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Abstract: Heat exchangers in operation often experience scaling, which can lead to a decrease in
heat exchange efficiency and even safety accidents when fouling accumulates to a certain thickness.
To address this issue, manual intervention is currently employed to monitor fouling thickness in
advance. In this study, we propose a two-layer LSTM neural network model with an attention
mechanism to effectively learn fouling thickness data under different working conditions. The model
accurately predicts the scaling thickness of the heat exchanger during operation, enabling timely
human intervention and ensuring that the scaling remains within a safe range. The experimental
results demonstrate that our proposed neural network model (TA-LSTM) outperforms both the
traditional BP neural network model and the LSTM neural network model in terms of accuracy and
stability. Our findings provide valuable technical support for future research on heat exchanger
descaling and fouling growth detection.

Keywords: heat exchanger fouling; neural network; deep learning; attention mechanism;
two-layer LSTM

1. Introduction

A heat exchanger is a device used to transfer heat from one medium to another for
purposes such as temperature regulation or heat recovery [1–4]. Heat exchangers are
widely used in various industries, including refrigeration, heating, air conditioning, oil
cooling, water cooling, and more [5,6]. The classification of heat exchangers is generally
based on factors such as working conditions, fluid media, operating temperature, and
pressure [4,7]. They can be categorized based on their purpose, such as heat exchangers,
coolers, condensers, evaporators, and heaters. They can also be classified based on the
principle of heat transfer, including direct contact heat exchangers, heat storage heat
exchangers, inter-wall heat exchangers, and intermediate heat carrier-type heat exchangers.

In the heat transfer process, heat is transferred between two media through a heat
transfer surface, which helps maintain a heat balance. One medium gains heat while
the other loses heat. This process is accompanied by a gradual scaling phenomenon,
where fluid deposits on or erodes the surface of the heat exchanger, forming a layer of
solid or soft mud-like precipitate [8]. The type of fouling formed during operation varies
depending on the heat exchanger’s operating conditions [9]. The current internationally
accepted classification of fouling, proposed by Epstein [10], categorizes fouling into seven
types based on the causes of fouling formation. These types include precipitation fouling,
corrosion fouling, biofouling, particulate fouling, chemically reacted fouling, solidified
fouling, and mixed fouling.

The formation of fouling is a complex process [11]. Epstein categorized the process
into five stages: initiation, transportation, attachment, exfoliation, and aging. In his study,
he observed a changing pattern in the thermal resistance of fouling over time. He identified
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three types of fouling characteristic curves: linear, descending, and asymptotic. Later,
Garrett [12] and his colleagues discovered that there was a period of time without foul-
ing formation after the initial onset. Epstein later referred to this period as the fouling
induction period.

The fouling mechanism includes thermodynamic change theory, adsorption theory,
and crystallization kinetics theory, which explains the causes of fouling generation at
the theoretical level. At the same time, there are many factors affecting heat exchanger
fouling. The structure of the heat exchanger, the heat exchanger medium, and the flow
characteristics of the fluid in the heat exchanger all accelerate or inhibit the generation of
fouling to different degrees.

The thermal conductivity of fouling is significantly lower than that of the parent
material of the heat exchanger, making it a poor conductor of heat [13]. Research shows that
more than 90% of heat exchangers experience fouling problems to varying degrees [14,15].
The presence of fouling has a detrimental impact on the normal operation of heat exchanger
equipment, such as reducing heat transfer efficiency, increasing energy consumption,
shortening equipment lifespan, and compromising equipment safety [16]. Currently, there
are several methods available for heat exchanger descaling, including physical, chemical,
and ultrasonic methods [17]. The choice of descaling method depends on the specific heat
exchanger and working environment.

Ma Guangxing et al. [18] conducted an experimental study on the descaling of heat
exchanger fouling at different growth stages. The study found that intervening during the
induction and growth phases of fouling not only inhibits the growth rate of fouling but
also reduces energy consumption and improves the descaling effect.

The descaling effect varies during different periods of fouling formation. Duan Peiqing
introduced an online anti-fouling and descaling method [19,20]. However, the research
on determining when the heat exchanger should be descaled and maintained is still in
its early stages. In this paper, we propose an improved LSTM neural network to predict
the thickness of scaling in heat exchangers. This allows us to detect the growth of scaling
and determine the optimal timing for human intervention. This, in combination with
the use of online descaling methods, allows the heat exchanger to operate with a certain
level of fouling reduction. This extends the equipment’s service life and reduces energy
consumption.

The TA-LSTM model [21,22] differs from the traditional BP model and ordinary
LSTM model, as it incorporates a two-layer LSTM structure along with the attention
mechanism. Unlike the BP and traditional LSTM models, the TA-LSTM model addresses
the issue of disappearing or exploding gradients when dealing with long sequences, which
hinders the ability to capture long-distance dependencies [23]. By introducing the attention
mechanism, the TA-LSTM model effectively understands the long-distance dependencies
in sequences and enhances its modeling capability for data with long sequences. The
attention mechanism enables the model to assign different weights to different parts of
the input, based on contextual information, thereby improving the model’s accuracy. The
two-layer LSTM structure [24,25] allows the first layer to capture low-level features, which
are then processed as inputs in the second layer. This enables the model to capture rich
data features, making it more suitable for processing complex sequence data. Consequently,
this model outperforms both the BP model and the LSTM model. Its superiority becomes
more evident as the volume of data increases.

2. Theoretical Foundations
2.1. Long and Short-Term Memory Networks

An LSTM (long short-term memory) neural network is a special kind of recurrent
neural network, which was proposed by Hochreiter and Schmidhuber [26] and has been
improved and popularized by many people. It adds a gating mechanism [27,28] to the
recurrent neural network, including forgetting gates, input gates, and output gates, which
control the flow of information, enabling the network to effectively deal with long-term
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dependencies, and it can effectively solve the problem of gradient vanishing and gradient
explosion during training of long sequences, to better realize the modeling and prediction
of time series.

The structural framework diagram of the LSTM network is shown in Figure 1.
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The LSTM model mainly consists of oblivion gates, input gates, cell states, and output
gates. Taking the example at time step t, the input at this time can be expressed as xt, then,
the implied state at the previous time step is ht−1, and the unit cell state is ct−1.

First, the forgetting gate determines what useless information needs to be discarded
from the previous cell state, i.e., the degree of forgetting. With the sigmoid cell of the
forgetting gate, the comparison of xt and ht−1 of the information, a vector between 0 and 1,
is output. The values in this vector determine ct−1 whether the information in it is retained
or not. The larger the value, the higher the level of retention, with 1 indicating complete
retention. The mathematical expression for this is:

ft = σ
(

W f [ht−1,, xt] + b f

)
(1)

In this context, σ refers to the sigmoid activation function. W f represents the weight
matrix of the forgetting gate, while b f represents the bias vector of the forgetting gate.

The input gate, denoted as it, determines what new information to add to the cell state
and controls the extent of the input of new information. This is expressed mathematically as:

it = σ(Wi[ht−1, xt] + bi) (2)

In this context, σ is the sigmoid activation function, Wi is the input xt weight matrix of
the input gate, and bi is the bias vector of the input gate.

The next step is to utilize ht−1 and xt; a new candidate cell state is obtained through a

tanh layer,
∼
Ct. Its mathematical expression is:

∼
Ct = tanh(Wc[ht−1, xt] + bc) (3)

In this context, Wc is the input xt the weight matrix of the inputs, bc is the bias matrix,
and tanh is the hyperbolic tangent activation function.
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Finally, the current cell state is computed, Ct, and updates the hidden state, ht. Its
mathematical expression is:

Ct = ( ft ∗ Ct−1 + it ∗ Ct) (4)

ht = (Ot ∗ tanh(Ct)) (5)

Ot = σ(Wo[ht−1, xt] + bo) (6)

In this context, * denotes the element-by-element product, and Ot denotes the output
gate, which is used to control the degree of output. Wo is the input, xt, of the output gate
matrix, and bo is the bias vector of the output gate.

2.2. Attention Mechanisms

The attention mechanism is a technique based on artificial neural networks that aids
models in learning to selectively focus on specific parts when processing large amounts of
information [29]. It draws inspiration from the attention mechanism of the human brain,
where individuals consciously concentrate on important elements while disregarding
insignificant details. This allows the human brain to gather as much valuable information
as possible while conserving energy and making efficient use of resources.

Similarly, the attention mechanism can assist the model in comprehending and struc-
turing the input information, thereby enhancing the model’s performance. In the context
of neural networks, the attention mechanism assigns weights to each input feature based
on its similarity to the current state. This allows for the activation of inputs with varying
degrees of similarity, which are then combined to create a new feature representation.

When predicting the thickness of heat exchanger fouling, the collected individual input
data may deviate from the actual value due to experimental errors. To ensure the accuracy
of the neural network model, it is important to eliminate the influence of irrelevant input
data on the prediction results. To achieve this, an attention mechanism is introduced in
the LSTM model. This mechanism enables the model to effectively handle long sequences,
address ambiguities, and tackle more complex tasks.

The paper discusses two types of attention mechanisms: the hard attention mechanism
(HAM) and the soft attention mechanism (SAM) [30]. In this study, the soft attention
mechanism [31] is employed to allocate the weight value of attention within the range
of [0, 1]. The calculation of this weight value is demonstrated in the following equation:

In this paper, the soft attention mechanism is used to distribute the weight value of
attention between [0, 1], which is calculated as shown in the following equation:

so f tmax(zi) =
eZi

∑n
i=1 eZi

(7)

In this context, Zi denotes the value of the ith position in the input sequence, and n
denotes the number of categories contained in the sequence.

The steps of the attention mechanism are as follows:

(1) Encoder: converts the input sequence into an intermediate representation, e.g., pro-
cessed using the LSTM model.

(2) Calculate attention weights: given the current decoder state and intermediate repre-
sentations, calculates the weights or distributions for each input element, indicating
the degree of importance.

(3) Weighted summation: weighted summation of intermediate representations based on
attention weights to obtain weighted information.

(4) Decoder: generates the current output based on the weighting information as well as
the previous memory, while updating the decoder status and previous memory.

(5) Repeat steps two through four until the complete output sequence is generated.
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2.3. Two-Layer LSTM Neural Network

Bilayer LSTM [32] is a type of deep recurrent neural network that comprises two LSTM
layers. In this architecture, the first LSTM layer takes the input sequence and produces a
hidden state, which can be seen as an intermediate representation capturing information
from the input sequence. This hidden state is then passed to the second LSTM layer, which
utilizes it to further process the information.

Training a two-layer LSTM model typically requires more computational resources
compared to a single layer. However, increasing the number of layers enhances the expres-
sive power of the model, enables capturing longer time dependencies, and improves its
overall performance.

3. Introduction to the Model

This study proposes the use of a joint attention mechanism and a two-layer LSTM
(TA-LSTM) [33] to enhance the performance of neural networks in sequence modeling and
processing tasks. By employing a two-layer LSTM network, the model can capture long-
term dependencies and contextual information in sequences. Additionally, the attention
mechanism enables the network to dynamically prioritize important parts of the sequences.
The structure of the proposed model is illustrated in Figure 2.
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The workflow is as follows:

(1) The input sequence is processed through the first LSTM layer to produce the hidden
state, ht, and cell state sequences, ct.

(2) A soft attention mechanism is introduced in the first LSTM layer to compute attention
weights and attention up and down vectors.

(3) The attention up and down vectors, ct, are combined with the hidden state of the first
LSTM layer, ht, to be merged to get the new hidden state, h′t.

(4) The new hidden state, h′t, is used to perform further processing and input the second
LSTM layer.
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(5) Further operations are performed in the second LSTM layer to obtain the final hidden
state sequence, h′′t , and the cell state sequence, C′′t .

(6) Predictions are obtained by the final sequence of hidden states, yt.

4. Experimentation
4.1. Subjects and Samples

The fields of ship heat exchangers and aircraft heat exchangers are characterized by
demanding cost control [34], energy saving and emission reduction [35], stability, and
safety. Taking aircraft heat exchangers as an example, they play a vital role in regulating
the temperature and humidity inside the aircraft. Due to the unique working environment
and safety requirements of aircraft heat exchangers, it is crucial to ensure that the fouling
thickness remains within a safe range during airplane operation. When the scale thickness
exceeds 1mm, it can result in reduced heat transfer efficiency, higher outlet temperature, and
pollution [36,37]. Therefore, the TA-LSTM model is well-suited for predicting the fouling
thickness of aircraft heat exchangers, enabling timely human intervention to eliminate
safety hazards.

In this paper, the experimental data of Linying Du [38] on the heat exchangers on
Boeing 737-800 model airplanes were selected to carry out model training and prediction.
Four experimental factors that have the greatest influence on fouling were selected as
the model input. They are ambient temperature, air conditioning system inlet pressure,
primary heat exchanger outlet pressure, and secondary heat exchanger outlet pressure.

Figure 3 shows a diagram of the air conditioning and refrigeration system of the
Boeing 737-800, where the ambient temperature is the final airliner air conditioning outlet
temperature. The inlet pressure is the pressure of the high-temperature and high-pressure
pilot gas produced by the engine when it passes through the FCSOV. The primary outlet
temperature is the temperature of the airflow through the primary heat exchanger, and
the secondary outlet temperature is the temperature of the airflow through the secondary
heat exchanger. Some samples from the experiment are shown in Table 1 (This data is cited
in [38]).
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Table 1. Partial experimental data. (This data is cited in the following literature [38]).

Brochure Serial Number
Environmental

Temperature
(◦C)

Inlet Pressure
(Pa)

Initial
Temperature

(◦C)

Secondary
Effluent

Temperature
(◦C)

Scale
Thickness

(mm)

Network
training
samples

1 35 100 59 38.1 0.48

2 25 100 76 53.3 0.93

3 25 100 97 81.0 1.12

4 25 30 59 38.1 0.38

5 35 100 76 53.3 0.92

6 25 30 97 81.0 1.08

7 25 60 59 38.1 0.47

8 25 60 76 53.3 0.9

9 35 100 97 81.0 1.07

10 30 30 59 38.1 0.45

11 30 30 97 81.0 1.02

12 30 100 59 38.1 0.5

13 30 100 76 53.3 0.93

14 30 100 97 81.0 1.1

15 30 60 59 38.1 0.45

16 30 60 76 53.3 0.88

17 35 60 59 38.1 0.41

Sample
Network Test

18 35 30 59 38.1 0.46

19 35 30 76 53.3 0.83

20 35 30 97 81.0 0.99

21 25 100 59 38.1 0.52

22 25 30 76 53.3 0.85

23 30 30 76 53.3 0.91

24 35 60 97 81.0 1.11

25 35 100 97 81.0 1.07

4.2. Experimental Platform and Experimental Environment

The environment and platform required for the experiment are shown in Table 2.

Table 2. Experimental platform and experimental environment.

Experimental Environment Specific Information

Operating system Windows 10

Processing unit Intel(R) Xeon(R) Platinum 8373C CPU @
2.60 GHz 2.60 GHz (2 processors)

Display card (computer) NVIDA GeForce RTX 3050

Random access memory (RAM) 256G

Programming language Python

Development environment (computer) Pytorch

Development tool Pycharm
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4.3. Experimental Model Evaluation Metrics

This paper utilizes the TA-LSTM prediction model, which consists of an attention
mechanism combined with a two-layer LSTM network. The evaluation metrics [39] em-
ployed in this study are MAPE, MAE, and RMSE. In this context, n represents the number
of samples, yi denotes the true value of the ith sample, and ŷi represents the predicted
value of the ith sample.

1. Mean Absolute Percentage Error (MAPE)

100%
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (8)

MAPE (mean absolute percentage error) is a metric that quantifies the average percent-
age difference between the predicted fouling thickness and the true fouling thickness. It is
commonly employed to assess the accuracy of prediction models, particularly for narrower
ranges of true values.

In this context, n represents the number of samples, yi denotes the true value of the ith
sample, and ŷi represents the predicted value of the ith sample.

2. Mean Absolute Error (MAE)

1
n

n

∑
i=1
|yi − ŷi| (9)

The MAE (mean absolute error) represents the average difference between the true
fouling thickness and the predicted fouling thickness. It is a measure used to quantify the
average prediction error of the model. A smaller MAE indicates that the predicted value is
closer to the true value.

In this context, n represents the number of samples, yi denotes the true value of the ith
sample, and ŷi represents the predicted value of the ith sample.

3. Root Mean Square Error (RMSE)

1√
n

√
n

∑
i=1

(yi − ŷi)
2 (10)

The RMSE (root mean square error) represents the average difference between the true
fouling thickness and the predicted fouling thickness. It is a metric that is more sensitive to
outliers compared to other metrics.

In this context, n represents the number of samples, yi denotes the true value of the ith
sample, and ŷi represents the predicted value of the ith sample.

4.4. Experimental Steps

Step 1. The different magnitudes of the original data and the inevitable existence
of abnormal values and vacant data will affect the authenticity of the prediction results.
Therefore, for the selected experimental data, the realm temperature, T, inlet pressure, P,
primary outlet temperature, T1, and secondary outlet temperature, T2, are normalized to
meet the input requirements.

Step 2. The experimental data is divided into two parts in chronological order; the
former is used to train the model, and the latter is used to adjust the hyper-parameters,
thus determining the input and output variables of the model.

Step 3. A random search with the PSO algorithm is used to find the optimal parameters.
Step 4. After completing the stochastic initialization of the weight matrix of the

TA-LSTM prediction model, the data can be input.
Step 5. In training the model, optimization is performed by the Adam optimizer and

evaluated using the loss function, RMSE.
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4.5. Analysis of Forecast Results

Figure 4 presents the training error and testing error of the TA-LSTM model. The
model proposed in this paper predicts the fouling thickness of aircraft heat exchangers
after deep learning in the test set. The error curves, depicted in the figure, show that the
training error curve (red curve) consistently surpasses the testing error curve (blue curve),
indicating a significant improvement in the model’s prediction accuracy after deep learning
from the test set. Moreover, as the number of iterations increases, both the training error
curve and the test error curve demonstrate a substantial reduction, eventually converging
to a thickness close to the true value. This convergence point satisfies the requirements of
engineering practice.
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MAPE, MAE, and RMSE are commonly used metrics to evaluate the performance
of neural network models [40,41]. To reflect the superiority of the model in one step, this
paper adopts the MAPE, MAE, and RMSE evaluation indexes to evaluate the prediction
performance of the traditional BP model, the LSTM model, and the TA-LSTM model,
respectively, within the traditional BP model, the LSTM model, and the TA-LSTM model.
The metrics are shown in Table 3 and Figure 5.

Table 3. Indicators for evaluation of models.

Group MAPE RMSE MAE

BP 0.07127 0.07298 0.06157

LSTM 0.02374 0.02049 0.01481

TA-LSTM 0.00231 0.00168 0.00136

Comparing the analysis metrics of the three models, the traditional BP model performs
the worst, followed by the ordinary LSTM model, and the TA-LSTM model performs the
best. The table and figure clearly show that the evaluation index values of the TA-LSTM
model are significantly smaller than those of the BP model and lower than those of the
ordinary LSTM model. Among these metrics, a smaller MAPE value indicates a better
model type. The RMSE value is penalized more for samples with larger prediction errors,
so a smaller value indicates lower variance and better model performance. The MAE
value measures the absolute value of the average prediction error without considering
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its direction and is relatively less penalized for larger error samples. All three metrics
consistently demonstrate the superiority of the TA-LSTM model.
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Figure 6 presents the performance of the three models in predicting the data from the
validation set in Table 1. The horizontal and vertical coordinates represent different input
data in the validation group, with the vertical coordinate indicating the thickness of the
dirt in millimeters. The true error of the model is determined by the difference between the
y-coordinate of the predicted and true values of the three models at the same horizontal
coordinate.
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It is not difficult to find that the curve trends of the three models can roughly match
the direction of the true value curve. Among them, the traditional BP curve will appear to
be extremely unstable, stage by stage away from the true curve. And the predicted value is
lower than the true value. Among them, in the ordinary LSTM model, the performance is
still good, basically in line with the trend of the real value, the accuracy, and the TA-LSTM,
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but there is a certain gap. The model adopted in this paper has the best performance, which
is not only the closest to the real value, but also has no abnormal prediction float, so it is
the most reliable.

5. Conclusions

This paper proposes a two-layer LSTM neural network model, based on the attention
mechanism, for analyzing and concluding the following points:

1. The paper selects four main factors, namely ambient temperature, air conditioning
system inlet pressure, primary heat exchanger outlet pressure, and secondary heat
exchanger outlet pressure, which affect the growth of heat exchanger fouling. This
multi-feature input method effectively represents the fouling growth environment.

2. By introducing the attention mechanism to calculate the time series and adaptively
allocate weights based on the input information, the model improves its robustness
and generalization ability. This process aligns with the growth process of heat ex-
changer fouling over time, thereby significantly enhancing the prediction accuracy of
the model.

3. This model utilizes a two-layer LSTM structure along with an attention mechanism.
This design not only enhances the model’s expressive capability but also enables it to
capture longer time dependencies, resulting in improved performance.

4. When comparing the errors between the predicted values of the three models and
the experimental true values, it is observed that the BP model performs the worst,
followed by the LSTM model, and the present model performs the best. The predicted
value curve of the present model demonstrates the closest fit to the real value curve
and exhibits the most stable behavior without abnormal fluctuations. Furthermore,
the evaluation indexes (MAPE, MAE, and RMSE) of the TA-LSTM model show an
improvement of over 40% compared to those of the common LSTM model. This
improvement validates the reliability and stability of the TA-LSTM model, which
fulfills the requirements of engineering practice. Consequently, the TA-LSTM model
can play a significant role in the field of heat exchanger fouling growth detection and
heat exchanger descaling.

6. Prospects and Challenges

The current mainstream descaling methods for heat exchangers often require post-
treatment downtime, resulting in long downtimes and affecting production continuity and
efficiency. This is particularly inconvenient in areas such as ships and airplanes. Therefore,
the future direction of development should focus on integrated heat exchanger cleaning
methods that incorporate online scale inhibition and descaling.

By combining the researchers’ subsequent study of the fouling growth cycle, this tech-
nology can predict the optimal time for human intervention by determining the thickness
of the fouling. This provides technical support for online scale inhibition and descaling
methods and can even help simulate fouling growth, providing fouling growth curves for
future work.

Implementing the model requires a significant amount of fouling data as a basis.
The more data collected, the more accurate the prediction results will be. Therefore, the
pre-collection of data will be a crucial task in future research, but it also poses a challenge.

Author Contributions: Conceptualization, J.W.; Methodology, L.S.; Software, L.S.; Validation, L.S.
and H.L.; Formal analysis, J.W. and L.S.; Investigation, L.S. and R.D.; Data curation, H.L.; Writing—
original draft, L.S.; Writing—review & editing, J.W.; Supervision, N.C.; Project administration, J.W.,
R.D. and N.C.; Funding acquisition, J.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Jiangsu Provincial Youth Fund (BK20201007) and the
Jiangsu Provincial University Fund (20KJD470002).



Processes 2023, 11, 2594 12 of 13

Data Availability Statement: Data are contained within the article. All the code generated or used
during the study are available from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

BP Back propagation
LSTM Long short-term memory
TA-LSTM Time-aware long short-term memory
ft Forget gate
it Input gate
Ot Output gate
xt Input vector at the current moment
ht Hidden state at the current moment
h′t New hidden state
h′′t Final hidden state
Ct Current cell status
∼
Ct New candidate cell states
C′′t Final cell state
ht−1 The hidden state of the previous moment
ct−1 The state of the cell at the previous moment
W f Weight matrix of forget gate
Wi Weight matrix of xt
Wc Weight matrix of xt
Wo Output gate matrix for xt
b f Bias vector of forget gate
bi Bias vector of the input gate
bc Bias matrix
bo Bias vector of the output gate
σ Sigmoid activation function
tanh Hyperbolic tangent activation function
HAM Hard attention mechanism
SAM Soft attention mechanism
MAPE Mean absolute percentage error
MAE Mean absolute error
RMSE Root mean square error
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