinity-dependent. Hence, the surface charge density equation
(Equation (18)) becomes the following:

σ(ψ0) =
2εε0K

βe
sinh

(
βe
2

2.303kBT
e

(
pHpzc − pH

))
(30a)
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Accordingly, from Equation (18b) the following can be written:

σ(ψ0) = (8εrε0cNAkBT)0.5sinh
(

βe
2

ψ0

)
(30b)

Equation (30) gives the effective surface charge density due to the surface complexation
effect resulting from the electrolytes in solution.

4.2. pH-Dependent Degree of Ionization of Surface Ionizable Groups on Oil

Equations (9) and (10) together with data on the pK of the surface ionizable groups
provide the theoretical basis for calculating the pH dependence of the degree of ionization
at the oil–water interface. The relationship between surface charge density and surface
potential is given as follows [103]:

eψ0

kBT
= σ

√
2π

εnkBT
(31)

In the above equation, n is the number density of ions in solution [m−3].
From Equation (10), the dimensionless potential gives the following:

ys =
eψ0

kBT
= σ

√
2π

εnkBT
(32)

Thus, the degree of ionization Equation (9) can be written as follows:

α = 0.5− 1(
1 + 10z(pH−pK)2.7

z(σ
√

2π
εnkBT )

) (33)

Based on Equations (9) and (33), the degree of ionization at a given salinity deter-
mined by the number density n (Equation (26)) of the electrolytes and temperature can
be calculated.

5. Methodologies
Theoretical Calculations

To theoretically interpret the pH and salinity effect on oil-in-water emulsion stability
based on interfacial chemistry, and the implications for produced water demulsification, the-
oretical calculations based on Equations (26), (27), (29), (30a), (30b), and (33) will be required
together with relevant data from literature sources. In this regard, while Equation (29) gives
an explicit relationship for calculating capacitance that can be plugged into Equation (23)
for zeta potential calculation, calculating the effective or electrokinetic charge density based
on Equation (30a) and using the result in Equation (30b) for zeta potential calculation is
attractive from the point of view convenience, given the amount of work involved in the
former alternative. However, the utility of Equation (29) in this paper is highlighted by its
direct relationship to zeta potential. The research work of Bonto et al. [53] contains data on
the isoelectric points of different crude oils. Table 1 sums up the required data.

Assuming a salinity range of 12 to 180 parts per thousand [104] for produced oilfield
waters, Table 2 is valid using Equations (26) and (27).

Column 5 of Table 2 contains permittivity data extracted from the graph of Gavish
and Keith [105]. Additional data regarding the pKa value for the dissociation of acidic
group were taken from the research work of Bonto et al. [53]. The following Table 2 gives
the details.
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Table 1. Isoelectric points of different crude oils (Bonto et al. [53]).

Crude Oil Isoelectric Point

Moutray Crude 3.80

Leduc Crude 4.35

ST-86—1 Crude 3.20

Crude Oil A 4.00

Crude Oil B 4.20

Crude Oil C 4.40

Table 2. Salinity, permittivity, and number density of a sodium-chloride-dominated oilfield-produced
brine.

Sodium-Chloride-Dominated
Salinity [ppt]

Molar Concentration of
Ions [M] Ionic Strength [M] Number Density

[m3]
Permittivity

[Fm−1]

12 0.21 0.205339 1.27721 78.00

30 0.51 0.513347 3.19302 75.00

60 1.03 1.026694 6.38604 70.00

80 1.37 1.368925 8.51472 68.00

100 1.71 1.711157 1.06434 62.00

180 3.08 3.080082 1.91581 60.00

Based on data from Tables 1–3, and the application of Equations (26), (27), (29), (30a),
(30b) and (33), plots for the typical pH range (4.7–7.5) [106] of produced oilfield wa-
ter have been generated in relation to the degree of ionization, surface charge density,
and zeta potential, and the results will be discussed in the appropriate sections. The
values of physical constants used in the calculations were as follows [107]: electronic
charge (1.6 × 10−19 C), Avogadro’s number (6.02 × 10−23 mol−1), the Boltzmann constant
(1.38 × 10−23 JK−1), Faraday’s constant (96,485 Cmol−1), and the permittivity of vacuum
(8.85 × 10−12 Fm−1 [108]. The number density of the carboxyl group of Moutray Oil
was taken from the research work of Buckley et al. [109]. Calculations were based on a
temperature of 294 K, to reflect that of produced oilfield water in the ambient environment.

Table 3. pKa values for the dissociation of acidic groups on 3 crude oils (Bonto et al.) [53].

≡COOH→≡COO−1+H+ Crude Oil A Crude Oil B Crude Oil C

−4.75 −4.62 −4.65 −4.8

6. Results and Discussion

The electrokinetic properties of crude oil draw on surface ionizable groups, namely
the carboxyl and basic or amine group. The carboxyl group comes partly from naphthenic
acid [110] and partly from asphaltenes, while the basic group comes from heteroatomic
nitrogen groups. Therefore, any characterization of crude oil carboxyl groups combines the
two sources. However, the basic nitrogen groups become protonated at low pH [111,112]
and neutral at high pH. Considering the imminent evolution of carbon dioxide from
produced oilfield brines, the near-neutral pH implies neutral basic groups, which justifies
the neglect of their electrostatic contribution in this paper. Therefore, data on the surface
concentration of the carboxyl groups of the studied oils were used in the zeta potential
model for calculation. In this study, we calculated the electrokinetic surface charge density
as inputs for the calculation of zeta potential, given the link between the former and the
latter [113].
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6.1. Degree of Ionization of Carboxyl Acidic Group of Oils

The pH-dependent ionization degree of the carboxyl group is similar to that of the
pH-dependent dissociation of the acidic components of crude oil [85]. Figure 3 shows a
plot of the ionization degree of the acidic group of crude oils vs. pH at a temperature of
294 K. The isoelectric point (IEP)/point of zero charge (PZC) reflects the response of a
surface to an electrolyte [114]. Following protonation and deprotonation reactions, due to
amphoteric behavior, positive or negative charges can be generated on the surface. Due
to the presence of acidic and basic sites on surfaces, positive and negative charges may
coexist. The isoelectric point is the value of the pH at which the electrokinetic potential
is equal to zero and, therefore, the pH at which colloidal particles remain unstable in an
electrostatic field. Under normal circumstances, the isoelectric point is expected to differ
from the point of zero charge pH at the particle surface, except for pristine surfaces with
no specific ion adsorption [115,116]. In the present study, the point of zero charge at the
surface is taken as equal to the isoelectric point in the absence of specific adsorption on that
surface. Elsewhere, the pH dependence of the effective pKa has been reported [117]. In
our study, we assume constant pKa values for the different crude oil samples. Therefore,
in line with the role of the pKa in surface charge regulation [118] and its relationship to
the point of zero charge pH, Equation (33) was used for the calculation of the degree of
ionization of the carboxyl group of crude oils in line with its dominance. Table 1 shows the
isoelectric points of the crude oils. From the table, it is clear that the isoelectric points of the
oil samples are closer, and that justifies the appearance of the curves. Most importantly,
the figure shows that for all the salinities considered, the degree of ionization increases
with pH and salinity as reported elsewhere [119]. Moreover, considering the pH range of
produced oilfield waters used in this study, the isoelectric points/points of zero charge pH
are below the pH range, which means the development of a negative surface charge for all
the oils [120]. Generally, salinity has a positive effect on surface charge density and this
reflects the trend of the ionization degree with salinity as found in Figure 3.

Processes 2023, 9, x FOR PEER REVIEW  12  of  25 
 

 

the presence of acidic and basic sites on surfaces, positive and negative charges may co-

exist. The isoelectric point is the value of the pH at which the electrokinetic potential is 

equal  to zero and,  therefore,  the pH at which colloidal particles remain unstable  in an 

electrostatic field. Under normal circumstances, the isoelectric point is expected to differ 

from the point of zero charge pH at the particle surface, except for pristine surfaces with 

no specific ion adsorption [115,116]. In the present study, the point of zero charge at the 

surface is taken as equal to the isoelectric point in the absence of specific adsorption on 

that surface. Elsewhere, the pH dependence of the effective pKa has been reported [117]. 

In our study, we assume constant pKa values for the different crude oil samples. There-

fore, in line with the role of the pKa in surface charge regulation [118] and its relationship 

to the point of zero charge pH, Equation (33) was used for the calculation of the degree of 

ionization of the carboxyl group of crude oils in line with its dominance. Table 1 shows 

the isoelectric points of the crude oils. From the table, it is clear that the isoelectric points 

of  the oil samples are closer, and  that  justifies  the appearance of  the curves. Most  im-

portantly, the figure shows that for all the salinities considered, the degree of ionization 

increases with pH and salinity as reported elsewhere [119]. Moreover, considering the pH 

range of produced oilfield waters used in this study, the isoelectric points/points of zero 

charge pH are below the pH range, which means the development of a negative surface 

charge for all the oils [120]. Generally, salinity has a positive effect on surface charge den-

sity and this reflects the trend of the ionization degree with salinity as found in Figure 3. 

 

Figure 3. Degree of ionization of the acidic group of crude oils vs. pH at 294 K. 

In addition to the most recent work of Bonto at al. [53], Moutray Crude Oil was stud-

ied in relationship to the effect of brine on its recovery by water flooding [121]. Therefore, 

we have been motivated by these two cited references to single out Moutray Crude Oil for 

showing  the effect of pH on surface charge density as a  function of salinity  for all  the 

salinity ranges of produced oilfield water. Accordingly, Figure 4 shows these plots. The 

figure  shows  that  as  the  pH  increases,  the  surface  charge  density  on  the  droplets  of 

Moutray Crude Oil in oil-in-water emulsion systems will increase. Moreover, salinity has 

a positive effect on surface charge density, implying that increasing salinity increases the 

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8

D
eg

re
e 

of
 io

ni
za

ti
on

pH

Degree of
ionnization, 12 ppt

12 ppt

30 ppt

60 ppt

80 ppt

100 ppt

180 ppt

Figure 3. Degree of ionization of the acidic group of crude oils vs. pH at 294 K.

In addition to the most recent work of Bonto at al. [53], Moutray Crude Oil was studied
in relationship to the effect of brine on its recovery by water flooding [121]. Therefore,
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we have been motivated by these two cited references to single out Moutray Crude Oil
for showing the effect of pH on surface charge density as a function of salinity for all the
salinity ranges of produced oilfield water. Accordingly, Figure 4 shows these plots. The
figure shows that as the pH increases, the surface charge density on the droplets of Moutray
Crude Oil in oil-in-water emulsion systems will increase. Moreover, salinity has a positive
effect on surface charge density, implying that increasing salinity increases the surface
charge density [95,122,123]. From Table 1, Crude Oil A has the lowest isoelectric point
after Moutray Oil, with the potential to develop a surface charge over a wider range of pH.
Figure 5 shows plots of the surface charge density vs. pH for Crude Oil A as a function of
salinity, for different salinities where higher salinities show higher surface charge density.
Figure 6 shows plots of the surface charge density vs. pH for the six oil samples for salinity
equal to 30 ppt. The figure shows that Crude Oil ST-86-1 has the highest surface charge
density for the salinity considered, followed by Moutray Crude Oil, while Crude Oil C has
the lowest surface charge density.
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Figure 6. Surface charge density of 6 crude oil samples vs. pH for salinity equal to 30 ppt.

6.2. Zeta Potential of Crude Oils Samples

The zeta potential of oil droplets depends on the oil chemical composition, on the
water pH and salinity, and on the presence of surfactants [124]. Figures 7–9 show plots
of the zeta potential vs. pH for Crude Oils ST-86-1, B, and C, respectively. The plots
show a monotonous decrease in zeta potential with pH (becoming more negative with the
decrease in salinity), where higher salinity corresponds to lower zeta potential for all the
oil samples. Therefore, trends revealed by these figures are those reported in connection
with low-salinity water flooding oil recovery schemes [125] and in connection with the
improving oil recovery through the clay state charge during low-salinity water flooding in
sandstones [126]. Figure 10 shows a comparison of zeta potential vs. pH as a function of
salinity for crude oil samples ST-86-1, B, and C for salinities 12 ppt. and 100 ppt. Trends
revealed by Figure 7 through Figure 9 are also consistent with those revealed in the findings
of Kataya et al., (2022) [127], who studied the effect of brine salinity, cation type, pH, and
produced sand on zeta potential measurements. The plots show that for all the salinities
considered, crude oil sample ST-86-1 has the highest zeta potential vs. pH, followed by
crude oil sample B, with crude oil sample C being the sample with the lowest zeta potential.
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Figure 7. Zeta potential vs. pH for Crude Oil ST-86-1.
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Based on the chemistry of the studied crude oils, the following Table 4 contains
information about their acid numbers from Bonte et al. [53].

Table 4. Acid numbers of oils [53].

Crude Oil Sample Acid Number (mg KOHg−1)

Moutray 0.26

Leduc 0.26

ST-86-1 0.15

A 3

B 2

C 1

Based on the criterion for the identification of acid crude oils, an acid number greater
than 0.5 mg KOHg−1 represents an acidic crude oil. Therefore, Table 4 gives two distinct
types of crude oils based on the definition for acid crude oils. In this regard, given that
the salinity values used in our research work are global values, zeta potential and surface
charge density characteristics represented by our plots give a generalized idea about the
stability of oilfield emulsions associated with such crude oils.

6.3. Emulsion Stability of Oil-in-Water Emulsion for Different Crude Oil Samples

In line with the direct correlation between surface charge density and zeta potential and
those between salinity and these interfacial parameters in colloidal systems [39,122,128,129],
the prominent difference among the crude oil samples as seen in the figures discussed so far
implies different degrees of stability of oil-in-water emulsion systems involving these crude
oils. Moreover, surface forces involving disjoining pressure are directly linked to the double
layer repulsion stabilization of colloidal systems, where zeta potential and surface potential
have direct correlations [130,131]. Based on Figure 6, where surface charge densities of
the six crude oils have been plotted for a 30 ppt. salinity of the produced oilfield water,
sample ST-86-1 will show the highest double layer electrostatic repulsive contribution to
colloidal stabilization due to the direct positive correlation between surface charge density
and surface potential [132]. Accordingly, the order of decreasing emulsion stability will be
as follows: ST-86-1 > Moutray Oil > Crude Oil A > Crude Oil B > Leduc Oil > Crude Oil C.
Therefore, trends revealed by this electrostatic stabilization reflect zeta potential as seen
in Figure 10 for two different salinities involving three of the oil samples, where Sample
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ST-86-1 shows the highest zeta potential, followed by Sample C, with Sample B having the
least zeta potential for the salinities considered.

6.4. Implications for Produced Oilfield Water Demulsification with Different Demulsifiers

In the oil and gas industries, operators face limits to the permissible oil content in
produced water before it can be discharged back into the environment, and limits are
typically set by national authorities based on both instantaneous and average discharge
limits. Federal regulations normally set the daily maximum limit at 42 mg/L average
and 50 mg/L for the marine environment. Considering the offshore environment, the
daily maximum limit is 48 mg/L average and 72 mg/L for an instantaneous discharge.
These stringent environmental regulations require the treatment of produced oilfield water
to remove enough oil to meet these thresholds to discharge into the environment [133].
Therefore, produced water must be treated, using emulsifiers which are molecules en-
hancing the separation of oil from water, often at a reduced concentration by lowering the
interfacial shear viscosity to extend the interfacial mobility and destabilize emulsions [117].
Consequently, the amount of demulsifier required will depend on the extent of emulsion
stability. Typically, the amount of demulsifier applied is between ten and one hundred parts
per million (ppm) in total production, which can be higher in tertiary oil recovery schemes.
There are three basic methods for demulsification: physical, chemical, and biological [134],
and the effectiveness of each is based on its ability to reduce emulsion stability to produce
two distinct phases [135]. Generally, water-soluble demulsifiers are used to destabilize
oil-in-water emulsions. To destabilize the emulsion, the oil droplets must flocculate and
eventually coalesce. Under such conditions, experimental results based on analysis of
variance (ANOVA) show that the dosages of demulsifier, temperature, and sedimentation
times are the key variables [136]. It is obvious that at higher temperatures, the Bjerrum
length scale, which is the fundamental length scale at which thermal energy becomes com-
parable to electrostatic energy, will be relatively higher [137]. This trend will be augmented,
given the generally high salinity range of produced oilfield waters and the consequent
reduction in the dielectric permittivity [138]. The implication is that for produced oilfield
waters, electrostatic energy equalizes thermal energy at a relatively shorter distance in the
emulsion system.

Chemical demulsification consists of adding chemicals called demulsifiers to accel-
erate the coalescence of the dispersed phase of the emulsion [139]. Such chemicals are
designed to neutralize the effect of surfactants (surface ionizable groups) that naturally
stabilize the emulsion, and displace them from the interfacial films that stabilize emulsion
droplets leading to enhanced demulsification. Therefore, effective chemical demulsification
requires circumspection in the selection of demulsifiers for a given emulsion system. The
effectiveness of surfactants must not be hindered by electrostatic repulsion. Given the rela-
tively wider range over which electrostatic stabilization will occur, such surfactants must
be able to diffuse over a wider range without electrostatic interaction effects. Consequently,
for oil-in-water emulsion systems characteristic of oilfield-produced waters, water-soluble
non-ionic ethoxylated surfactants with a wider range of pH and salinity stability are po-
tential demulsifiers. Therefore, under the room temperature demulsification of produced
oilfield waters, higher-salinity waters will experience less effective demulsification where
diffusion mechanisms control the transport of surfactants between interfaces. On the part
of zeta potential effect, higher salinities mean lower values and lower emulsion stability,
which requires a lower concentration of surfactants. Therefore, trends of zeta potential as
found in Figure 10 will reflect the effectiveness of demulsification for the three crude oils
considered in this paper.

However, while non-ionic surfactants are potential demulsifiers, to eliminate the elec-
trostatic repulsive effects of potential surfactants, the point of zero charge pH/isoelectric
point of oil droplets in oil-in-water emulsions are a perfect guide in selecting demulsifiers.
For the oil samples studied in this paper, the point of zero charge pH values are averagely
below the average pH of produced oilfield waters, 6.00–6.78 [140]. Consequently, from
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Table 1, the droplets of oil samples will develop negative surface charge densities, and the
selection of water-soluble cationic surfactants will provide other options [141]. Under such
options, trends revealed by Figure 10, regarding zeta potential, will determine the effec-
tiveness of demulsification for the oils (SR-86-1, B, and C), where the positive correlation
between zeta potential and surface charge density means that oils with higher zeta poten-
tials will experience higher electrostatic attraction between surfactant molecules. Moreover,
under such conditions, the electrostatic repulsion between positively charge surfactant
species will enhance the surface activity of adsorbed surfactants, leading to enhanced
demulsification [142]. For instance, Wang et al. [143] have demonstrated experimentally the
possibility of surfactant diffusion from the oil phase to the aqueous phase, leading to their
adsorption on negatively charged fine solids in this phase. The bulk increase of surfactant
concentration in line with the Stern–Grahame equation leads to an experimentally mea-
sured decrease in interfacial tension. Moreover, the ionic adsorption/ionization of surface
functional groups can lead to surface charge development [144]. Thus, strong coordination
or reversibly adsorbed oxygen [145] or strong coordination nucleophiles (water or hydroxyl
ions) can donate electrons to silver nanoparticles found in commercial products, which can
lead to such surface charge developments [146], and the diffusion of surfactants found in
laundry waters toward such charged particles has been experimentally demonstrated to
lead to agglomeration [147].

6.5. Effect of Interfacial Energy on Demulsification

A fundamental property of liquid−liquid systems/interfaces governing their behavior
is the interfacial tension, which is defined as the excess energy per unit area at a fluid−fluid
interface or the work done required to create unit interface [148], arising from unbalanced
cohesive forces between molecules in the two bulk phases [149]. Systems with higher
interfacial energy drive a reduction in the interfacial area and colloidal systems with
high interfacial tensions tend to coalesce more readily. In the literature, the interfacial
electrical potential difference, which has a positive correlation with the surface charge
density and zeta potential, has been experimentally found to decrease the interfacial ten-
sion in a manner consistent with the Poisson−Boltzmann theory inspired from Frenkel
and Verwey−Overbeek [150], implying lower interfacial tension for oils with higher zeta
potential. Studies have demonstrated that a smaller particle size and more uniform dis-
tribution could improve emulsion stability [151]. The implication for interfacial tension
reduction related to surface potential is that oil droplet sizes will reflect the trend in zeta
potential of the oil samples (see Section 6.2), where oil samples with higher zeta potential
will have the lowest radii [152] due to the ease with which an interface can be formed in the
colloidal systems. Therefore, the surface excess or coverage of diffusing demulsifiers will
be greater, leading to efficient demulsification. One characteristic of smart-water flooding
or low-salinity-enhanced water flooding (LSWF) is the concentration of injected brine,
which is generally lower than those of reservoir formation brines. Rahevar et al. [153] have
used two salinities for LSWF oil recovery experiments. For a salinity of 0.6 M NaCl, the
interfacial tension was 23.0 mNm−1, while for a 0.1 M NaCl brine, the interfacial tension
was 21.7 mNm−1. In the context of our paper, as found in Figure 7 through Figure 10, lower
salinity implies higher zeta potential and higher surface charge density, which translates to
lower interfacial tension as observed experimentally by Rahevar et al. [153].

In the petroleum industry, oil and water emulsions are encountered under field op-
eration and transportation conditions. Consequently, depicting emulsion formation and
stabilization has received the attention of operators [154]. Considering that emulsification
can be naturally associated with the surface active components of crude oils, the identifica-
tion of asphaltene contents through characterization has been used to determine emulsion
formation potential [155,156]. Also, research findings in the area of emulsion demulsifi-
cation and the dosage of demulsifier required have been published [157,158]. However,
considering that physicochemical processes encountered in classical emulsion systems,
such as colloidal electrostatic stabilization and inter-particle interaction potential [159,160],
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in light of the electric double layer theory, are applicable to oilfield emulsions, electrostatic-
based theoretical foundations coupled with thermodynamic equilibrium constants related
to the ionization of surface groups of crude oils, such as asphaltenes, can equally be used
to determine emulsion stability. In this regard, the utility of electrostatic and thermody-
namic parameters that result from analytical solutions to a classical model, such as the
Poisson–Boltzmann mean field theory, are useful literature-based resources. Moreover,
in the literature, classical electrostatic-based theories of emulsion stability analysis have
centered more on traditional emulsion systems, such as those found in the industries
related to foods, pharmaceuticals, and cosmetics, where the application of surfactants
for stabilization has been central to such studies [161], contrary to our course where only
natural surfactants (asphaltenes) are of interest. In this paper, we particularly focused on
the oil-in-water emulsion stability associated with produced oilfield waters in the context of
classical electrostatic theories that have enabled us to extend the ranges of salinity beyond
those reported in the literature in connection with zeta potential and surface charge density
salinity and pH dependence.

7. Conclusions

Considering the mechanical and hydrodynamic shearing effects inherent in crude oil
production from the reservoir to oilfield surface facilities, the formation of oil-in-water
emulsion is inevitable. To meet the stringent environmental regulations governing the
disposal of produced waters, the demulsification of such waters is essential. To efficiently
carry out demulsification, the type of emulsion and the chemistry of the crude oil and
produced water must be properly understood. The chemical and physical behavior of such
emulsion systems can be described by fundamental principles enshrined in the electric
double layer theory and in the analytical continuum electrostatics potential [162] obtained
from the approximate solution to the Poisson–Boltzmann equation. In this paper, we have
used the theoretical foundations underlying the electrostatics of emulsion systems to study
the oil-in-water emulsions of six different oilfield-produced waters with closer values of
the electrokinetic properties of crude oil samples at room temperature. The following sums
up our conclusions:

1. Calculated trends in surface charge densities obtained in this study conform to those
found in the colloids literature, where there is a positive correlation with increasing
salinity;

2. Calculated trends in zeta potential obtained in this study conform to those found in
the colloids literature, where there is a negative correlation with increasing salinity;

3. The closeness of the isoelectric points of the oil samples studied in this paper causes a
slight distinction between the degrees of ionization of the oils at a given pH for the
range of produced oilfield water salinity;

4. The zeta potential is the most significant determinant for emulsion stability. Based on
our theoretical calculations, oil sample ST-86-1 has the most stabilized emulsion sys-
tems under room temperature conditions, and it will require more intensive chemical
demulsification procedures;

5. Given the acidic nature of the isoelectric points of the oil samples, and the near-neutral
pH of produced oilfield waters, decreasing pH to approximately 4 will constitute
a near-zero surface charge/zeta potential, which is a cheap and efficient means of
coalescence and coagulation leading to efficient demulsification.
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