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Abstract: The microwave plasma torch (MPT) has gained popularity in industrial applications due
to its high energy density, ionization levels, and high temperature. However, the non-uniform and
unstable plasma generated by microwave plasma sources has limited the production of large-scale
MPTs. This paper proposes a novel MPT device utilizing a four-port microwave source (2.45 GHz,
4 kW) to address these issues. The improved plasma uniformity and stability are achieved through
the new structure, and the microwave efficiency is enhanced by introducing the focusing dielectric
in the coupled cavity. Using a 3D electromagnetic field model, microwave plasma model and fluid
model, the paper optimizes the geometry and inlet mode of the MPT device. Experimental results
show that the novel MPT device can generate a plasma torch with a maximum height of 545 mm, a
working range of 10–95 L/min, and a microwave efficiency up to 86%. The proposed device not only
competently meets industrial requirements, but also provides design ideas and methods for future
MPT devices.

Keywords: large-scale MPT; four-port microwave source; 3D model; high microwave efficiency

1. Introduction

With its advantages of a wide range of working pressure [1,2], high energy conversion
rate [3–6], no electrode pollution [7], high electron density and electron temperature [8], the
microwave plasma torch (MPT) has become an attractive plasma source in both scientific
research studies and industrial applications [9]. Especially in solid waste treatment, the MPT
incineration inhibits NOx SOx generation [10–13], which is an environmentally friendly
treatment [14]. However, most of the current MPT devices have two main problems, small
size of the plasma torch and narrow working range [4,15–17], which are difficult to meet
the requirements of industrialization.

There are two main types of microwave plasma torches (MPTs) used to generate
large plasma torch sizes: those based on tapered waveguides and those based on ridged
waveguides. The diameter of the plasma generated by these MPTs has reached 30 mm [18].
By optimizing the MPT structures, the size of the plasma torch and microwave efficiency
can be increased. Xiao et al. designed an MPT based on a ridged waveguide with an
oblique hole, which increased power transfer efficiency from microwave to plasma by
11%. At a microwave power of 1.5 kW, the height of the plasma torch reached 210 mm,
and the gas inflow rate ranged from 8.3 to 16.7 L/min [5]. Chen et al. designed an MPT
based on a multi-ridge field compressed reactor, which could sustain a long-length plasma,
achieved a best transfer efficiency of 95.2%, and a working inflow rate ranging from 6 to
10 L/min [19]. Additionally, D’Isa et al. studied an MPT with swirling gas flow, which
achieved a gas inflow rate up to 30 L/min at a microwave power of 6 kW [20]. However,
these structures compress the space in the plasma excitation region, and the plasma torches
cannot be maintained when increasing the inflow rate. Moreover, the MPT devices, limited

Processes 2023, 11, 2589. https://doi.org/10.3390/pr11092589 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11092589
https://doi.org/10.3390/pr11092589
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-9885-2516
https://orcid.org/0000-0002-1737-870X
https://orcid.org/0000-0003-0764-1575
https://doi.org/10.3390/pr11092589
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11092589?type=check_update&version=1


Processes 2023, 11, 2589 2 of 15

by the waveguide structure, make it difficult to increase the diameter of the plasma torch
further.

In studies focused on widening the working range of MPTs, researchers have found
that enhancing the electric field in the plasma generation region can increase the plasma
generation rate and improve the stability of plasma torches. Nowakowska et al. designed a
novel microwave plasma source with a unique sheet-shaped plasma that achieved a maxi-
mum argon inflow rate of up to 30 L/min [21]. Ouyang et al. developed an atmospheric-
pressure helium-MPT device with a gas inflow rate ranging from 20 to 50 L/min [22].
Leins et al. modified the original design of the University of Stuttgart’s microwave plasma
torches [23] to generate a plasma torch with a diameter of 8 mm and a height of 100 mm,
with a gas inflow rate ranging from 1 to 100 L/min [24]. Hrycak et al. proposed a cylin-
drical type, no-nozzle microwave plasma source with a gas inflow rate ranging from 25 to
65 L/min [25]. These methods increased the stability of the plasma torch by generating a
region with very high electric field intensity, causing the working gas to be rapidly excited.
However, compressing the plasma in a small region reduced the size of the plasma torch
and decreased the microwave efficiency.

In this paper, a new structure for microwave plasma generators and gas inlet units to
overcome deficiencies associated with MPTs in terms of plasma uniformity and stability
was proposed. The coupling cavity in the generator creates a quasi-coaxial structure with
the plasma, increasing the uniformity of the plasma and the diameter of the plasma torch.
Additionally, the focusing dielectric (a dielectric with a ring structure, which can focus the
electric field on the target region [26]) increases the microwave efficiency. The gas inlet
unit features a porous horizontal inlet that improves the stability of the plasma excitation
region.

2. Geometric and Model
2.1. Geometric of MPT Device

As shown in Figure 1, the MPT device consists of the plasma generator and the gas
inlet unit. The plasma generator consists of the microwave cavity, the coupling cavity
(electric field coupling forms a coaxial structure to improve energy utilization rate [9]),
four BJ26 rectangular waveguides and the quartz tube. The focusing dielectric is made of
quartz material, which is filled between the coupling cavity and the quartz tube. The four
waveguides are located in the same horizontal plane, with azimuth differences of 90◦. The
microwave cavity, the coupling cavity, the quartz tube and the gas inlet unit are coaxial.
The bottom of the quartz tube is connected to the gas inlet unit.
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2.2. Electromagnetic Field Model

The microwave plasma is sustained by the electric field, which accelerates the seed
electrons to interact with the working gas molecules. Therefore, the microwave plasma
state depends on the electric field [27,28]. The microwave electric field in the MPT generator
can be modeled by solving the following Maxwell’s equation:

∇× (µ−1
r ∇×

→
E)− k2

0(εr −
jσ

ωε0
)
→
E = 0, (1)

where E is the microwave electric field, k0 = 2π/λ0 is the wave number of the microwave in
free space, λ0 is the wavelength of the microwave, ε0 is the permittivity, σ is the plasma
conductivity, and εr and µr are the relative permittivity and relative permeability. The
relative permittivity εr and the plasma conductivity σ should be determined for two kinds
of regions:

a. In the region where no plasma exists:

εr = 1 and σ = 0, (2)

b. In the region where a plasma exists [29]:

εr = εp = 1, (3)

σ = σp = nee2/me(vm − jω), (4)

where ω is the microwave angular frequency, e is the electron charge, me is the electron
mass, and νm = νe = Re/ne is the electron collision frequency for momentum transfer. When
the electron density reaches the critical electron density (ne = 7.6 × 1016 1/m3), it is difficult
for microwaves to propagate in the plasma, and the plasma can be regarded as an electrical
conductor [30].

2.3. Plasma Model

The microwave plasma model describes the plasma kinetics, the energy conservation
of electrons and heavy particles under the microwave action [31–33].

∂ne

∂t
+∇ ·

→
Γ e + (

→
u · ∇)ne = Re, with

→
Γ e = −(µe ·

→
E)ne −

→
De · ∇ne, (5)

∂nε

∂t
+∇ ·

→
Γ ε +

→
E ·
→
Γ e + (

→
u · ∇)nε = Sen, with

→
Γ ε = −(µε ·

→
E)nε −

→
Den · ∇nε, (6)

→
E = −∇V, (7)

∇ · (ε0εr
→
E) = ρq, (8)

Equation (5) describes the rate of change of the electron density, where µe = e/meνe is the
electron mobility, De = kbTe/meνe is the electron diffusion coefficient. Equation (6) describes
the rate of change of the energy density of the electrons, where nε is the mean electron
energy, kb is the Boltzmann constant. Then, De = µeTe, µε = 5µe/3, Dε = 5µeTe/3. The source
term in Equations (5) and (6), Re, describes the production–destruction of electrons, Sen
describes the anergy gain or loss elastic and inelastic collisions of electrons with the heavy
species in the mixture, as

Re = ne

M

∑
j=1

xjNjKj, (9)

Sen = ne

P

∑
j=1

xjNjKj∆ε j, (10)
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where M is the number of loss/gain electrons for reaction, P is the number of elas-
tic/inelastic collisions of electrons, xj is the mole fraction of the target substance for j,
Nj is the number density of target species for reaction j, Kj is the rate coefficient for reaction
j, and ∆εj is the energy loss/gain from reaction j. The plasma reactions considered in this
work shown as Table 1.

Equations (7) and (8) describe the space electrostatic field, ρq, which is the space charge
density from the plasma chemistry. The equations of state of ideal gas and Dalton’s law are
further used.

Table 1. Reactions used in the model.

No. Reaction Rate Coefficient Kj ∆εj (eV) Ref.

1 e + Ar → e + Ar(4s) 5× 10−15T0.74
e exp(−11.56/Te) 11.56 [34]

2 e + Ar → e + Ar(4p) 1.4× 10−14T0.71
e exp(−13.17/Te) 13.17 [34]

3 e + Ar(4s)→ e + Ar(4p) 8.9× 10−13T0.51
e exp(−1.61/Te) 1.61 [34]

4 e + Ar(4s)→ e + Ar 4.3× 10−16T0.74
e −11.56 [34]

5 e + Ar(4p)→ e + Ar 3.9× 10−16T0.71
e −13.17 [34]

6 e + Ar(4p)→ e + Ar(4s) 3× 10−13T0.51
e −1.61 [34]

7 e + Ar → 2e + Ar+ 2.3× 10−14T0.68
e exp(−15.76/Te) 15.76 [34]

8 2e + Ar+ → e + Ar 8.75× 10−39T−4.5
e −15.76 [35]

9 Ar(4p) + Ar(4p)→ e + Ar + Ar+ 1.625× 10−16T0.5 [35]
10 Ar(4p) + Ar → Ar + Ar 3× 10−21 [35]

2.4. Fluid Model

The fluid field model describes the mass continuity and momentum conservation by
the Navier–Stokes equations for laminar flow,

ρ
∂
→
u

∂t
+ ρ(

→
u · ∇)→u = ∇ · [−pÎ + κ̂] +

→
F , with ρ∇ ·→u = 0, (11)

where ρ is the total gas pressure, κ̂ is the viscous stress tensor for a Newtonian fluid, and Î
is the identity matrix.

3. Simulation and Optimization

In this paper, the multi-physics simulation software COMSOL 4.3b, based on the finite
element method, is utilized to simulate the MPT device. The simulation of the electric field
in the plasma generator (as shown in Figure 2) is performed based on the electromagnetic
field model. The coordinate axis center is defined as the center of the microwave cavity,
with the microwave cavity radius denoted as R, the radius of the quartz tube as Rg, and the
vertical coordinate of the center of the rectangular waveguides as Z. The plasma excitation
region is located within the interior of the quartz tube. By performing a parameterized
scan of the aforementioned variables, the optimal size parameters of the generator are
determined.

According to fluid theory, four kinds of gas inlet units (shown as Figure 3) were
designed, which could produce spiral fluid (the spiral flow helps stabilize the discharge [36])
in this paper. Based on the fluid field model, the flow field in the quartz tube was simulated.
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3.1. The Plasma Generator Optimization

We setting the microwave frequency to 2.45 GHz and the microwave power to 1 kW
per port. In order to simplify the calculation, the plasma is set to be evenly distributed in
the plasma excitation region to calculate the microwave energy utilization rate [37]. The
microwave energy utilization rate (efficiency) as

η = Pl/Pi × 100% (12)

where Pl is the electromagnetic power loss and Pi is the input microwave power.
The microwave efficiency corresponding to the radius of the quartz tube (Rg) and

the radius of the microwave cavity (R) is shown in Figure 4. When Rg is between 27 mm
and 27.5 mm, and R is between 103.5 mm and 112.5 mm, the microwave efficiency is
approximately 80%. Moreover, when Rg is between 31 mm and 32.5 mm, and R is between
103 mm and 116 mm, the microwave efficiency exceeds 87.5%. Notably, within this range,
the microwave efficiency remains stable, and the fault tolerance is high, which helps to
mitigate the influence of plasma torch due to machining errors and device deformation at
high temperatures. Consequently, for this study, the geometric dimensions of Rg = 31.5 mm
and R = 110 mm were selected for the quartz tube and microwave cavity, respectively.
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Based on the above results, the position of the microwave input ports is further
optimized. Defining the position of the ports when located in the center of the microwave
cavity, Z = 0 mm. The results in Figure 5 show that, as the ports are positioned away
from the center of the microwave cavity (Z = 0 mm), the microwave efficiency increases.
When Z = −14 mm and Z = 13 mm, the microwave efficiency is close to 90%. In this paper,
Z = 13 mm was selected as the position of the ports.
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3.2. Plasma Torch Simulation and Analysis

In this study, a steady-state fluid field in the quartz tube was calculated at an inflow
rate of 10 L/min to evaluate the performance of four gas inlet units (as shown in Figure 3)
designed to produce a spiral flow to stabilize the discharge. The simulation results show
that the spiral flow can be generated by those inlet units. For the horizontal inlet mode, the
fluid formed by it mainly flows in the radial direction (shown as Figure 6a,c). However,
for the oblique inlet mode, the velocity of the fluid axis formed by it increases significantly
(shown as Figure 6b,d).

In the case of the same inflow rate, the faster the axial flow rate, the faster the plasma
flows out of the generator, and the lower the plasma electron density in the generator,
resulting in lower stability [38]. The gas flow generated by the four-hole horizontal inlet
unit mainly flows in the radial direction, and the flow rate in the axial direction is low
(shown as Figure 6c), so the generated plasma can be more stable. The influence of different
inlet units on plasma morphology will be analyzed by experiments in the following sections.

The geometric structure of the plasma generator was determined through simulation
and optimization. After analyzing the gas inlet units, the four-port horizontal gas inlet unit
was selected. The fluid model and microwave plasma model were combined to simulate
the microwave plasma torch. Figure 7 shows the calculation results for an inflow rate of
10 L/min. When t > 0.001 s, the electromagnetic loss stabilizes. Therefore, the plasma torch
is considered to have reached a steady state after t > 0.001 s, and the microwave efficiency
value at t = 0.01 s is taken as the simulation result.

The electron density distribution and the electric field distribution after the plasma
torch is stabilized, as shown in Figure 8. The results show that the device can produce a
large size of plasma in the plasma excitation region, with the electron density of the plasma
in the central region exceeding 2 × 1020 1/m3. The coupling cavity and plasma form a
quasi-coaxial structure, shown as Figure 8b, so that the surface wave with high electric
field intensity is formed on the plasma surface to enhance the stability of the plasma and
increase the size of the plasma.
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4. Experimental Results and Discussion
4.1. Experimental System

An MPT experimental system was set up, as shown in Figure 9. The system uses a
WEPEX 1280A DC source (MEGMEET, Shenzhen, China) to supply power to a Panasonic
2M244-M1 magnetron. The maximum output power of the magnetron is 1 kW, the mag-
netron is connected with the double-directional coupler and the rectangular waveguide port
of the plasma generator. In the experiment, argon gas with a concentration of 99.99% was
used, and the gas entered the reaction chamber from the gas inlet unit at the bottom of the
plasma generator. During the experiment, the incident power and reflected power of each
port were measured with a Keysight N1912A microwave power meter (KEYSIGHT, Santa
Rosa, CA, USA), and the inlet gas flow was measured with a flowmeter. The experimental
system is shown in Figure 10.
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4.2. Influence of Gas Inlet Modes on the Plasma Torch

The height of plasma torches generated by the four inlet units is shown in Figure 11.
It reaches its highest point at an inflow rate of 20 L/min, and decreases as the inflow rate
increases. When the two-hole and four-hole inclined inlet units are used, the height of the
plasma torch first increases and then decreases with increasing inflow rate, followed by a
sharp drop. For an inflow rate of 20 L/min, the height of the plasma torch is 470 mm and
520 mm, as shown in Figure 12b,d, respectively, and the threshold inflow rate (at which
the plasma torch height is 0 mm) is 70 L/min and 82 L/min, respectively. On the other
hand, when two-hole and four-hole horizontal inlet units are employed, the height of the
plasma torch also follows a similar pattern of initially increasing and then decreasing with
increasing inflow rate, but the change trend is relatively flat. The height of the plasma
torch is approximately 490 mm and 545 mm for an inflow rate of 20 L/min, as shown
in Figure 12a,c, respectively, and the threshold inflow rate is 89 L/min and 95 L/min,
respectively.

Combined with the simulation and experiment results, the analysis reveals the following:
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a. Increasing the number of inlet holes results in a more even division of gas flow
into multiple gas inlet routes, particularly under low inflow rates. This has a positive
impact on the uniformity of gas flow in the plasma excitation region, leading to a more
uniform plasma with higher electron density. Consequently, the height of the plasma torch
is increased;

b. An increase in the angle of the inlet leads to an increase in the axial velocity in the
plasma excitation region. However, at high inflow rates, the plasma accelerates away from
the excitation region, resulting in a decrease in electron density and stability of the plasma
torch, and consequently narrowing the working range.

Experiments confirmed that the four-port horizontal gas inlet unit is more effective in
generating large-scale plasma torches (see Video S1).
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4.3. Microwave Efficiency Analysis

Based on the four-port horizontal gas inlet unit, the influence of inflow rate on mi-
crowave efficiency was further investigated. In the experiment, the feed power of each port
is 996 W, 999.67 W, 999.3 W and 998.3 W, respectively, and the total feed power is 3993.27 W.
The reflected power of each port shown as Figure 13, the microwave efficiency shown as
Figure 14.

The experimental results show that with an increase in inflow rate, the microwave
efficiency gradually decreases first. When the inflow rate 30 L/min to 80 L/min, the
microwave efficiency is maintained at about 85%, the average microwave efficiency of the
system is 86%. The simulation results show that the microwave efficiency stays at about
88% with an increase in inflow rate. The error rate between experimental and simulation
results is 3.83%.
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5. Conclusions

In this paper, a large-scale microwave plasma torch device based on four ports was
designed. Based on the conductive properties of plasma, the plasma and coupling cavity can
form quasi-coaxial structure. The coupling cavity and quartz tube are filled with focusing
dielectric to form surface waves with high electric field intensity on the plasma surface, so
as to improve the plasma size and uniformity. Based on electromagnetic field simulation
results, the geometric structure of the plasma generator was improved and optimized.
Four kinds of gas inlet units were designed, and simulation analysis and experimental
verification were carried out. The experimental results show that the maximum height of
the plasma torch is 545 mm (for inflow rate 20 L/min), the diameter of the plasma torch
reaches to 63 mm, the working range of the device is 10 to 95 L/min, and the average
microwave efficiency of the device is 86%. In the future, the large-scale MPT can be more
attractive in industrial application, and this device can be applied in solid waste treatment,
commercial scale hydrogen production and other fields.
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11. Yayalık, İ.; Koyun, A.; Akgün, M. Gasification of municipal solid wastes in plasma arc medium. Plasma Chem. Plasma Process.
2020, 40, 1401–1416. [CrossRef]

12. Sanders, N.A.; Pfender, E. Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs.
J. Appl. Phys. 1984, 55, 714–722. [CrossRef]

13. Jenista, J.; Heberlein, J.; Pfender, E. Model for Anode Heat Transfer from an Electric Arc. In Proceedings of the 4th International
Thermal Plasma Processes Conference, Athens, Greece, 15–18 July 1996.

14. Gabbar, H.A.; Darda, S.A.; Damideh, V.; Hassen, I.; Aboughaly, M.; Lisi, D. Comparative study of atmospheric pressure DC,
RF, and microwave thermal plasma torches for waste to energy applications. Sustain. Energy Technol. Assess. 2021, 47, 101447.
[CrossRef]

15. Kim, J.H.; Hong, Y.C.; Kim, H.S.; Uhm, H.S. Simple microwave plasma source at atmospheric pressure. J. Korean Phys. Soc. 2003,
42, S876–S879.

16. Kwak, H.S.; Uhm, H.S.; Hong, Y.C.; Choi, E.H. Disintegration of carbon dioxide molecules in a microwave plasma torch. Sci. Rep.
2015, 5, 18436. [CrossRef]

17. Shin, D.H.; Hong, Y.C.; Lee, S.J.; Kim, Y.J.; Cho, C.H.; Ma, S.H.; Chun, S.M.; Lee, B.J.; Uhm, H.S. A pure steam microwave plasma
torch: Gasification of powdered coal in the plasma. Surf. Coat. Technol. 2013, 228, S520–S523. [CrossRef]

18. Xiao, W.; Huang, K.; Zhang, W.; Lin, Y. Modeling of Argon Plasma Excited by Microwave at Atmospheric Pressure in Ridged
Waveguide. IEEE Trans. Plasma Sci. 2016, 44, 1075–1082. [CrossRef]

19. Chen, W.; Zhang, Y.; Wang, Y.; Zhong, Y.; Huang, K. A novel high-efficiency microwave plasma multi-ridges field compressed
reactor. Phys. Plasmas 2023, 30, 023502. [CrossRef]

https://www.mdpi.com/article/10.3390/pr11092589/s1
https://doi.org/10.1088/0022-3727/34/18/304
https://doi.org/10.1109/TPS.2005.845005
https://doi.org/10.1088/0963-0252/16/1/022
https://doi.org/10.1109/TPS.2014.2319156
https://doi.org/10.1109/TPS.2022.3173372
https://doi.org/10.1109/TPS.2014.2323555
https://doi.org/10.1063/1.3525245
https://doi.org/10.1351/pac199264050629
https://doi.org/10.1109/TPS.2017.2759501
https://doi.org/10.1016/j.seta.2020.100737
https://doi.org/10.1007/s11090-020-10105-y
https://doi.org/10.1063/1.333129
https://doi.org/10.1016/j.seta.2021.101447
https://doi.org/10.1038/srep18436
https://doi.org/10.1016/j.surfcoat.2012.04.071
https://doi.org/10.1109/TPS.2016.2568266
https://doi.org/10.1063/5.0127245


Processes 2023, 11, 2589 15 of 15

20. D’Isa, F.A.; Carbone, E.; Hecimovic, A.; Fantz, U. Performance analysis of a 2.45 GHz microwave plasma torch for CO2
decomposition in gas swirl configuration. Plasma Sources Sci. Technol. 2020, 29, 105009. [CrossRef]
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