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Abstract: In this work, the cohesion-specific inputs for a recent continuum theory for cohesive
particles are estimated for moderately cohesive particles that form larger agglomerates via discrete
element method (DEM) simulations of an oscillating shear flow. In prior work, these inputs (critical
velocities of agglomeration and breakage and collision cylinder diameters) were determined for
lightly cohesive particles via the DEM of simple shear flow—i.e., a system dominated by singlets
and doublets. Here, the DEM is again used to extract the continuum theory inputs, as experimental
measurements are infeasible (i.e., collisions between particles of a diameter of <100 µm). However,
simulations of simple shear flow are no longer feasible since the rate of agglomeration grows uncon-
trollably at higher cohesion levels. Instead, oscillating shear flow DEM simulations are used here to
circumvent this issue, allowing for the continuum theory inputs of larger agglomerate sizes to be
determined efficiently. The resulting inputs determined from oscillating shear flow are then used
as inputs for continuum predictions of an unbounded, gas–solid riser flow. Although the theory
has been previously applied to gas–solid flows of lightly cohesive particles, an extension to the
theory is needed since moderately cohesive particles give rise to larger agglomerates (that still readily
break). Specifically, the wider distribution of agglomerate sizes necessitates the use of polydisperse
kinetic-theory-based closures for the terms in the solids momentum and granular energy balances.
The corresponding continuum predictions of entrainment rate and agglomerate size distribution were
compared against DEM simulations of the same system with good results. The DEM simulations
were again used for validation, as it is currently extremely challenging to detect agglomerate sizes
and the number of fractions in an experimental riser flow.

Keywords: cohesion; discrete element method; particle flows; continuum theory

1. Introduction

Cohesion between solid particles arises from van der Waals or capillary forces, among
others [1–3]. These cohesive forces may cause the particles to stick together and form
agglomerates [4]. Such agglomeration has been shown to decrease the entrainment of
particles in fluidized beds [5], affect the segregation and mixing of particles [6], and
cause other effects [3,6,7]. Empirical correlations for the entrainment rate of particles from
fluidized beds vary by orders of magnitude [8], even for non-cohesive particles. For systems
with cohesive particles, semi-physical estimates of agglomerate size may vary up to an
order of magnitude when applied to the same system [9]. A better physical understanding
of the effects of cohesion is necessary to better predict flows involving cohesive particles.
Such predictions are important for the optimization and design of unit operations such as
fluidized catalytic crackers, tumblers used to season food, or the mixing of pharmaceuticals.

One technique for the prediction of flows with cohesive particles is the discrete element
method (DEM). In the DEM, each particle is tracked using Newton’s second law, and
cohesion is incorporated directly [10]. Although the DEM has been widely used for
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cohesive flows (e.g., [3,11–18]), it is computationally expensive when compared to other
methods, such as the continuum theory [19]. The DEM is therefore less useful for direct
application to commercial units as well as most lab-scale flows [20,21].

An alternative to the DEM for the prediction of cohesive flows is the continuum
approach, which can be applied to unit operations. Continuum theories utilize mass,
momentum, and granular energy balances for the solids with closures based on a kinetic-
theory analogy. Cohesion is accounted for within this continuum framework via a force
balance or a population balance that is coupled to the kinetic-theory balances. In the force-
balance approach, the forces acting on an agglomerate are balanced, leading to an algebraic
equation for a single, local agglomerate size [22,23]. Although the advantage of this force
balance approach is the simplicity of solving an algebraic equation, one disadvantage is
the limitation of only a single agglomerate size locally. In contrast, the population balance
approach involves a differential balance on the number density of agglomerates, with source
and sink terms representing the birth and death of an agglomerate size due to aggregation
and breakage, which is solved for each agglomerate size. Accordingly, the population
balance approach has the advantage of allowing for the rigorous solution of a distribution of
agglomerate sizes at a given location but also has the disadvantage of requiring constitutive
equations for the birth and death terms due to aggregation and breakage.

Many previous works with population balances of cohesive-particle flows have in-
volved simple rates of aggregation and breakage that are proportional to the number
density of pairs of aggregating or breaking particles (for a review, see Cameron et al. [24]).
This approach ignores the dependency of the agglomeration and breakage rate on the
frequency of collisions, which will be granular temperature Ts (a measure of the variance of
velocities from the mean solids velocity) dependent and, therefore, non-constant. Several
previous works express the source and sink terms in the population balance more funda-
mentally as the product of the collision frequency with the fraction of collisions resulting in
agglomeration or breakage—i.e., the success factors of agglomeration in breakage [25–27].
The collision frequency is dependent on the collisional cylinder diameter between colliding
agglomerate sizes. Several works have utilized constant success factors of agglomeration
and breakage [27–29], empirical fits of system properties [30,31], or empirical fits of cohe-
sion properties [7,32,33]. These approaches do not account for the effect of impact velocity
on the collisional outcome—i.e., high impact velocities between agglomerates lead to break-
age or rebound, while low impact velocities lead to aggregation [30,34–36]. We recently
developed novel closures for the success factors of agglomeration and breakage, where
both are expressed as functions of the granular temperature and critical velocities of ag-
glomeration and breakage [25]. These critical velocities of agglomeration and breakage and
collision cylinder diameters, which depend on the cohesion and material properties of the
particles, are thus required as inputs to the recent continuum theory for cohesive particles.

In several previous works, the critical velocities of agglomeration and breakage and col-
lision cylinder diameters were determined. Several researchers have used pendulum-based
experiments to determine the critical velocities of particles subject to capillary forces [35–37].
For systems with fine particles (≤100 µm diameter), as are common in fluidized beds, it
is infeasible to use these experimental apparatuses due to the small size of the particles.
In other work, the critical velocity of aggregation was determined analytically [34,38,39],
though this approach is only applicable for collisions of two primary particles when a
particle–particle cohesive force model is known and the particles are subject to simple
contact mechanics. The DEM has also been employed to determine the critical velocities of
agglomeration and breakage [25,40–42] via simulation of two agglomerates colliding under
controlled conditions and a known cohesion force. One issue with this approach is that
there are many collision orientations that give different critical velocities of agglomeration
and breakage [40], but the prevalence of a given orientation in a flow is not known a priori.
Another disadvantage of using the DEM is that a particle-level cohesive force model is
needed, which may be complicated to develop from fundamentals or particle-level ex-
periments [43]. This disadvantage can be overcome by using a simple force model with



Processes 2023, 11, 2553 3 of 20

inputs extracted from bulk experiments [44]. In our previous work, the critical velocity of
breakage and collision cylinder diameter were determined from a DEM simple shear flow
of many lightly cohesive particles [25]. This approach was advantageous in that it allowed
for critical velocities to be determined from a distribution of impact orientations. However,
this approach was only able to be used to determine the critical velocity of breakage for
singlet-doublet collisions because uncontrolled aggregation occurred when the shear rate
was decreased in order to allow agglomerates larger than doublets to form. More recently,
DEM simulations of simple shear flow have also been used to calibrate a population balance
model applied to a mixer [45].

In the current work, we seek to extend the range of cohesion for which DEM sim-
ulations can be used to extract inputs for the recent continuum theory for cohesive par-
ticles [25,46]. Specifically, we aim to apply the new continuum theory to systems with
agglomerate sizes larger than doublets. DEM simulations of an oscillating shear flow of
granular material (no gas phase) are used to determine the critical velocities of agglomera-
tion and breakage and collision cylinder diameters for a range of agglomerate sizes. The
current work improves upon previous work where simple shear flow was considered [25]
since stable agglomerate sizes beyond doublets are attainable in oscillating shear flow. Next,
these cohesion-specific quantities are used as inputs to the continuum theory and applied
to unbounded gas–solid riser flow. Here, the continuum theory for cohesive, gas–solid
flows developed for lightly cohesive particles [46] is extended to moderately cohesive
particles that form larger agglomerates. Specifically, polydisperse kinetic-theory-based
closures are used in the solids momentum and granular energy balances. Good agreement
is found when the continuum predictions of the entrainment rate and fraction of particles
in agglomerates are compared to the DEM results of the unbounded riser. This agreement
provides support for the validity of using oscillating shear flow to determine cohesion-
specific quantities for more cohesive particles, as well as additional support for the validity
of the extended continuum theory.

2. Methods
2.1. Extraction of Inputs to the Continuum Theory for Cohesive Particles
2.1.1. System Overview: Oscillating Shear Flow

A schematic of the oscillating shear flow system is shown in Figure 1a. This system
is a granular gas (particles only, no fluid phase) in a gravity-free environment. Periodic
boundary conditions are used on all sides, which are of equal length. The domain size
was chosen based on a compromise between sufficient samples of agglomerates and
computational expense; a systematic investigation of the effect of the domain size is
documented elsewhere [47]. The top and bottom boundaries are Lees Edwards boundary
conditions [48], which ensure a constant shear rate. The shear of x velocity in the y direction
in the system is oscillated in instantaneous step changes of shear rate between 1 s intervals
of 75/s and 1 s intervals of 200/s. Intervals of 1 s were selected since longer periods
sometimes led to uncontrolled aggregation during the 75/s intervals.

The relationship between the oscillating shear rate and agglomerate size is exemplified
in Figure 2 for particles with material and cohesion properties as summarized in Table 1.
When the shear rate is low, the granular temperature is also low, and little random motion
between particles in the system is observed. Consequently, the collisions between particles
occur at low impact velocities, and larger agglomerates form. When the shear rate is high,
the granular temperature is also high, and greater random motion between particles in
the system is observed. Under these conditions, agglomerates collide with high-impact
velocities, causing the agglomerates to break up, and preventing uncontrolled agglomera-
tion. The granular temperature approaches a pseudo-steady state between steps. (If the
simulations were run longer at the lower shear rate, uncontrolled agglomeration would
eventually occur [25] and the granular temperature would approach zero; therefore, a slight
decrease in the granular temperature is observed).
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both oscillate, reaching approximately a pseudo-steady-state between steps.

Table 1. System and particle properties used in the oscillating shear flow simulations.

Property Symbol Value Units

Young’s modulus E 10 MPa
Poisson ratio ν 0.3 -

Primary particle diameter d1 64 µm
Particle density ρs 2500 kg/m3
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Table 1. Cont.

Property Symbol Value Units

Intrinsic coefficient of
restitution eint 0.97 -

Small-scale wavelength λS 369 nm
Small-scale roughness rmsS 2.411 nm

Minimum separation distance Dmin 0.15 nm
Relative humidity RH 0.1 -
System side length L/d 13.51 -

Solid volume fraction εs 0.1 -
Number of particles - 471 -

Shear rate
.
γ 75, 200 1/s

Ideal gas constant Rg 8.314 J/(mol·K)
Thermodynamic temperature T 300 K

Molar density of water ρl 5.56 × 104 mol/m3

Surface tension of water σ 72 × 10−3 N/m
Asperity geometric constant k1 1.817 -

2.1.2. DEM Simulation of Oscillating Shear Flow

An in-house code was used for the DEM simulations of oscillating shear flow. Euler
integration was used to solve for the position and velocity of each particle at each time step
according to Newton’s second law for each particle:

F = m
dv
dt

= Fcoh + Fcont, (1)

where m is the particle mass, v is the velocity, t is time, F is the total force, Fcoh is the cohesive
force, and Fcont is the contact force. The contact forces were solved using the Hertzian
contact model [49], as summarized in Table 2, with the particle properties summarized in
Table 1. In Table 2, the subscripts i and j refer to the two interacting particles. The cohesive
forces considered here are capillary forces, modeled as [50]:

Fcoh(D > Dmin) = 2πa2σ + πa2
2∆pl (2)

Fcoh(D ≤ Dmin) = Fcoh(Dmin), (3)

∆pl = −ρl RgT ln(RH), (4)

∆pl = σ

(
1
a1
− 1

a2

)
, (5)

a1 = R
[(

1 +
D

2rs

)
sec(β)− 1

]
, and (6)

a2 = R
[(

1 +
D

2rs

)
tan(β)−

(
1 +

D
2rs

)
sec(β) + 1

]
(7)

where a1 is the bridge curvature, a2 is the bridge thickness, D is the separation distance
between particles, R is the particle radius, rs is the radius of the small-scale surface as-
perity [51], ρl is the density of the liquid, RH is the relative humidity, Rg is the ideal gas
constant, and T is the thermodynamic temperature. The particle and capillary properties
are summarized in Table 1; these properties are characteristic of silica glass beads expe-
riencing 10% relative humidity [51]. It should be noted that the relative humidity in this
work is only an input parameter that affects the particle–particle cohesive force model.
The relative humidity is not coupled with the fluid phase (which is non-existent in the
oscillating shear flow simulations). The half angle of the capillary bridge β was solved
for numerically from Equations (4)–(7) and subsequently used to calculate a1, a2, and the
cohesive force in Equation (2). A fifth-order polynomial fit of the numerical solution for
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the cohesive force as a function of separation distance D in Equation (2) was then used
for the cohesive force in the DEM simulations [51]. Young’s modulus is artificially soft
relative to glass for computational efficiency, as the intent of this work is proof of concept.
When using DEM simulations to extract the input parameters needed for continuum theory,
the actual values of particle properties should be used, as they can impact the extracted
quantities. For example, for the particles explored here, the use of Young’s modulus below
10 MPa can lead to substantially increased cohesive interactions between particles [15] and
consequently increased critical velocities of aggregation and breakage.

Table 2. Auxiliary equations used for the DEM.

Fcont =

 4Ee f f
√

Re f f

3 δ3/2 + η dδ
dt for δ ≥ 0

0 for δ < 0
Ee f f =

Ei Ej

Ei

(
1+ν2

j

)
+Ej(1+ν2

i )

Re f f =
Ri Rj

Ri+Rj

η =
−2
√

15me f f Ee f f R1/4
e f f ln(eint)

3
√

π2+ln2(eint)
δ1/4

me f f =
mimj

mi+mj
rs =

λ2
s

32k1rmss

2.1.3. DEM Extraction of Cohesion-Specific Inputs for Continuum Theory

The results of the DEM oscillating shear flow simulations were used to determine
the cohesion-specific inputs for the new continuum theory—i.e., critical velocities of ag-
glomeration and breakage and collision cylinder diameters. First, the granular temperature
(instantaneous mean square difference of the velocities with respect to the instantaneous
spatial average of velocities), number density of each agglomerate size, collision frequency
between each pair of agglomerate sizes, and the agglomeration and breakage frequencies
were collected in 10 replicate DEM oscillating shear flow simulations with different random
initial conditions. Each simulation was run for five oscillations. These results were time-
averaged over all 10 replicate simulations to yield a single granular temperature, number
density for each agglomerate size, and collision frequency between each pair of agglomer-
ate sizes. The success factors of agglomeration and breakage were then calculated as the
ratio of the number of agglomeration and breakage frequencies to the collision frequency,
respectively. Using this calculated success factor and the observed granular temperature in
the DEM, the critical velocities of agglomeration and breakage were calculated from the
continuum theory expressions for the success factors (Equations (18) and (19) below). Next,
the continuum expression for collision frequency (Equation (17) below) was rearranged
and the granular temperature and collision frequency observed in the DEM were used in
this equation to calculate the collision cylinder diameters.

It should be noted that in addition to using the oscillating shear flow system to
determine the critical velocities and the collision cylinder diameters, oscillating shear flow
can be used to determine the daughter distribution functions as a function of agglomerate
size, particle properties, and granular temperature. For the particles and agglomerates
explored here, over 99% of the breakages resulted in all singlets. Therefore, in the continuum
simulations of the unbounded riser system used for validation, it was assumed that all
daughters were singlets.

2.2. Testing of the Continuum Theory for Cohesive Particles and DEM-Based Inputs
2.2.1. System Description: Unbounded Riser

A schematic of the unbounded riser flow is shown in Figure 1b. Periodic boundary
conditions were used on all sides. Gravity acted in the downward vertical direction with a
value of g = −9.81 m/s2. A pressure gradient equal to the weight of the system normalized
by the cross-sectional area of the system was instituted in the upward direction to counteract
gravity and yield a system with a constant velocity and no net acceleration. Both the DEM
and continuum simulations were initialized with no particles in agglomerates and with
zero mean velocity for the gas and solids. The particles simulated in the unbounded riser
have the same properties as in the oscillating shear flow simulations, as summarized in
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Table 1. The simulations were run for 2 s, considerably beyond the time at which the system
(mean particle speed and fraction of agglomerates) had reached a steady state. The solid
volume fraction was varied from εs = 0.0075 to 0.02. A computational fluid dynamics grid
size of ∆x/d1 = 2 was used as this is near the finest grid size allowable in the DEM (if this
ratio is lower, the solid volume fraction in a cell can exceed 1).

2.2.2. Continuum Theory Simulations

The population balance equation for the number density ni of each agglomerate size
i (i = 1 to 5 for singlets through quintets, as <1% of agglomerates were observed to be
in agglomerates larger than quintets in the DEM unbounded riser simulations) is given
by [25]:

∂ni
∂t

+∇·(uini) = Ba,i − Da,i + Bb,i − Db,i (8)

where the first term on the left is the transient term and the second term is the convective
term. On the right are the birth due to aggregation, death due to aggregation, birth due to
breakage, and death due to breakage terms, which are given by [25]:

Ba,i =
1
2

i−1

∑
j=1

(
1 + δi−j,j

)
βi−j,jni−jnj, (9)

Da,i =

5−j

∑
j=1

(
1 + δi,j

)
βi,jninj, (10)

Bb.i =
1
2

5

∑
j=1

5

∑
k=1

(
1 + δj,k

)
αj,kbj,k→injnk, and (11)

Db,i =

5

∑
j=1

(1 + δi,j)αi,jninj, (12)

respectively, with the Kronecker delta function given by:

δij =

{
0,
1,

i 6= j
i = j

. (13)

The daughter distribution function is approximated here as:

bj,k→i =

{
j + k,

0,
i = 1
i 6= 1

. (14)

The aggregation and breakage kernels are:

βi,j = ψa,i,j
ωi,j

ninj
, and (15)

αi,j = ψb,i,j
ωi,j

ninj
, (16)

with the collision frequency given by:

ωi,j = ninjπd3
i,jg0,i,j

[
4

di,j

(
3Ti

mido fi
+

3Tj

mjdo f j

)]
, (17)
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and the success factors of agglomeration and breakage given by:

ψa,i,j = 1− exp

 −ν2
a,crit,i,j

2
(

3Ti
mido fi

+
3Tj

mjdo f j

)
 and (18)

ψb,i,j = exp

 −ν2
b,crit,i,j

2
(

3Ti
mido fi

+
3Tj

mjdo f j

)
 (19)

respectively. Here, ui is the mean velocity of agglomerate size i. Ti is the granular tempera-
ture of agglomerate size i, which represents the random fluctuating energy of the particles
and is proportional to the variance of the velocities from the local mean velocity of the
agglomerate size i. g0,i,j is the radial distribution function [52]. va,crit,i,j is the critical velocity
of agglomeration, and vb,crit,i,j is the critical velocity of breakage between agglomerate sizes
i and j. dofi is the degrees of freedom of agglomerate size i (3 for singlets, 5 for doublets,
and 6 for agglomerates larger than doublets). Note that in Equation (13), the daughter
distribution function b assumes that all of the particles in agglomerates that undergo ag-
glomeration are in daughters of size singlets. This assumption was made since over 99% of
the breakages observed in the oscillating shear flow showed complete breakage.

In addition to the population balance, a momentum balance is performed on each
agglomerate size [52]:

∂nimiui
∂t +∇•(nimiuiui) =

−εi∆Pg/H
^
j −∇•

 s

∑
p=1

Pcip + Pki

+ Kgi
(
ug − ui

)
+ nimig−

s

∑
p=1

FDip − Dimiui +
s

∑
p=1

Dp→impup
(20)

where Pc and Pk are the collisional and kinetic granular stress tensors, respectively, Kgi is
the gas–solid interphase momentum exchange (drag) coefficient given as an extension [53]
of Koch–Hill–Ladd [54] (summarized in Appendix A), g is the gravity vector (−9.81 m/s2 in
the downward y-direction), and FDip is the solid–solid drag force vector, which represents
momentum exchange between agglomerates of different sizes due to collisions. s is the
number of agglomerate sizes considered. The closures for Pc, Pk, and FDip are derived from
polydisperse kinetic theory [52], are summarized in Appendix B, and utilize the diameter of
a sphere with the equivalent volume of each agglomerate size and the effective coefficient
of restitution <eeff>. The coefficient of restitution, which is the ratio of the post-collisional
impact velocity to the pre-collisional impact velocity, is a measure of how much energy is
dissipated during an inelastic collision. The first term on the left side of this equation is the
transient term. The second term on the left side is the convective term. The term εi∆Pg/H
refers to the pressure gradient, where εi is the solids volume fraction of agglomerate size i
and ∆Pg/H is equal to the weight of the system divided by the volume of the system, so
the net force acting on the system is zero and the system as a whole does not accelerate.
The εi∆Pg/H term is specific to the unbounded riser flow with the periodic top and bottom
boundary conditions applied here. This term is applied as a uniform volumetric force and
therefore does not violate the periodicity of the gas nor the solids pressure. The second
term on the right side of the equation is the divergence of the stress tensor. The third
term on the left side represents gas–solid drag. The fourth term on the right side of the
equation represents gravity. The FDip term represents solid–solid momentum exchange
due to collisions between different agglomerate sizes. The Dimiui term represents the loss
of momentum due to death of agglomerate size i, and the final term Di→pmpup represents
the gain of momentum due to birth of agglomerate size i from the death of agglomerate
size p.

In addition to the solids momentum balances, granular energy must also be balanced.
In previous work [46], only lightly cohesive particles that formed singlets and doublets



Processes 2023, 11, 2553 9 of 20

were considered. Correspondingly, a single granular energy balance was solved as the
systems were mostly singlets with some doublets. On the other hand, the particles in
the current work are moderately cohesive and form agglomerates larger than doublets.
Since a wider distribution of agglomerate sizes is considered, polydisperse kinetic-theory-
based closures are employed here, and a granular energy balance is performed on each
agglomerate size [52]:

∂niTi
∂t

+∇•(uiniTi) =
2
3

[
−∇•

(
s

∑
p=1

qcip + qki

)
+

(
s

∑
p=1

Pcip + Pki

)
: ∇ui +

s

∑
p=1

(
Nip − ui•FDip

)]
(21)

where the first term on the left is the transient term and the second term on the left is the
convective term. On the right, the terms with qc and qk are the collisional and kinetic
diffusion of granular energy, respectively; the second term on the right side represents the
generation of granular energy due to shear; the term with Nip represents the dissipation of
granular energy due to collisions; and ui·FDip represents the generation of granular energy
due to collisions between the different agglomerate sizes. The mean effective coefficient of
restitution <eeff> used in the closures for the momentum and granular energy balances is
given by [25]:

< ee f f >=

∫ ∞
νa,crit,1,1

ee f f (νn) f (νn)dνn∫ ∞
νa,crit,1,1

f (νn)dνn
. (22)

The effective coefficient of restitution is less than the intrinsic coefficient of restitution
since cohesive particles undergo additional dissipation during collision relative to their
non-cohesive counterparts [34,39,55,56]. The value of the effective coefficient of restitution
is dependent on the mechanism and magnitude of cohesion acting on the particles, as
well as the particle properties. For simplicity, the effective coefficient of restitution eeff as a
function of impact velocity vn is approximated here using a closure given by the square
well model [39]:

ee f f (νn) = H
(
νn − νa,crit,i,j

)(
e2

int +

(
e2

int − 1
)

Dwell

2me f f ν2
n

)1/2

. (23)

This closure allows for different mechanisms and magnitudes of cohesion to be cap-
tured via the well depth term Dwell, which is related to the critical velocity of aggregation.
The effective coefficient of restitution as a function of impact velocity could also be deter-
mined numerically from the DEM for a given cohesion model. The Heaviside function is
given as:

H(x) =
{

0 x ≤ 0
1 x > 0

, (24)

the well depth is related to cohesion through the critical velocity by [39]:

Dwell =
2me f f ν2

a,crit,i.je
2
int

1− e2
int

, (25)

and the impact velocity distribution is:

f (νn) =
νn(

3Ti
mido fi

+
3Tj

mjdo f j

) exp

 −ν2
n

2
(

3Ti
mido fi

+
3Tj

mjdo f j

)
. (26)

Finally, continuity and momentum balances are solved for the gas phase:

∂
(
ρgεg

)
∂t

+∇·
(
ρgεgug

)
= 0 (27)
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∂
(
ρgεgug

)
∂t

+∇•
(
ρgεgugug

)
= εg∆Pg/H

^
j −∇•

(
PI + µg∇ug

)
− εgρgg−

5

∑
i=1

Fdrag,g,i (28)

with gas density ρg = 0.97 kg/m3 and gas viscosity µg = 1.8335× 10−5 Pa·s, which are charac-
teristic of air under local, ambient conditions. The leftmost term in Equations (27) and (28) is
the transient term; the second term is the convective term. On the right side of Equation (28),
the first term applies the pressure drop to the system, the second term is the divergence of
the stress tensor and gives the diffusion of momentum, the third term represents gravity,
and the final term represents the drag force exerted by each of the agglomerate sizes in
the system.

The continuum theory simulations were solved using the multiphase Eulerian–Eulerian
framework of ANSYS Fluent 17.0. The primary phase was the gas phase, with five sec-
ondary phases representing five agglomerate sizes. Many of the closures used in this
work (especially the rates of agglomeration and breakage and the effective coefficient of
restitution [25]) are not available off-the-shelf in any commercial computational fluid dy-
namics software. Therefore, the closures used in this work were calculated using in-house
user-defined subroutines. The implementation of each term into Fluent was verified via
manual calculations. In the continuum simulations, periodic boundary conditions were
used for the gas phase on the top and bottom boundaries, with a pressure gradient equal
to the weight of the system normalized by the area applied throughout the system in the
upwards y-direction. Since the top and bottom boundary conditions were fully periodic
in the continuum simulations, the system could be viewed as a moving reference frame.
Identical boundary conditions were not available in the software package used for the
DEM simulations, which had a fixed reference frame. Therefore, the velocity of the gas and
each agglomerate size obtained from the continuum simulations were adjusted by the same
amount so that the average gas velocity in the continuum simulations matched the average
gas velocity in the DEM simulation (the gas and solid profiles were flat in both the DEM and
continuum simulations). In the continuum simulations, the initial granular temperature
used was Ti/mi = 10−4 m2/s2. The user-defined function utilized in ANSYS Fluent, along
with an example case and data file, are provided as Supplementary Information.

2.2.3. DEM Simulations

For the DEM simulations of the unbounded riser, Newton’s second law is again solved
on each particle in the system:

F = m
dv
dt

= Fcoh + Fcont + Fg + Fdrag (29)

where Fg is the gravitational force and Fdrag is the gas–solid drag force (given by an exten-
sion [53] of Koch–Hill–Ladd [54] given in Appendix A). The cohesive and contact forces are
identical to those described for the oscillating shear flow simulations (Equations (2)–(7) and
Table 2). In addition to Newton’s second law on the particles, the equations of continuity
and momentum balance are solved for the gas phase:

∂
(
ρgεg

)
∂t

+∇·
(
ρgεgug

)
= 0 and (30)

∂
(
ρgεgug

)
∂t

+∇•
(
ρgεgugug

)
= −∇•

(
PgI + µg∇ug

)
− εgρgg−

5

∑
i=1

Fdrag,g,i. (31)

The DEM riser flow simulations were performed using MFiX 2016-1 computational
fluid dynamics software [57]. The solids phase had periodic boundary conditions across
the top and bottom boundary conditions for the DEM, as was used in the continuum simu-
lations. In the DEM simulations, the bottom boundary condition was a pressure inlet with
the inlet pressure adjusted at each time-step in order to reach the target average gas velocity
summarized in Table 3. The top boundary condition in the DEM simulations was a pressure
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outflow. The initial positions of the particles in the DEM simulations were randomized,
and the particles were all initially at rest. An example setup file from MFiX for unbounded
riser flow with a solids fraction of 0.1 is provided as Supplementary Information.

Table 3. System properties used in the unbounded riser flow simulations.

Property Symbol Value Units

Gas (air) density ρg 0.97 kg/m3

Gas (air) viscosity µg 1.8335 × 10−5 Pa·s
Target gas velocity ug,y 0.515 m/s

System width and depth W = L 0.3234375 cm
System height H 1.4375 cm

Grid size ∆x/d1 2 -

3. Results and Discussion
3.1. Extraction of Continuum (Population Balance) Inputs from the DEM of Oscillating
Shear Flow

Oscillating shear flow simulations were used to calculate all of the critical velocities
and collision cylinder diameters for simulations of agglomerates of size up to quintets, as
shown in Figure 3. Each agglomerate-pair combination is represented in Figure 3, with
one agglomerate size given on the x-axis and the size of its collision partner given by the
different markers. Duplicate combinations are not shown. More specifically, a specific pair
combination is found via the larger agglomerate size on the x-axis and the lesser or equal
agglomerate size according to the marker type (e.g., for doublet–quadruplet collisions, see
the red diamond data point at x = 4). Exceptions to the trends noted here (e.g., quadruplet–
quintet collisions for the critical velocity of agglomeration and doublet-triplet collisions for
the collision cylinder diameter) are discussed below.
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Figure 3. DEM simulations of oscillating shear flow: (a) critical velocities of aggregation, (b) crit-
ical velocities of breakage, and (c) collision cylinder diameters. The color and shape of the data
point give the size of one of the agglomerates colliding in the pair, and the x-axis gives the size of
other agglomerates.

As shown in Figure 3a, the critical velocity of aggregation shows a general decreasing
trend with increasing agglomerate size (except for collisions involving singlets), as ex-
pected. This trend can be explained via consideration of what happens after initial contact.
When agglomerates collide, two outcomes are possible if they stick together. First, the
agglomerates may undergo significant rearrangement during a collision (e.g., two roughly
spherical agglomerates change shape during a collision to form a single roughly spherical
agglomerate). Alternatively, the agglomerates may collide at a single point, and then each
one rotates such that multiple points of contact result in no significant rearrangement of the



Processes 2023, 11, 2553 12 of 20

colliding agglomerates themselves (e.g., two roughly spherical agglomerates collide and
rotate to form an agglomerate shaped like two contacting spheres). In the DEM portion of
this work, the latter occurs—i.e., colliding agglomerates are observed to rotate and then
contact at multiple points. As the size of the colliding agglomerates increases, the final
number of contacts between the colliding pair is expected to remain relatively constant.
Because the maximum cohesive force between the colliding agglomerates is proportional to
the number of contacts they share after collision and rotation, the maximum cohesive force
between colliding agglomerates is also expected to remain relatively constant. Moreover,
since the cohesive energy between agglomerates (the integral of the cohesive force over the
separation distance from contact to infinite separation) is proportional to the maximum
cohesive force, the cohesive energy also stays constant with the agglomerate size. Finally,
for two agglomerates to separate during a collision, the cohesive energy between the two
agglomerates must be overcome by the kinetic energy of the two colliding agglomerates
which is proportional to meffva,crit

2 (Equation (25)). As the agglomerate size increases,
meff increases, and therefore, va,crit must decrease for the cohesive energy (and therefore
meffva,crit

2) to remain constant (Figure 3a).
With regard to collisions involving singlets, Figure 3a indicates a general increasing

trend of the critical velocity of agglomeration with increasing agglomerate size. For such
collisions, the number of contacts after collision and rotation between the singlet and the
colliding agglomerate increases as the agglomerate size increases. Therefore, the maximum
cohesive force between the singlet and agglomerates increases with the increasing agglom-
erate size, as does the cohesive energy. For the singlet to separate from the agglomerate
during a collision, the singlet-agglomerate pair must have kinetic energy proportional to
meffva,crit

2, which is proportional to the cohesive energy (Equation (25)). Meff also increases
as the agglomerate pair size increases. Meff is the hyperbolic mean mass of the singlet and
the agglomerate pair size, so it increases less quickly than the cohesive energy increases,
which scales approximately with the agglomerate pair size (approximately one additional
contact after collision and rotation per additional particle in an agglomerate pair). There-
fore, the critical velocity va,crit is thus expected to increase for singlet-agglomerate collisions
as the agglomerate size increases, which is consistent with Figure 3a.

In Figure 3b, the critical velocity of breakage shows a general downward trend for
agglomerate-agglomerate collisions (collisions not including singlets). Note that breakage
occurs if any number of particles (even a singlet) break off either of the original agglom-
erates. The cohesive energy holding a single particle to an agglomerate is approximately
constant with increasing agglomerate size, so the kinetic energy needed to break a single
particle off of an agglomerate is assumed constant. Therefore, as the agglomerate size
and mass increase, the critical velocity of breakage must decrease (the kinetic energy is
proportional to the product of the mass and the square of the critical velocity of breakage).
Some exceptions to this trend are noted below. Further investigation is merited to explore
why the critical velocity of breakage between singlets and agglomerates remains relatively
constant with increasing agglomerate pair size.

As the agglomerate size increases, the collision cylinder diameter generally also
increases, as shown in Figure 3c. This observation stems from the increase in the collision
area with the agglomerate size.

The critical velocities of agglomeration and breakage and collision cylinder diam-
eters shown in Figure 3 have increasing uncertainty as the agglomerate size increases.
More specifically, as the agglomerate size increases, the number density of that agglomer-
ate size decreases, and the collision frequency with these larger agglomerates decreases.
Therefore, some combinations of collisions with larger agglomerates are not observed
frequently or at all. This uncertainty may explain exceptions to the trends observed above
(e.g., quadruplet–quintet collisions have a higher critical velocity of agglomeration than
quadruplet–quadruplet collisions, doublet–quadruplet collisions have a lower critical veloc-
ity of breakage than doublet–quintet collisions, and doublet–doublet collisions have similar
collision cylinder diameters to doublet–triplet collisions). No quintet–quintet collisions
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were observed that resulted in full agglomeration. Therefore, no critical velocity of agglom-
erates for quintet–quintet collisions can be calculated. Since only agglomerates as large as
quintets are considered in the continuum theory simulations, the quintet–quintet agglomer-
ation mechanism is not included in the theory, and the critical velocity of agglomeration
for quintet–quintet collisions was not used. Furthermore, all triplet–quintet, quadruplet–
quadruplet, and quintet–quintet collisions that were observed resulted in breakage. These
observed collisions led to a calculated value of the critical velocity of breakage of 0 for each
of these collision combinations, though physically it is expected that the critical velocity of
breakage must be non-zero (otherwise agglomerates could spontaneously break).

3.2. Testing of the Continuum Theory in the Unbounded Riser

Quantities extracted from the oscillating shear flow simulations were used as inputs to
the continuum simulations of unbounded riser flow. The resulting predictions from the con-
tinuum theory for the unbounded riser flow (Equation (8) coupled with Equations (9)–(28)
are summarized in Figure 4, along with DEM simulations of the same system (Equation (9)).
In Figure 4a, the fraction of particles in agglomerates remains relatively constant for both
the DEM and continuum simulations as the solid volume fraction changes. This trend
makes sense since the agglomeration and breakage rates did not change significantly in this
work with changes in solid volume fraction. More specifically, the rates of agglomeration
and breakage are proportional to the collision frequency and the corresponding success
factors. The collision frequency scales with the solid volume fraction (Equation (17)), caus-
ing both the rates of agglomeration and breakage to scale with the solid volume fraction
and hence having no net effect on the fraction of particles in agglomerated. However,
the success factors of agglomeration and breakage depend on the granular temperature
(Equations (18) and (19)), which is coupled to the solid volume fraction. In particular, the
two terms in the granular energy balance that depend on the solid volume fraction are the
generation of granular energy due to collisions between different agglomerate sizes (ui·FDip
term in Equation (21)) and the dissipation of granular energy due to inelastic collisions (Nip
in Equation (21)). Both of these terms are roughly proportional to the square of the solid
volume fraction [52]. Therefore, as the solid volume fraction is changed, both of these terms
scale similarly, thereby canceling the effects of the solids fraction. It is also worth noting
that both the ui·FDip and Nip terms also depend on the granular temperature [52], which is
only independent of the solid volume fraction when the effective coefficient of restitution
is roughly independent of the granular temperature. At higher values of Ts as observed
here, f (vn) is biased toward high vn according to Equation (26). Consequently, the mean
coefficient of restitution <eeff> (Equation (22)) will be biased toward the value of eeff(vn) at
higher vn, which is approximately equal to the constant intrinsic coefficient of restitution
(Equation (23)). Under these conditions, small changes in the solid volume fraction do
not affect the granular temperature, the success factors, the rates of agglomeration and
breakage, or the fraction of particles in agglomerates (Figure 4a).

It should be noted that the result of the fraction of particles in agglomerates being
insensitive to the solid volume fraction observed here (Figure 4a) was not observed in previ-
ous work [46]. In that previous work, the particles were less cohesive, and the agglomerates
were smaller and therefore had a smaller range of terminal slip velocities (the difference be-
tween gas and agglomerate velocities). Consequently, there was a smaller relative velocity
between the agglomerate sizes compared to the current work. The smaller relative velocity
in the previous work led to lower generation of granular energy due to collisions (ui·FDip
term in Equation (21)), and hence a smaller granular temperature. Under those conditions
(at lower Ts), the impact velocity distribution f (vn) shifts towards lower vn, leading to lower
values of eeff that are sensitive to Ts according to Equations (22) and (26) (at higher Ts, eeff
is approximately eint and independent of Ts). The dissipation term (Nip in Equation (21))
depends on the effective coefficient of restitution [52] and is therefore sensitive to the gran-
ular temperature as well. The dissipation term Nip also affects the granular temperature,
exacerbating the effect of small perturbations in the granular temperature. Therefore, small
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changes in granular temperature (like those caused by small changes in the solid volume
fraction) ultimately lead to larger changes in granular temperature. This sensitivity of the
granular temperature to the solid volume fraction in previous work when the granular
temperature was low led to significant changes in the success factors of agglomeration and
breakage (Equations (18) and (19)) as well as the collision frequencies between agglomer-
ates (Equation (17)). Therefore, the agglomeration and breakage rates (the product of the
success factors and collision frequencies) changed significantly as the solid volume fraction
changed, and the fraction of particles in each agglomerate size changed significantly in the
previous work as the solid volume fraction was changed.
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Qualitatively, the DEM results show that the fraction of particles in each agglomerate
size decreases as the agglomerate size increases, as seen in Figure 4a. In the current work,
the granular temperature is sufficiently high that the success factor of breakage is high and
the success factor of agglomeration is low (Equations (18) and (19)). The high success factor
of breakage and low success factor of agglomeration lead to significant breakage and little
agglomeration. The significant breakage and lack of agglomeration limit the agglomerate
size such that most of the particles are in primary particles, with fewer particles in each
increasing agglomerate size. The continuum theory gives a similar trend of decreasing
fraction of particles in agglomerates with increasing agglomerate size, though it greatly
under-predicts the fraction of particles in quadruplets, which is predicted to be even less
than the fraction of particles in quintets. This non-monotonic trend in the continuum
prediction will be addressed below.

Quantitatively, the results between the DEM and continuum theory are in decent
agreement (within a factor of 2) except in the case of quadruplets. Recall that fewer colli-
sions were observed with larger agglomerates than smaller agglomerates in the simulations
of oscillating shear flow. The lack of collisions with larger agglomerates leads to larger
uncertainty in the critical velocities of agglomeration and breakage and collision cylin-
der diameters calculated for collisions of larger agglomerates and, consequently, larger
uncertainty in the rates of aggregation and breakage for larger agglomerates. It is there-
fore expected that the continuum prediction of the fraction of particles in agglomerates
should become less accurate as the agglomerate size increases; this discrepancy is observed
and increases for doublets, triplets, and quadruplets. Surprisingly, the continuum theory
appears to give a relatively good quantitative prediction of the fraction of particles in
quintets. A plausible explanation for this agreement is that two major competing sources of
error have canceled out. First, uncertainty in the critical velocities of agglomeration and
breakage for the quintets should lead to under-prediction of the fraction of particles in
agglomerates, as was the case for quadruplets (Figure 4a). Second, all of the terms that
lead to the death of quintets due to agglomeration are neglected in the continuum theory
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(since no agglomerates larger than quintets are included here). Without this sink term, the
fraction of particles in quintets is expected to be over-predicted. Conversely, introducing
sextets would introduce the term representing the death of quintets due to aggregation
with singlets into the population balance for quintets. This term would be a major sink of
quintets and we speculate that this sink would consequently lead to under-prediction of
the fraction of particles in quintets.

Similar to previous work [46], the total entrainment rate in Figure 4b increases nearly
linearly with the total solid volume fraction (εs,total) in both the DEM and continuum theory
since the entrainment flux Js,I = us,iεs,iρs,I = us,i ϕiρs,iεs,total, where ϕi is the fraction of particles
in agglomerate size i. Similarly, the entrainment rate of each agglomerate size varies linearly
with the solid volume fraction of each agglomerate size (ϕiεs,total). Consequently, the same
trends and associated errors for the fraction of particles in agglomerates propagate into the
entrainment rate prediction. Nonetheless, the error between the continuum theory and the
DEM results for the total entrainment rate shown here is less than 11%. This error is notably
less than the error in our previous work with lightly cohesive particles in an unbounded
riser flow, which yielded over-prediction of the entrainment rate by up to 35% for stable
systems [46]. In the current work, less than 5% of particles in the DEM simulations are in
agglomerates larger than quintets, which is the largest agglomerate size considered in the
continuum theory here. The presence of these larger agglomerates in the DEM but not in
the continuum theory is a source of error. In the previous work, only doublets and singlets
were considered in the continuum theory, and in some cases, more than 5% of the particles
were in agglomerates larger than doublets. Therefore, fewer errors can be expected in
the current work, which includes more agglomerate sizes and thus neglects fewer of the
total particles in the system. It should also be noted that other empirical entrainment rate
correlations vary in the prediction of the entrainment rate by up to ten orders of magnitude
for a given system [58], which this work improves upon greatly.

The agreement between the continuum theory and DEM results shown here provides
support for the validity of the determination of the critical velocities of agglomeration
and breakage and collision cylinder diameters from oscillating shear flow simulations.
Furthermore, this agreement provides preliminary support for the validity of the continuum
theory for cohesive particles for use with more than two agglomerate sizes, as well as for
use with a polydisperse kinetic theory.

4. Conclusions

In this work, the critical velocities of agglomeration and breakage and the collision
cylinder diameters are calculated from a DEM oscillating shear flow. For the first time, this
method allows for the continuum theory of particle-level inputs for moderately cohesive
particles that form agglomerates larger than doublets to be determined from DEM simula-
tions, compared to past work which was restricted to lightly cohesive particles [46]. The
critical velocities of agglomeration and breakage and collision cylinder diameters that are
calculated in this work from the DEM simulations of oscillating shear flow are then used as
inputs for continuum simulations of an unbounded, gas–solid riser flow. DEM simulations
of an unbounded riser flow were again performed for validation of the continuum theory
and oscillating shear flow method of determining the critical velocities of agglomeration
and breakage, as it is extremely difficult to detect agglomerates in an experimental riser flow.
Agglomerate sizes up to quintets were explored. The continuum results were compared to
the DEM simulations of the same riser system and show qualitatively and quantitatively
decent agreement for the fraction of particles in agglomerates and the entrainment rate
for all agglomerate sizes except quadruplets, which the continuum theory greatly under-
predicts. Some of the errors in the current work are due to truncated mechanisms of death
due to aggregation for larger agglomerates since only five agglomerate sizes were consid-
ered. Another source of error is the uncertainty in the critical velocities of agglomeration
and breakage and collision cylinder diameters calculated for collisions involving larger
agglomerates. Nevertheless, it should be noted that previous works give entrainment rate
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correlations that vary by up to 10 orders of magnitude, which the current work improves
upon greatly.

The good agreement between the continuum and DEM results for the entrainment
rate and agglomerate size distribution provides support for the method of extracting
critical velocities of agglomeration and breakage and collision cylinder diameters from
DEM oscillating shear flow simulations. Furthermore, this good agreement also provides
preliminary support for the validity of the continuum theory for cohesive particles in a
multiphase system with more than one agglomerate size.

In future work, systems with gradients should be explored. This exploration is
important as the homogeneous system considered here does not have spatial gradients in
the flow variables needed to test the shear stress terms in the solids momentum balance
and diffusion of granular energy terms in the granular energy balance. Additionally, the
dataset of critical velocities of agglomeration and breakage as well as the collision cylinder
diameters presented here should be made more robust by exploring systems with larger
agglomerates and wider ranges of agglomerate sizes. Finally, different levels and types of
cohesion should be explored.
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Appendix A Drag Closures from Extension [53] of Koch–Hill–Ladd [54]
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Appendix B Continuum Theory Closures from Iddir and Arastoopour [52]
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