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Abstract: Hybrid Active Power Filter (HAPF) imbibes the advantages of both passive and active
power filters. These filters are considered one of the important technologies for mitigating harmonic
pollution in electrical systems. Accurate estimation of filter parameters is a key component to reduce
harmonic pollution effectively. In recent years, several optimization approaches have been reported
to solve this estimation problem; still, this area is worthy of further investigation. This paper is a
proposal for an estimator that can estimate the parameter of HAPF configuration accurately. For
evolving this estimator, first, an objective function that mathematically embeds filter parameters
and harmonic pollution is presented. For handling the optimization process, an Amended Crow
Search Algorithm (ACSA) is proposed. ACSA employs a local search algorithm (in the form of a
pattern search) for obtaining optimal results. The analysis of the estimation process is carried out
on two HAPF configurations. Various analyses that include harmonic pollution statistical analysis
along with fitness function value analysis reveal that the proposed algorithm acquires optimal results
as compared with other recently published and reported algorithms. Further, the proposed filter
configurations are tested with the existing filter. The results prove that the proposed filter shows
promising results.

Keywords: power quality; filter; swarm intelligence; crow search algorithm; design; numerical
optimization

1. Introduction

Applications of non-linear loads have significantly increased power pollution by
introducing harmonic pollution in the fundamental voltage and frequency signals. These
contaminations directly affect power quality and, hence, can be considered major factors
that can be taken care of while considering consumer satisfaction and comfort. Power
quality issues are always considered for designing a foolproof grid, as these are related to
services and devices. Power quality issues are major classifications and identifications of
power quality events such as sag, swell, transient, and interruption. Mitigation technologies
that involve the use of several important devices to tackle these events intelligently are also
one of the major research areas of power quality.

However, in the modern context, harmonic mitigation is most important with the
evolution of smart grids. With the existing diversity of consumer usage patterns of elec-
tronic devices and nonlinear loads, harmonics are inevitable in the systems. Sometimes,
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these harmonics are hazardous and can affect equipment health and create stability issues.
Harmonics are characterized by the integer multiples of the fundamental frequency, i.e., for
the third harmonic signal, the frequency will be 150 Hz for the fundamental frequency of
50 Hz. Likewise, if the frequency of the signal is not an integer multiple of the fundamental
wave and if it is greater than the fundamental wave, then it is called an interharmonic
signal, and if it is lower than the fundamental frequency, then it is called a subharmonic
signal. The following reasons indicate the importance of mitigation technologies:

1. Since harmonic contamination is dependent on frequency, devising mitigation tech-
nologies for handling these issues becomes an important task for the designer and
system operator, as eddy current losses, skin effect, and corona losses are direct
functions of the frequency;

2. The presence of harmonics in the system reduces the operational efficiency of pro-
tecting devices, loads, and compensating capacitors. It badly affects the controlling
devices that work on zero-crossing detection mechanisms;

3. In deregulated power scenario, the price of electricity is closely associated with the
power quality. Often, power producers showcase this virtue of the delivered power to
the customers. Hence, clean power can have a potential contribution to the earnings
of the power-generating company.

Due to these mentioned reasons, special care is to be taken while dealing with har-
monics in the system. For the last two decades, mitigation technologies have caught the
attention of researchers due to their ability to deal with harmonic pollution. In power
networks, these technologies have emerged in the form of filter designs. Filters can be
segregated into three forms, namely, Passive Power Filters (PPF), Active Power Filters
(APF), and Hybrid Active Power Filters (HAPFs). Comparative analysis of these filters
leads us to the conclusion that due to the vulnerability of PPF toward the grid impedance
and due to the capacity and cost issues, the usage of PPF and APF is limited. On the
contrary, HAPFs are widely used because of the lower vulnerability of the filter toward
grid impedance, low cost, and significantly enhanced performance in filtering [1].

Application of Optimization Algorithms for Designing Filters

Power grid impedance has a deteriorating effect on the performance of PPF; hence
for this reason, the applicability of PPF is questioned in many applications. Although
it possesses a very simple structure, easy implementation, and low-cost solution, the
resonating effect of PPF with the power system is considered a major pitfall. Due to these
issues, APF technologies are having an edge over PPF technologies. Moreover, recent
research reported advocate hybrid configurations that combine the merits of both filters.
Based on the following arguments authors are motivated to take up this research problem.
In addition to that, for estimation of a powerful metaheuristic and its advanced version is
an acute requirement.

Analog filter design was performed in reference [2]; this paper investigated the efficacy
of metaheuristics for designing the analog filter circuit. A promising study with the
Hierarchical Teaching Learning Based Optimization was conducted in reference [3]. Biswas
et al. in [4] applied Differential Evolution and its advanced version L-SHADE. An improved
teaching–learning-based optimization algorithm (HTLBO) has been applied for optimizing
HAPF parameters. In addition to these studies, parameter estimation of the hybrid filter
was performed with Particle Swarm Optimization, Differential Evolution Algorithm, and
Bacterial Foraging Algorithm [5–7].

Large Scale Passive Harmonic Filters (LSPHFs) were designed with the help of a neural
network and PSO approach. The authors optimized the cost of the filter, filter loss, and
total harmonic distortion of currents and voltages at each bus simultaneously [5]. Similarly,
the approach based on the orthogonal array technique and ant direction hybrid differential
evolution algorithm (ADHDEOA) was developed for designing LSPHFs [6]. A similar
approach based on Ant Colony Optimization (ACO) has been developed for estimating
the parameters of HAPF [8]. An optimal design method for Passive Power Filters was
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proposed in the approach. The authors applied a modified BAT algorithm for solving
multi-objective design problems of PPF design in reference [9]. Recently, the application of
the Crow Search Algorithm (CSA) [10] has been explored with many engineering problems
along with standard optimization problems [11–14]. A recently developed MPA-SCA al-
gorithm has been employed for designing the filter for grid application [15]. These recent
applications are suitable proof that indicates the capability of optimization algorithms for
solving such design problems. Further, the application mentioned in [10,11] shows that
CSA has the capability to solve electrical engineering design problems very efficiently. For
the development of an effective optimization algorithm, we require an effective balance
between exploration and exploitation. To maintain this balance, sometimes local search
algorithms are employed. An effective mechanism based on local search has been show-
cased in reference [16] for improvement in Artificial Bee Colony Algorithm. Based on this
discussion, in this paper, we propose a local search-based CSA named as Amended Crow
Search Algorithm (ACSA). The following are the research objectives for this study:

1. To develop an optimization framework for parameter estimation of the configuration
of two well-known hybrid filter configurations;

2. To develop an objective function that explicitly inculcates harmonic pollution in
account for solving parameter estimation problem of Hybrid Active Power Filter;

3. To develop a framework based on the local search strategy derived from pattern
search algorithm for the development of ACSA;

4. To evaluate the applicability of ACSA-HAPF designs based on different test cases and
evaluation methods.

The remaining part of this paper is organized as follows: In Section 2, the problem
formulation is discussed. In Section 3, the development of the ACSA is explained. In
Section 4 numerical results of the application of the proposed variant on test benches
are reported. Last but not least, all major findings are summarized and presented in the
conclusion section.

2. Problem Formulation

Active Power filter plays a vital role in harmonic mitigation as it injects voltage
harmonic at the terminal. This injected voltage harmonic is proportional to the harmonic
components of the supply current. Hence, a linear relationship between these two can
be characterized as va f = kish. This equation contains a proportionality constant (k) that
is filter gain. At fundamental frequency, this provides zero impedance. From here, it
is implied that active filter components are virtual harmonic resistors that provide zero
impedance at fundamental frequency [15]. This works enumerates the optimization of the
three best parameters, i.e., k, xl , and xc, with the structure consisting of source and load as
non-linearities. Source harmonic voltage and current non-linearities are accounted for in
vsh and ish, respectively, and those of the loads are in vlh & ilh.

Utility supply voltage and nonlinear load are expressed by the Thevenin voltage
source and harmonic current source, respectively and are presented as follows:

vs(t) = ∑
h

vsh(t) (1)

il(t) = ∑h ilh(t) (2)

The source impedance of the h-th harmonics is

zsh = rsh + jxsh (3)

The load impedance of the h-th harmonics is

zlh = rlh + jxlh (4)
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The load admittance of the circuit is

ylh = glh − jblh (5)

At higher level harmonic, ‘h ≥ 2’ after analyzing the equivalent circuit of Figure 1 for
the series realization of the filter topology. The following relationship is identified between
the voltage and current of the load and supply end, respectively.

ish =
a + jb
c + jd

(6)

vlh =
e + j f
c + jd

(7)
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At higher level harmonic, i.e., ‘h ≥ 2’ after analyzing the equivalent circuit of Figure 1
for the series realization of the filter topology. The following relationship is identified
between the voltage and current of the load and supply end, respectively.

vlh =
e + j f
c + jd′

(8)

vlh =
e + j f ′

c + jd′
(9)

where
a = vshrlh − ilhxlh

(
hxl −

xc

h

)
(10)

b = vsh

(
xlh + hxl −

xc

h

)
+ ilhrlh

(
hxL −

xc

h

)
(11)

c = βtlh + krlh − (xlh + xsh)
(

hxl −
xc

h

)
(12)
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βtlh = rshrlh − xshxlh (13)

d = xtlh + kxlh − (rlh + rsh)
(

hxl −
xc

h

)
(14)

xtlh = rlhxsh − rshxlh (15)

e = vsh

[
krlh − xlh

(
hxl −

xc

h

)]
+ ilhxtlh

(
hxl −

xc

h

)
(16)

f = vsh

[
kxlh + rlh

(
hxl −

xc

h

)]
− ilhβtlh

(
hxl −

xc

h

)
(17)

d′ = xtlh + kxlh + (k + rlh + rsh)
(

hXxl −
xc

h

)
(18)

f ′ = vsh

[
kxlh + (k + rlh)

(
hxl −

xc

h

)]
− ilhβtlh

(
hxl −

xc

h

)
(19)

It can be observed from the equations that compensated utility supply harmonic
current is inverse to gain k. Usually, in active filter configuration, this phenomenon is
identified as obstructing resistor that suppresses the harmonic current generated by the
nonlinearity of the source. Consequently, for harmonic current, this acts as a damping
resistor. This diminishes the resonance between the shunt and the passive filter and source
impedance. The following mathematical expression showcases the compensated load
displacement factor, and pf represents compensated load power factor.

dp f =
pl1

vl1is1
=

gl1vl1
is1

(20)

p f =
pl

vl is
=

gl1vl1∗vl1 + ∑h≥2 glhv2
lh√(

i2s1 + ∑h≥2 i2sh
)(

v2
l1 + ∑h≥2 v2

lh
) (21)

In subscript ‘1’ the transmission loss formula is expressed as

ploss = i2s1rs1 + ∑
h≥2

i2shrsh (22)

Transmission efficiency can be calculated by

η =
pl

pl + i2s1rs1 + ∑h≥2 i2shrsh
(23)

Further, the expression for the voltage (compensated) and utility supply current
(compensated) can be represented by following expressions:

Vthd =

√
∑h≥2 v2

lh

vl1
(24)

Ithd =

√
∑h≥2 i2lh

is1
(25)

Finally, we can calculate the harmonic pollution through the below formula, as follows:

hp =
√

Vthd2 + Ithd2 (26)
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Fitness Function for Filter Design

To minimize the harmonic pollution, three parameters are considered for the optimiza-
tion process: k, xc, xl for HAPF design. The range of these parameters can be manifested as
follows: 

0 ≤ k ≤ 20
0 ≤ xc ≤ 20
0 ≤ xl ≤ 1

 (27)

It is worth mentioning that these three parameters, namely, filter gain, composing
inductance, and capacitance values, have an impact on filter performance. While designing
the filter, the guidelines of IEEE Standard 519-2014 [17] are adhered to. These are based on
the system voltage level and system short circuit ratio. The allowable ranges for Vthd and
Ithd are respectively as follows: {

Vthd ≤ Vthdlim
Ithd ≤ Ithdlim

}
(28)

where Equation (28) defines the limitation as Vthdlim and similarly, the limitation of the
current can be designated as Ithdlim. These limitations are strictly adhering to the guidelines
of IEEE 519-2014. On the basis of these representations, i.e., (Equations (27) and (28)), the
following expression is taken as an objective function:

hpapp = abs(Vthdlim −Vthd) + abs(Ithdlim − Ithd) (29)

While solving this optimization process, the individual harmonic is optimized with
the help of the following expression:

Maximize ‘hpapp’ subject to p f = p fgoal ± ε (30)

Different topologies, along with all four cases, are showcased in Figure 1.

3. Amended Crow Search Algorithm (ACSA)

Recently, the Crow Search Algorithm has caught the attention of researchers due
to its capabilities to solve complex optimization problems. This algorithm possesses a
highly adaptive and user-friendly structure that helps users experiment with the algorithm.
Recently, some interesting development has been exhibited in the improvement of the
convergence of the algorithm. One experiment reported sinusoidal bridging in position and
memory update equation of the CSA. The developed variant has been tested on different
benches of signal for estimating the harmonics components of the electrical signal [11].
An improved version of this algorithm has been implemented for feature selection and
optimization problems [12]. Further, the application of the algorithm has been exhibited
in hyperparameter tunning of grey models and other supervised architecture of power
quality event classification [13,14].

An Amended Crow Search Algorithm is proposed with a modified bridging parameter
in the position of the update expression. To understand the implementation of the proposed
bridging scheme, let us consider a few encoding steps of the Crow Search Algorithm:

Step1. All the parameters of this algorithm are initialized within the acceptable values,
such as a maximum number of iterations, search agent count, awareness probability (AP),
and Flight Length (FL). In this implementation, the adaptive tuning of the AP and FL has
not been explored;

Step2. In the second step, the position of the crow, along with memory, is initialized in
the search space dimension (d). Every crow corresponds to a new position by using the
following two rules:
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Crow2 does not know that Crow1 is following it; as a result, Crow2 will approach
the nest of Crow1. This new position of Crow1 (the follower Crow) is governed by the
following expression:

P(1,iter+1) = P(1.iter) + r1 × fl(1,iter) × (m(1,iter) − P(1,iter))

Crow2 knows that Crow1 is following it; as a result, Crow2 will try to fool Crow1
and will approach some other place. This new position of Crow1 (the follower Crow) is
governed by the following expression:

P(1.iter+1) = P(1.iter) + r1 × fl(1,iter) × (m(1,iter) − P(1,iter))/Random Position (if the random
number is greater than awareness probability, it takes a random position).

Case 2 is based on the probability distribution, which is designated with the help of
the flight length parameter.

From both expressions, we can see that the proposed position update is heavily
dependent on tuning parameters FL and AP along with memory matrices of Crow. Hence,
on the basis of this discussion, we introduce a local search loop based on the Pattern Search
Algorithm that employs a local search up to five iterations in Phase 2, i.e., when a crow is
misled by another crow.

Pattern Search for Amended Search

A patent search is a direct search method that comes from the family of derivative-free
search algorithms and numerical optimization methods. For implementing PS in ACSA,
we follow simple steps:

1. Evaluation of the position of the crow in stage 2, stack the position values for Filter
Gain and other parameters of HAPF, and also save the fitness values of the corre-
sponding positions;

2. Parameters are appended in two diverse directions by using the gradient rule. For
calculating gradients, fitness evaluation of the successive runs, along with the change
in parameter values, are observed;

3. After updating the parameters by gradient rule, the fitness function is evaluated; if
the optimal solution arrives, we keep the solution; otherwise, we reject the solution
and keep the previous one. This process is iterated in the inner loop of the phase five
times (Algorithm 1).

Algorithm 1. The iterative Process of Amended Crow Search Algorithm

1. Start the local loop counter;
2. Calculate the change in the parameters of HAPF with the help of the Gradient Rule and

append the HAPF parameters in two directions;
3. Apply the Sequential Optimization Process and choose Filter gain first and then, the

remaining parameters of the filters (Inductive and Capacitive Reactance);
4. Evaluate the fitness function with every change and accept and Reject the change as per the

condition of optimality;
5. Terminate the process after exhausting the iterative procedure.

Flow of the algorithm has been depicted in Figure 2, where a pattern of the search
algorithm has been showcased. Here, a noteworthy observation has to be made since the
CSA position update is based on the probability, and it also depends upon the values of the
awareness probability and flight length; hence, there is a greater chance for stagnation in
local minima.
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This local search algorithm helps the algorithm to find out the search space effectively
and provides a boosted convergence toward near-to-global optima. This algorithm helps
the existing CSA framework avoid entrapment into local minima.

4. Results Analysis

To evaluate the impact of the proposed modifications on the performance of the
algorithm, a harmonic pollution-based analysis has been conducted. For these, five distinct
algorithms (GWO, WOA, HHO, CSA, and SCA) have been selected, and filter parameter
estimation has been conducted. The following are the major conclusions obtained from this
analysis:

a. The optimization routine has been repeated 30 times, and values of the harmonic
pollution parameter have been calculated for every algorithm. These values are
stacked in one array, and the mean, maximum, minimum, and standard deviation of
these values are obtained;

b. Further, from these values (depicted in Table 1), the efficacy of the proposed algorithm
in obtaining accurate parameters of the filter can be judged. It is found that the algo-
rithm finds a suitable bridging between the exploration and exploitation phases with
the modified bridging mechanism. The values of HP are aligned with the previously
published results. Moreover, it has been observed that some of the algorithms, namely,
SCA and WOA, exhibit high values of standard deviation in the parameter estimation
process;

c. High values of standard deviation show the inability of the algorithm to solve the
estimation process accurately. With these high values, it can be concluded that the
filter design problem is sensitive toward the algorithm mechanism and possess a
highly nonlinear nature;

d. Inspecting the values from Case-1 to Case-8, the authors observed that the variation
between mean and maximum values is smaller. This observation indicates that
the proposed algorithm ACSA is very effective and accurate for solving the design
problem. On the other hand, SCA, WOA, and other algorithms give inaccurate results.
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Table 1. Analysis of Harmonic Pollution for Amended Crow Search Algorithm.

Algorithm
Case-1

Algorithm
Case-5

Maximum Minimum STD Mean Maximum Minimum STD Mean

SCA [18] 1.448856 0.236311 0.530824 0.664196 SCA 1.538961 0.227382 0.516208 0.539479

GWO [19] 0.493408 0.235755 0.078921 0.262403 GWO 0.459376 0.227343 0.095974 0.280593

WOA [20] 0.445305 0.235773 0.069155 0.297032 WOA 0.527085 0.227318 0.068884 0.266792

CSA [10] 0.493042 0.235827 0.101241 0.429355 CSA 0.458836 0.227334 0.097015 0.404364

ACSA 0.493027 0.235812 0.120879 0.407646 ACSA 0.458821 0.22741 0.051678 0.446843

HHO [21] 1.448856 0.236311 0.530824 0.664196 HHO 1.538961 0.227382 0.516208 0.539479

Algorithm
Case-2

Algorithm
Case-6

Maximum Minimum STD Mean Maximum Minimum STD Mean

SCA [18] 2.781007 2.732259 0.017291 2.750023 SCA 2.994494 2.70499 0.062621 2.771687

GWO [19] 2.76437 2.741872 0.006483 2.751549 GWO 2.953492 2.740731 0.070926 2.784176

WOA [20] 8.750862 2.671969 1.339977 3.060029 WOA 2.853276 2.69237 0.038325 2.771023

CSA [10] 2.9529 2.748966 0.081267 2.907062 CSA 2.949347 2.684705 8.63 × 10−2 2.907657

ACSA 2.952703 2.690854 0.10314 2.887101 ACSA 2.949586 2.751122 8.56 × 10−2 2.900906

HHO [21] 2.781007 2.732259 0.017291 2.750023 HHO 2.994494 2.70499 0.062621 2.771687

Algorithm
Case-3

Algorithm
Case-7

Maximum Minimum STD Mean Maximum Minimum STD Mean

SCA [18] 5.928603 5.677806 0.080314 5.743679 SCA 5.916098 5.666813 0.093673 5.749411

GWO [19] 38.69551 3.934576 7.388896 7.357326 GWO 41.90414 5.571101 11.12974 10.8523

WOA [20] 41.00736 5.543984 12.3609 11.70034 WOA 36.96037 1.93019 9.824782 10.00604

CSA [10] 5.888007 5.887952 1.66 × 10−5 5.887969 CSA 5.888667 5.672008 0.060736 5.868386

ACSA 5.888005 5.887955 1.54 × 10−5 5.887974 ACSA 5.888006 5.887948 1.63 × 10−5 5.887967

HHO [21] 5.928603 5.677806 0.080314 5.743679 HHO 5.916098 5.666813 0.093673 5.749411

Algorithm
Case-4

Algorithm
Case-8

Maximum Minimum STD Mean Maximum Minimum STD Mean

SCA [18] 6.561753 6.343699 0.06756 6.405037 SCA 496.3862 2.793472 109.2909 32.58135

GWO [19] 33.29548 2.377242 9.731524 11.46938 GWO 29.16094 6.493424 8.009502 12.17118

WOA [20] 35.80203 2.901182 8.878828 11.23005 WOA 27.04237 1.254234 5.913472 9.749383

CSA [10] 80.27465 5.967958 17.49414 17.83506 CSA 45.31236 4.056495 8.817461 10.52432

ACSA 40.76756 6.25924 10.17947 14.54976 ACSA 29.71758 6.492036 5.82 × 10+0 10.60139

HHO [21] 6.561753 6.343699 0.06756 6.405037 HHO 496.3862 2.793472 109.2909 32.58135

Further, for evaluation of the capabilities of ACSA, an analysis of fitness function
values obtained from the optimization run. As it is a known fact that metaheuristic-based
algorithms give different answers in every optimization run due to randomness in nature.
Hence, the reporting of the results should be in terms of statistical parameter calculations.
These parameters are known as the mean, maximum, minimum, and standard deviation of
the fitness values obtained from the optimization runs. Here, Table 2 shows the statistical
attributes obtained from the optimization runs.
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Table 2. Analysis of Fitness Function Values for Amended Crow Search Algorithm.

Cases Parameters SCA [18] GWO [19] WOA [20] CSA [10] HHO [21] ACSA

Case-1

Mean −9.10328 −9.33796 −9.59058 −9.40278 −9.25919 −9.63677

SD 0.642582 0.108618 0.095012 0.136469 0.305745 0.165506

Max −8.14792 −9.32026 −9.386 −9.32077 −8.48741 −9.39076

Min −9.67366 −9.6748 −9.67504 −9.67503 −9.67428 −9.67504

Case-2

Mean −6.44891 −6.78382 −1.38319 −6.50687 −6.51822 −6.54087

SD 0.261048 0.000688 23.86347 0.101771 0.213466 0.138216

Max −6.20066 −6.78255 100 −6.46297 −5.92163 −6.46302

Min −6.77524 −6.78487 −6.78502 −6.78479 −6.78151 −6.78499

Case-3

Mean −1.89393 8.305361 23.61121 −1.76545 8.464069 −1.76544

SD 0.109313 31.35932 45.24906 3.73 × 10−5 31.30597 2.91 × 10−5

Max −1.67799 100 100 −1.76538 100 −1.76538

Min −2.05023 −2.08313 −2.08387 −1.76549 −1.99496 −1.76548

Case-4

Mean −0.89175 −0.13287 0.359678 0.85779 0.556368 0.612018

SD 0.147984 1.052616 0.917454 0.437766 0.799542 0.766013

Max −0.44186 1 1 1 1 1

Min −1.07148 −1.10087 −1.0892 −0.4428 −1.00297 −1.10185

Case-5

Mean −9.23289 −9.60963 −9.63201 −9.44075 −9.2848 −9.3846

SD 0.620599 0.135475 0.095022 0.130066 0.261343 0.071097

Max −8.03216 −9.3664 −9.27301 −9.36797 −8.66788 −9.36797

Min −9.66455 −9.68655 −9.68668 −9.68667 −9.66196 −9.68636

Case-6

Mean −6.59211 −6.74522 −6.67754 −6.53541 −6.52537 −6.55596

SD 0.235935 0.109231 0.189649 0.096793 0.203477 0.121008

Max −6.14447 −6.49176 −6.16353 −6.49218 −5.91236 −6.49218

Min −6.7822 −6.79107 −6.79132 −6.79124 −6.79132 −6.79132

Case-7

Mean −1.91137 33.78636 23.60986 −1.79384 23.78867 −1.76546

SD 0.129985 49.84994 45.25007 0.088304 45.14408 3.38 × 10−5

Max −1.6719 100 100 −1.76441 100 −1.76535

Min −2.04358 −2.07982 −2.08432 −2.08486 −2.06681 −1.7655

Case-8

Mean 0.052851 0.276124 0.673487 0.788545 0.915925 0.422099

SD 0.845179 0.910051 0.683218 0.574427 0.375996 0.835854

Max 1 1 1 1 1 1

Min −0.81515 −0.85589 −0.85286 −0.85916 −0.6815 −0.85911

It can be seen in Table 2 that ACSA showcases excellent optimization virtues as the
fitness values obtained during the optimization process are on par with other optimization
algorithms. Hence, it can be seen from the results that the proposed modifications are
meaningful and yield better results in terms of the accuracy of the optimization.

Apart from the fitness function value analysis and harmonic pollution analysis, THD
analysis is also required for judging the efficacy of the filter. A similar analysis has been
conducted by us in our previously reported approach. Hence, we compare the THD of the
proposed filter with other filters proposed in reference. Results are shown in Table 3.
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Table 3. The analysis; the following points are concluded from this analysis.

Series
ITHD (%) VTHD (%)

Parallel
ITHD (%) VTHD (%)

Ref [15] Proposed Ref [15] Proposed Ref [15] Proposed Ref [15] Proposed

Toplogy-1 0.12497 0.1248 0.19999 0.198 Toplogy-1 0.12044 0.12 0.19284 0.1895
Topology-2 2.67705 2.651 0.544 0.543 Topology-2 2.7084 2.707 0.50027 0.5001
Topology-3 4.6085 4.595 3.30646 3.2356 Topology-3 4.6155 4.593 3.3118762 3.3054
Topology-4 4.9987 4.8896 3.89803 3.6897 Topology-4 4.9869 4.963 4.1404734 4.13024

It is observed that THD values of voltage are higher for series Topology-3 and 4, and
corresponding values of current THDs are also comparatively high. As discussed in our
previous work, since all these values were in the acceptable range (below 5%), the results
may be accepted for implementation [17]. Furthermore, the proposed implementation
yields a lower value of THD. Hence, it is proved that the proposed implemented filter is
able to deal with odd harmonics more efficiently.

Further, investigating the results of parallel topology, THD values of voltage and
currents are high for Topology-3 and 4. It is also worth mentioning that these values are
lower in the case of proposed implementation. These values are highlighted in boldface.

Here, the THD has been computed in the presence of [5, 7, 11, and 13th] harmonic
contamination. However, the optimal THD values of the proposed implementation indicate
that the proposed modification in crow search is useful, and the filter is successful for all
evaluated cases. Further, the visualization of the results has been presented in Figure 3 (for
ITHD) and Figure 4 (for VTHD).
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5. Conclusions

This paper has showcased an application of a local search algorithm for the accurate
estimation of HAPF parameters. Series and Parallel topologies are considered for this
work. The objective of reduction in harmonic pollution through both topologies has been
achieved. It has been observed that the optimization performance of the proposed ACSA
is satisfactory when compared with some recent nature-inspired algorithms and other
published approaches.

Following are some noteworthy observations:

1. The proposed HAPF design is based on the explicit involvement of filter parameters
for achieving minimum values of an objective function that is an indicator of signal
health. A fair comparison has been executed between some contemporary optimizers
for solving this optimization problem;

2. It has been observed that the proposed design exhibits satisfactory performance in the
estimation of components of HAPF. This conclusion is based on the optimal values
obtained by ACSA for error in the objective function and HP values;

3. The efficacy of this design has been validated by various tests, significance analysis,
and statistical calculations. These are, namely, statistical attribute analysis and com-
parison of filter performance with the help of THD analysis of the existing proposed
filter of (MPASCA). All these analyses indicate that there are positive implications for
proposed modifications in CSA.

It will be interesting to develop a hybrid version of ACSA and a memetic version of
ACSA to solve this challenging problem.
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