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Abstract: Efficient monitoring of the blast furnace system is crucial for maintaining high produc-
tion efficiency and ensuring product quality. This article introduces a hybrid cluster variational
autoencoder model for monitoring the blast furnace ironmaking process which exhibits multimode
behaviors. In contrast to traditional approaches, this method utilizes neural networks to learn data
features and effectively handles the diverse feature types observed in different production modes.
Through the utilization of a clustering process within the hidden layer of the variational autoencoder,
the proposed technique facilitates efficient fault detection in the context of multimodal blast furnace
data. Based on the variational autoencoder model, this study further establishes a unified monitor-
ing index and defines a method for computing the control limits. The application of the model to
real blast furnace data reveals its proficiency in accurately identifying faults across diverse modes;
compared with the probabilistic principal component analysis based on the local nearest neighbor
standardization method and the recursive probabilistic principal component analysis, the model
shows a reduction in false positives by up to 10.3% and a substantial reduction of 19.2% in the missed
detection rate. This method achieves a remarkable false detection rate of only 0.2% and 0 instances of
missed detection.

Keywords: multimode blast furnace system; process monitoring; variational autoencoder; Gaussian
mixture model

1. Introduction

The iron and steel industry, as a cornerstone of modern manufacturing, plays a vital
economic role in modern manufacturing. Blast furnace ironmaking is pivotal within this
sector, significantly affecting system stability and productivity. The blast furnace system
includes subsystems like feeding, gas treatment, hot air, injection, iron-out, and the furnace
body [1]. The furnace body is central to ironmaking, housing reactions yielding molten
iron. Here, raw materials enter through the top distributor, while hot air, oxygen-enriched
gases, and fuel are injected from the bottom [2]. Liquid iron and slag exit the lower section,
and gas is collected from the upper section [3]. Various types of faults occur in blast
furnace ironmaking, such as suspension, low feed, cooling, accumulation, and airflow
issues, stemming from factors like raw material instability, external fluctuations, manual
errors, and equipment glitches. Therefore, detecting and addressing these faults early is
crucial for maintaining production quality.

Two primary fault detection methods are employed in blast furnace ironmaking;:
expert system-based methods and data-driven methods [3]. Expert system-based meth-
ods rely on process knowledge and operator expertise to identify abnormal states within
the blast furnace [4]. These methods are characterized by their ease of comprehension
and widespread utilization, making them the most commonly employed fault detection
approach. However, the expert system-based method requires substantial efforts in es-
tablishing and maintaining a comprehensive knowledge base. An alternative approach is
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data-driven, utilizing historical data; this approach uncovers relationships among variables
derived from historical data to construct a fault detection model. Multivariate statistical
process control such as principal component analysis (PCA) has been used to monitor the
operational state of experimental blast furnaces, achieving significant success [5]. Other
machine-learning-based approaches, including techniques like autoencoder [6] and sup-
port vector machines [7-9], have also been widely employed. Given that blast furnace
ironmaking represents a traditional continuous chemical process, its data typically exhibit
characteristics such as nonlinearity, multimodality, and dynamic patterns, etc. Researchers
such as Zhou et al. [10] have employed the kernel principal component analysis (KPLS)
method to deal with this. And Liu, Zeng et al. [11] developed a novel probabilistic monitor-
ing framework using the probabilistic linear discriminant analysis (PLDA). Additionally,
Zhang et al. [2] have demonstrated the efficacy of using denoising autoencoders to extract
nonlinear characteristics, exhibiting promising results in detecting cold failures in blast
furnaces. Traditional methods employed in the blast furnace ironmaking process have
predominantly emphasized stable operating conditions. However, due to fluctuations in
raw materials and changes in product proportions, the operational conditions of the blast
furnace process often experience variations. In such instances, a multimode process fault
detection method for blast furnace ironmaking becomes increasingly significant [12]. Zhu
et al. [13,14] have enhanced the algorithm model based on the sliding window technique.
Zhou [15] has proposed a fault detection method utilizing an improved independent com-
ponent analysis (ICA) algorithm to discern the importance of different samples, thereby
facilitating more reasonable model updates. Despite promising results obtained in simula-
tion datasets, the application of these methods in blast furnace ironmaking is limited by the
fact that sliding window methods discard useful information from long-term historical data.

This article presents a novel fault monitoring method for modeling the multimodal
blast furnace system. The proposed method combines the variational autoencoder (VAE)
framework with a Gaussian mixture model (GMM) to achieve clustering and fault monitor-
ing objectives. The VAE learns the feature representation of nonlinear data and conducts
cluster analysis on potential feature representations using the mixture distribution model.
The model learns the latent features and reconstructs them as the observed multimodal
blast furnace system data through the hybrid cluster VAE method. For fault detection, the
method utilizes normal operational data for training and infers the probability density
of reconstructed data by solving the posterior probability. Based on this, a probability
monitoring index and its corresponding control limit are derived. The proposed method
effectively addresses the challenges of nonlinearity and multimodality, rendering it suitable
for fault detection in blast furnace ironmaking systems.

2. Variational Autoencoder and Gaussian Mixture Model

The variational autoencoder (VAE), a type of directed probability graphical model im-
plemented through a variational Bayesian method, has consistently demonstrated excellent
performance in uncovering the latent features of data. Figure 1 depicts the structure of the
variational autoencoder. Assuming that an observed dataset X € RN*" has been collected,
with 7 being the number of samples and m the amount of variables, let x € R™ be a data
sample and z € R? the latent feature vector, where d is the number of latent features. The
variational autoencoder comprises two primary components: the decoder part, referred to
as pp(x|z), and the encoder part, denoted as g4 (z|x), where ¢ and 6 denote the parameters.

The decoder part, py(x|z), of the variational autoencoder is commonly referred to
as the generative model. It generates the high-dimensional observed variables x based
on the latent variables z, with a prior assumption distribution. Through the trained
network structure, the decoder performs the task of data reconstruction. Typically, the
prior distribution of the latent variables is chosen by the standard normal distribution
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p(z) ~ N(0,1), and the decoder part can be described as a multivariate normal distribution
as shown by the following formula:

po(xlz) = N (u(z;0), diag(c*(; 6))) )

Here, p(z;0) and diag(c?(z; 0)) represent the mean vector and covariance matrix,
respectively.

.4

Figure 1. The structure of the variational autoencoder.

The encoder of the variational autoencoder, also referred to as the inferential model or
identification model, maps the observed data to a lower-dimensional latent space through
nonlinear dimensionality reduction. The encoder operates under similar assumptions as
the generative model regarding the distribution of the observed variables. The specific
model is as follows:

99 (%) = N (u(x; p), diag(c* (x; §))) @

To estimate the unknown parameters in the variational autoencoder (VAE) model,
the evidence lower bound (ELBO) is used as the cost function. The parameters are then
determined by maximizing this variational lower bound:

L(0,¢) = ar%r;laX(Eq¢(z\x) [log po(x|2)] — D[94 (z|%)[|p(2)]) ®)

Here, Dk (q||p) represents the Kullback-Leibler (KL) divergence, which serves as a
metric for measuring the difference between two probability distributions. It quantifies how
one distribution diverges from another, providing a means to compare the dissimilarity
between probability distributions [16].

The Gaussian mixture model (GMM) can be used to classify data into different cate-
gories by considering their probability distribution. It assumes that the entire dataset is
generated from a mixture of different Gaussian distributions. Assuming that the model
consists of K Gaussian distributions, and given the parameter ®, the posterior distribution
of observed data Y = {y1,¥2,...,¥n} € RN*" can be described as follows:

K

p(yl®) = Z p(B)p(yl8) = Y mif(y|8x) 4)

k=1

K
Here, K represents the number of Gaussian components, 7ty > 0, Y 7y = 1, and 7ty is
k=1
the weight of the k-th Gaussian sub-model. f(y|dy) is the posterior distribution of y under
the k-th sub-model, with &, = (p;, Zx) and © = {#,9>,...,}. Hence, f(y|d) can be

described as follows:

Ty 1y
f(518%) = 1m 1eXp(_(y Hi) 22k (y ﬂk))

T ®)
(V2m) ||
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where m stands for the dimension of the data, and the estimation of the parameters
O,I1 = {7y, 7Ty, ..., m;} in the Gaussian mixture model can be achieved by maximizing
the log-likelihood estimation given the training dataset, as follows:

O, II = argmaxlog L(©,IL;Y) (6)
oI

Here, the log-likelihood function is

N N K
log L(©,ILY) = ZlIOgP(yn\@)) = 2110g(k2 T f (Y, 18%)) )
n= n= =1

When dealing with the parameter estimation of the Gaussian mixture model, direct
differentiation cannot be easily applied to maximize the log-likelihood function. Therefore,
the Expectation-Maximization (EM) algorithm can be employed to solve the maximum
likelihood estimation of the parameters in the probabilistic model with hidden variables.
The EM algorithm iteratively updates the parameters by alternately performing the E-step
(expectation) and M-step (maximization) until convergence is achieved. This iterative
process allows for the estimation of the model parameters in the presence of hidden
variables.

3. Multimodal Process Monitoring Method Based on Hybrid Cluster
Variational Autoencoder

3.1. Model Structure and Parameter Estimation of the Hybrid Cluster Variational Autoencoders

In this section, the details of the hybrid cluster variational autoencoder model are
presented. The model introduces a clustering effect on the latent variables, allowing for
unsupervised clustering of the hidden-layer variables. This clustering capability facilitates
fault monitoring of multimodal data during the generation process of the variational
autoencoder. Furthermore, an enhanced version of the variational lower bound is derived
for the proposed model. Moreover, a probability index for process monitoring is introduced
to further enhance the fault monitoring capability. By considering the clustering aspect of
the data, the proposed model effectively addresses the objective of the multimode blast
furnace system.

In contrast to the traditional variational autoencoder, the proposed model integrates
the variational autoencoder with a Gaussian mixture distribution, specifically designed to
handle multimodal data. The aim is to ensure that data of the same mode exhibit proximity
in the hidden layer, while data from different modes remain distinct.

In the variational autoencoder model, a common assumption is that the prior distribu-
tion p(z) of latent variables follows a standard normal distribution. However, this often
restricts variational autoencoders to representing singular distributions, thereby limiting
their capability to learn complex distributions with multimodal attributes. To enhance the
model’s capacity for encompassing various forms of multimodal data, it is proposed to
constrain the prior distribution of latent variables using a Gaussian mixture distribution.
This adaptation enables the model to combine different modes in accordance with the
characteristics of the Gaussian mixture distribution during the latent representation of
observed variables. Within the Gaussian mixture distribution, the stratification of distinct
data categories is achieved by introducing a parameter-controlled variable Y. Similarly,
disparate categories of observation variables can be delineated by introducing parameter ¢
in the HCVAE model.

Within the formulated hybrid clustering variational autoencoder architecture, the
latent variables encompass both a discrete variable ¢, signifying the category of the observed
data, and a continuous latent variable z, a constituent also present in the conventional
variational autoencoder.
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Firstly, we describe the decoding part of the network; in this part, the hidden layer
of the model represents the latent variable z. The observed sample x is generated from z
and c.

The joint probability distribution, also known as the generative model, can be ex-
pressed as follows:

p(x.z,cr) = po, (x|z)pe. (z|cr)p(ck) 8)

Since z, x, and c are independent of each other, the probability can be defined in an
alternative manner as

p(cx) = Cat(cy|rry)
po. (z|cx) = N (uy(cx; 02), diag (o7 (ck; 62))) )
po, (x|z) = N (1,(; 0y), diag(0%(2; 6x)))

The categories are generated through a categorical distribution ¢, ~ Cat(IT). The
potential vector is then generated based on the generated categories, and the original
input data are reconstructed using the decoding part of the hybrid cluster variational
autoencoder, pg, (x|z), by sampling the latent variable z. Here, K is a predetermined initial
parameter representing the number of modes in the input space. The prior probability of

K
class k (k =1,...,K) is denoted by 7ry, where 7t € RX, ¥ 7r; = 1, Cat(TI) is the distribution
k=1
controlled by the parameters I, and the prior is a uniform distribution of p(c;) = K~!. The
K
distribution p(z) = Y. pe, (z|ck)p(ck) can be considered a Gaussian mixture distribution.
k=1

And the means p(ck; 0;) and variances diag (o2 (cx; 62) of each category of the mixture can
be given by the networks within the input data. During the training process, the parameters
will be updated. Then, by sampling from the distribution pg, (z|cy), the latent variable
z can be obtained, and the mean p,(z; 8;) and variance diag(c?2(z; 8,) are calculated by
the networks.

With Equation (9), the logarithmic likelihood of the hybrid clustering variational
autoencoder can be rederived as follows:

log p(x) =log [ Y p(x,z,c)dz >
z C

E p(xz.cr)

(10)
¢ (2,cx[x) [log q¢(z,ck\x)] = ‘CELBO (X)

where Lgrpo(x) is the evidence lower bound, and g4 (z, ci|x) is the encoding part of the
networks, which is the same as the recognition model.

Furthermore, for the encoding part of the hybrid cluster variational autoencoder, the
joint distribution g4 (z, cx|x) can be expressed as

99 (2, cklx) = 49, (2%)q4, (ck|x) (11)

The encoding model consists of two parts. g4_(ck|x) is obtained by the neural network
with a Softmax classifier. For the distribution g4_(z|x), the coding part of the variational
autoencoder, whose outputs are the mean p(x; ¢, ) and variance o?(x; ¢, ), is used to obtain
the latent variables; this process can be described by u(x; ¢,), 7%(x; ¢,). The model’s
description is illustrated in Figure 2.

9. (2lx) = N (u(x; ¢.), diag(c?(x; ¢.))) (12)
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i (c30.)
diag(o7} (c,: 6.

Py (x]2)
output X

Figure 2. Schematic of the HCVAE model.

Based on Equations (8), (9) and (11), the logarithmic likelihood of the p(x) can be
rewritten as

Le180(X) = Egy (2,00 [log q¢(f‘zzc§fx)>]
= E%(Z,CHX) [log p(x,z,cr) —log 44 (z, ci|x)] 13)

= Ej, (2,¢x) 108 Po, (X|2) +1og po, (z[ck)
+log p(ck) —logge._(z|x) —logge_(ck[x)]

Then, by employing the stochastic gradient variational estimation and the reparame-
terization technique, the equation for Lr;po(x) can be improved as

Lerpo(x) =

1M (1) (1)
zEme log piy |m + (1 — xm) log(1 — pz” |m)

(14)

%zq%(cux) >: (1og o3l + Gl + Wepuld”

71

+%q¢c (ck|x) log ‘M:(TW + %dgl (1+1loga?|y)

Here, L is the number of Monte Carlo samples in the SGVB estimation, M is the
dimension of data x, x;, represents the m-th element of x, D is the dimension of y,, 0'%, 73 o2,
d represents the d-th element, and 7. is the prior probability of class c.

Once the network is constructed, an issue arises if the latent space is directly sampled
and linked with the decoder as it outputs the mean and variance. This situation can lead
to difficulties in the network’s backpropagation process, hindering gradient propagation.
To address this, a reparameterization trick is employed, which introduces a random noise
variable to reparameterize the latent variable sampling process.

In the encoding part of the variational autoencoder, the mean and the variance can be
obtained from the networks:

W, 20 = £(z0;0,) (15)

where z()) is the I-th sample obtained from Monte Carlo sampling of the distribution
q¢.(z|x). By employing the reparameterization technique, the expression for z() can be
given as follows:

() — ygl) + (7751) oell (16)
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0

where ¢(!) follows the standard normal distribution, and the mean ;' and variance param-
eters Oél) are obtained from the encoder.
Furthermore, when dealing with the evidence lower bound, the objective is to maxi-

mize it in order to optimize the parameters.

p(xz.cr) ]
99 (z,ck[x)

= | Lap. (0. (213 llog P X0 + log Lt 2] de

Lerpo(X) = Eg,(2,6/%)[108

(17)
= [ . (z]x) log LeX20(@) 4,
J q¢, g EE

—4¢. (2[x)Dx1(q¢, (cc[x)[|p(ck|2))dz

In the equation, the first term is independent of ¢, and the second term is non-negative.
Therefore, to maximize the evidence lower bound, it is necessary that Dk (9¢_ (c[x)||p(c|z)) = 0.
In this case, g(cx|x) can be expressed as follows:

d(exlx) = pleylz) = 2P )

¥ p(ck)po. (zlck)
k=1

The above formula reasonably addresses the problem of mode identification in in-
put data.

When estimating the maximized ELBO, the potential representation z can be obtained
through sampling. At this point, it becomes possible to determine which class the input
sample belongs to by examining the distribution g. By analyzing the parameters of g, one
can assign the input data to a specific class or cluster based on the highest probability. This
allows for classification or clustering of the data based on the learned representations in
the latent space.

3.2. Process Monitoring Method

The process monitoring approach proposed, grounded in the HCVAE model, is con-
structed within an unsupervised learning framework. During the model training phase,
only normal data were employed. This training process iteratively refines the network
model parameters by optimizing the variational lower bound. Concerning the data to be
processed, the process data are translated into the latent variable space by learning the
model g4 (z, ci|x). Subsequently, the likelihood of the input data belonging to each category
is computed using Formula (18), followed by sampling from the latent variable space.
This sampled data are then processed through the decoder p(x,z, cx) to derive the fault
monitoring indicators. This estimated density serves as a statistical index for process fault
monitoring. By comparing the estimated density with control limits determined through
Monte Carlo sampling, process faults can be detected.

Based on the generation process of the VAE model described earlier, the marginal
probability density of the observed variable x can be calculated as

px) = [ L pxzcdz (19)

For the normal variable x of the same mode, the probability of pg(x|z) is concentrated
in a region with a greater probability. To sample from this concentrated distribution, we
can utilize importance sampling with a concentrated posterior probability distribution. By
incorporating importance sampling, the formula can be rewritten as

Pz, (20)

x) =E;, (z)x
PO = a0 g Gl
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It can subsequently be written as sampling;:

_1& po, (x|zi) pe. (zilco) p(ck)
PO~ F L T (el @

In this formulation, I is the number of importance samples, and z; denotes the i-th
sample obtained from the concentrated posterior distribution g4_(z;|x). This approxima-
tion allows us to estimate the marginal probability density of the observed variable x
by leveraging importance sampling and considering the concentration of the posterior
distribution.

Drawing upon the principles of probability and statistics, the smaller the probability
p(x), the higher the likelihood of a fault occurrence. Therefore, p(x) can be utilized for fault
detection. In the context of monitoring, it is crucial to establish control limits for detecting
potential abnormal behavior. By defining confidence limits, we can determine the control
limits of probabilities using the following integral [17]:

/jl p(x)dx =1 —a (22)

In this equation, x, represents the threshold value corresponding to the confidence
level 1 — a. By solving this integral equation, we can determine the control limits of
probabilities, enabling the identification of potential abnormal behavior in the monitored
process.

As for the aforementioned formula, direct integration can be challenging, so we can
approximate it by converting the integral into a Markov Chain Monte Carlo (MCMC)
sampling method. In the context of the VAE mixture model, both the encoding process and
decoding process can be viewed as a simple Markov chain. Through the MCMC sampling
process, a large number of samples with complex distributions can be generated [18].

By utilizing the MCMC samples, we can estimate the control limit / through an
approximate integral: obtain the S samples from p(x!)) using MCMC sampling; calculate
the likelihood p(xj ) of each sample x/; and sort the obtained results in descending order.
The control limit can be obtained by h = p(x;), where | = S(1 — «).

Since p(x) is a non-negative number between 0 and 1, we can convert it into its
negative logarithm to better visualize the monitoring results. This transformation allows
us to express the monitoring index as follows:

Lp(x) = —log p(x) (23)

The control limit is redefined as h = —logp(x;). If Lp(x) > h, the data x, are
considered faulty.

The process monitoring strategy for blast furnace ironmaking, which employs a
hybrid clustering variational autoencoder for multimode data, consists of two distinct
phases: offline modeling and online monitoring. The offline modeling phase involves the
following steps:

Step 1: Collect a sufficient number of samples with modal labels to construct a database
for model training.

Step 2: Standardize the data to ensure the data have zero mean and unit variance.

Step 3: Construct the network proposed in Section 3 and train it using the pre-
pared dataset.

Here are the steps involved in constructing and training the network:

1. Network Architecture: Design the architecture of the hybrid clustering variational
autoencoder model. This includes defining the number of layers, the size of each layer,
and the activation functions to be used. The model should have separate encoding
and decoding parts, with the clustering component integrated into the hidden layer.
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2. Training Data Preparation: Split the collected and standardized dataset into training
and validation sets. The training set is used to update the model parameters.

3. Validation and Hyperparameter Tuning: learning rate, batch size, and the number of
clusters, through techniques like cross-validation or grid search.

Step 4: Compute the monitoring index, and the control limit is determined using
Equation (22).

The online monitoring procedure consists of the following steps:

Step 1: Collect the monitored sample and standardize it.

Step 2: Input the data into the network and calculate the monitoring index using
Equation (21) and Equation (23). If Lp(x) > h, the data x,, are considered faulty; otherwise,
it is a normal sample.

4. Application to a Real Blast Furnace

This section focuses on the analysis of actual production data collected from a blast
furnace in China. The blast furnace under consideration has an inter volume of 2500 m3. For
the training process, 1500 samples of 10 process variables were considered, each collected at
a sampling interval of 2 min. These variables include x; (quality of blast), x, (temperature of
blast), x3 (pressure of blast), x4 (quantity of coal powder), x5 (top pressure), x¢ (permeability
index), x7 (quantity of blast oxygen), xg (coke ratio), x9 (CO concentration), and x19 (CO,
concentration) [11]. These samples include process data from three different modes; each
training sample is labeled with the corresponding mode, indicating the specific operating
state of the blast furnace during that period. The modality number for each sample is listed
in Table 1.

Table 1. The number of samples in each modality.

Modes The Number of Samples
Mode 1 356
Mode 2 357
Mode 3 787

The test set consists of 1000 samples, which were also collected at a sampling interval
of 2 min. It is worth noting that the fault occurs after the first 500 sample points in the test
set. The abnormality is primarily attributed to the fluctuation of CO concentration (xg) in
the flue gas, which is caused by excessive coal powder (x4) [19]. Figure 3 shows the time
series of the 1000 samples.
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Figure 3. The test series data of 10 variables.
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Figure 3 clearly shows a rapid numerical increase in variables x7 and xg, while the
CO concentration (x9) decreases in the last 500 points. However, an important observation
is that the modal information of the data cannot be solely obtained from the multimode
series data.

The proposed HCVAE model adopts a network structure consisting of five layers:
an input layer, two intermediate layers, a hidden layer, and an output layer. The size
of the intermediate layer is set to 26. The parameters of the latent variable in HCVAE
were determined as three by 5-fold cross-validation, which minimizes the reconstruction
error. During the model training process, the Adaptive Moment Estimation (ADAM)
optimizer was employed with a learning rate of 0.001, the batch size was set to 32, and the
activation function used in the model was the hyperbolic tangent (Tanh). After completing
the model training process, the mode identification and fault monitoring were performed
on a dataset that includes fault samples. The mode identification results are depicted in
Figure 4, illustrating the successful identification of three modes. The results indicate that
the data belonging to the same mode exhibit concentration and continuity, resembling the
production process of blast furnace ironmaking, and the model effectively captures the
mode transitions. These findings validate the reasonable and effective mode identification
capability of the HCVAE model.

The Mode Identification using HCVAE

. 3 s Mode. 1 L

O M ode. 2

Z e Mode. 3

Q L] - -
o]

§

1 L : - =1 L . om —
0 100 200 300 400 500 600 700 800 900 1000

Sample
Figure 4. The mode identification using HCVAE for blast furnace data.

Notably, the mode identification results from the 500th to 1000th samples exhibit more
pronounced anomalous identification compared with the normal operating state. This
suggests that faults influence the data’s process characteristics, consequently affecting the
mode identification results. Regarding fault monitoring, a unified statistic for fault moni-
toring was constructed. Figure 5 illustrates the monitoring results with a 95% confidence
limit. It can be observed that at the 500th sample point, there is a sudden increase in the
statistic, and subsequent sample data consistently exceed the confidence limit, indicating a
malfunction in the blast furnace ironmaking system during operation.

HCVAE

1.0

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0 200 400 600 800 1000
Samples

Figure 5. Monitoring results of blast furnace fault using HCVAE.
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For comparison, the probabilistic principal component analysis based on the local
nearest neighbor standardization (LNSPPCA) method proposed in reference [20] and
the recursive probabilistic principal component analysis (RPPCA) method proposed in
reference [21] was tested. The LNSPPCA method identifies the K nearest neighbors for each
sample point in the dataset and forms a neighbor set. The mean and standard deviation
of the neighbor set are used to standardize the current sample points, followed by fault
monitoring using the PPCA method. For the blast furnace system, the number of principal
components in the LNSPPCA method was set to three based on the results of a 5-fold cross-
validation. The RPPCA method is grounded in the analysis of the singular values of the
historical data matrix. It segments the entire process into distinct steady modes and mode
transitions. As the process shifts from one mode to another, the RPPCA algorithm facilitates
the recursive update of model parameters [21]. The number of principal components was
set to three based on the results of a 10-fold cross-validation. The confidence level of the
two methods was set to 95%. The fault monitoring results of LNSPPCA are shown in
Figure 6, and the fault monitoring results of RPPCA are shown in Figure 7.

LNSPPCA

25 A

20 1

154

SPE

10 4

0 200 400 600 800 1000
Samples

Figure 6. Monitoring results of blast furnace fault using LNSPPCA.

recursive PPCA

0 200 400 600 800 1000
Samples
Figure 7. Monitoring results of blast furnace fault using RPPCA.
Comparing Figures 5-7, it is evident that the monitoring of HCVAE yields the best

detection results. Although all the methods effectively identify faults after the 500th sample,
aligning with the over-coal injection fault indicated by the dataset, a closer examination



Processes 2023, 11, 2580

12 0f13

References

of the statistical indicators reveals that LNSPPCA exhibits a higher rate of false positives,
with a monitoring error rate of 10.5% at the 95% confidence level. Conversely, the HC-
VAE method avoids missed detections and false positives. The proposed hybrid cluster
variational autoencoder model outperforms the LNSPPCA method by considering the
multimodality and nonlinearity of the blast furnace ironmaking system. The LNSPPCA
method assumes a linear subspace for the underlying data distribution, which often leads
to inadequate fault detection performance in industrial data. In addition, as shown in
Figure 7, the RPPCA method has a low false alarm rate, with only one instance among
all normal samples being erroneously identified as faulty. This outcome is similar to the
HCVAE method, exhibiting a mere 0.2% false positive rate. However, the RPPCA approach
proves ineffective when confronted with faulty samples, as it experiences a considerable
number of missed detections. Specifically, the rate of missed detections, whereby faulty
samples are incorrectly classified as normal ones, reaches as high as 19.2%. The efficacy of
the RPPCA method is heavily reliant on the accuracy of its mode classification results, a de-
pendency that could contribute to a significant error rate. This outcome renders the method
unsuitable for practical real-world applications. The hybrid cluster variational autoencoder
model employs a nonlinear dimensionality reduction method through neural networks
for fault monitoring of multimodal blast furnace data. This fundamentally demonstrates
the model’s suitability for handling complex industrial process data. The experimental
results validate the effectiveness of the proposed monitoring method and strategy in the
fault monitoring of the complex multimodal blast furnace ironmaking process.

5. Conclusions

This paper presents a novel fault monitoring method based on a hybrid cluster vari-
ational autoencoder model, aiming to address the challenge of multimode process fault
monitoring in blast furnace ironmaking. In contrast to traditional methods, we utilize a
neural network to learn the data features. With changing production conditions, data from
various modes frequently display distinct feature patterns. By harnessing the clustering
process within the hidden layer, facilitated by the variational autoencoder, the method ef-
fectively monitors faults in multimode data. Based on the proposed model, we established
a unified monitoring index and determined the calculation method for the control limit.
The application of this method in blast furnace ironmaking demonstrates its effectiveness
in identifying faults occurring between different modes in the multimode process. The
approach properly accommodates the nonlinearity and temporal variability of the blast
furnace ironmaking process, leading to better fault detection capability compared with the
comparison method.
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