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Abstract: Fault detection in PV arrays and inverters is critical for ensuring maximum efficiency and
performance. Artificial intelligence (AI) learning can be used to quickly identify issues, resulting in a
sustainable environment with reduced downtime and maintenance costs. As the use of solar energy
systems continues to grow, the need for reliable and efficient fault detection and diagnosis techniques
becomes more critical. This paper presents a novel approach for fault detection in photovoltaic (PV)
arrays and inverters, combining AI techniques. It integrates Elman neural network (ENN), boosted
tree algorithms (BTA), multi-layer perceptron (MLP), and Gaussian processes regression (GPR) for
enhanced accuracy and reliability in fault diagnosis. It leverages its strengths for the accuracy and
reliability of fault diagnosis. Feature engineering-based sensitivity analysis was utilized for feature
extraction. The fault detection and diagnosis were assessed using several statistical criteria including
PBAIS, MAE, NSE, RMSE, and MAPE. Two intelligent learning scenarios are carried out. The first
scenario is conducted for PV array fault detection with DC power (DCP) as output. The second
scenario is conducted for inverter fault detection with AC power (ACP) as the output. The proposed
technique is capable of detecting faults in PV arrays and inverters, providing a reliable solution for
enhancing the performance and reliability of solar energy systems. A real-world solar energy dataset
is used to evaluate the proposed technique with results compared to existing detection techniques
and obtained results showing that it outperforms existing fault detection techniques, achieving higher
accuracy and better performance. The GPR-M4 optimization justified its reliably among all the
models with MAPE = 0.0393 and MAE = 0.002 for inverter fault detection, and MAPE = 0.091 and
MAE = 0.000 for PV array fault detection.

Keywords: fault detection; sustainable development; artificial intelligence; Elman neural network;
boosted tree algorithms; multi-layer perceptron; Gaussian processes regression

1. Introduction

Advancement in renewable energy technology has been on a rapid ascending trend
in recent years. This has encouraged wide acceptance of the technology and, thus, the
subsequent boom in the installation of renewable energy-based power plants around the
world (especially in China, India, Europe, and America). Solar photovoltaic (PV) is one
of the leading renewable energy technologies on an exponential rise. Due in part to the
growing concern over oil depletion, environmental issues, fuel price dependence, and
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operational complexity associated with the production of fossil fuels, an increasing number
of residential, commercial, and industrial consumers have adopted and are adopting solar
PV as their source of power generation [1]. The National Renewable Energy Lab (NREL)
reported that the PV capacity installed globally in 2021 was 172GWdc, bringing the global
cumulative capacity to 939GWdc [2]. The NREL further stated that China, India, and
Germany significantly increased their PV installations by 106%, 51%, and 22%, respectively,
in the first 9 months of 2022 [3]. This remarkable rise in the significance of solar PV in the
global energy sector is also reflected in [2], where it is reported that increased annual global
PV installations, especially in the aforementioned countries, are projected by analysts.

However, there is a downside to the technology. Solar PV systems require ongoing
maintenance in order to function efficiently over time because they have been known to lose
efficiency and productivity if not properly and appropriately managed and maintained [1].
The financial aspect of running solar PV systems without adequate maintenance is also
drastically affected, as reflected in [4], where the economic consequences of the reduced real
lifetime of PV panels were discussed. That is to say, in order for solar PV systems to operate
properly over time, they need to undergo routine maintenance, which calls for the adoption
of mechanisms to efficiently monitor and control these systems. Several operation and
maintenance conventional methods, which have helped to sustain the efficient operation
of PV systems, have been introduced over the years. These methods, however, have not
been able to totally prevent system failure and operation downtime, which begs the need
for more intelligent methods of fault detection and the subsequent adoption of AI-based
methods. These techniques make use of machine learning to develop models that can
quickly find various issues, track the overall health of PV systems, and assist maintenance
engineers in hastening system recovery [5].

There are so many available pieces of literature that have carried out experiments
and research on the use of AI in fault detection and diagnosis for PV systems. In [6], a
straightforward and efficient monitoring technique for PV systems is given. It is based
on parametric models and the double exponential smoothing scheme. In order to find
minor deviations, the simplicity and adaptability of empirical models are combined with
the sensitivity of a double exponential smoothing method. By analyzing the resulting
residuals, the double exponential smoothing approach detects flaws and its sensitivity is
increased by creating a nonparametric detection threshold using kernel density estimation.
Partial shading, inverter disconnections, PV string faults, soiling on PV arrays, and short
circuits in PV modules are just a few of the defects that can be found utilizing the suggested
method. The research’s findings demonstrated that the suggested method can be used to
monitor PV system operating parameters in real time but may not be suitable for spotting
abnormalities at various scales because it was designed for one scale, namely the time
scale. By implementing grid partition (GP) and subtractive clustering (SC) algorithms
utilizing research data, the approach suggested in [7] trains the adaptive neuro-fuzzy
inference system (ANFIS) model for a reliable PV defect detection and classification system.
Afterward, in order to identify PV system problems, the trained models ANFIS GP and
ANFIS SC were used. The resulting data were compared using statistical analysis. It
was discovered that in terms of precisely identifying fault states, the ANFIS SC technique
outperformed the ANFIS GP technique. The proposed method may not be appropriate
for the identification of faults in various PV systems where the environmental factors are
beyond the specified model range, according to the authors who also emphasized that the
method solely considers electrical defects. Using thermographic pictures, a fault detection
technique is provided in [8] that categorizes various PV module anomalies. A multi-scale
convolutional neural network (CNN) with three branches is used in the technique, which is
based on the transfer learning approach. The transferred network’s pre-trained information
is used in the convolutional branches, which also have multi-scale kernels with levels of
visual perception to enhance the network’s capacity for representation. By combining an
oversampling strategy with an offline augmentation method, the study was able to improve
network performance while overcoming the unbalanced class distribution of the raw data.
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The suggested method was used in the experiment to identify a variety of fault kinds,
and the study came to the conclusion that it performs better than other deep learning meth-
ods and studies now available and provides higher classification accuracy and robustness in
PV panel defects. Thermographic images are used in yet another technique described in [9]
to identify flaws in PV systems. Here, deep convolutional neural networks (DCNNs) and
infrared thermographic images are used together to detect and diagnose faults. The method
involves first creating a binary classifier to identify faults in PV modules, then creating a
multiclass classifier to determine what kind of flaws are there. The study takes into account
four typical PV module faults: short circuiting, partial shading effects, dust deposition
on PV module surfaces, and bypass diode failure. The proposed DCNN-based classifiers
have been first optimized, then embedded into a low-cost microprocessor (Rasberry Pi 4),
and the models are compared with three main TF-Lite optimization strategies, including
simple conversion, dynamic range quantization, and float 16 quantization. The study came
to the conclusion that the proposed technique can operate in real time and can diagnose
and detect anomalies with a level of accuracy that is acceptable based on the experimental
findings that were obtained. Additionally, the technique is set up to send emails and SMS
using a GSM module to operators informing them of the status of the PV array. The authors
of study [10], which also presents a thermographic image-based method, noted that it is
crucial to quickly and affordably maintain the proper functioning of PV systems without
interrupting regular operations by identifying PV module overheating through thermo-
graphic non-destructive testing. The paper then suggested a technique for convolutional
neural networks that was created using open-source libraries to automatically classify
thermographic images. To lower image noise, a number of preprocessing techniques were
tested, including grey-scaling, thresholding discrete wavelet transform, normalizing and
homogenizing pixels, and Sobel Feldman and box blur filtering. Without following any set
protocols, these techniques enable the classification of thermographic images of varying
qualities that are taken using various pieces of equipment. The performance of neural
networks was evaluated using the suggested method through a number of experiments
using various parameters and overfitting mitigation techniques. In order to assess network
performance and the amount of time needed to complete the thermographic inspection,
images obtained by unmanned aerial vehicles and ground-based operators were compared.
The foundation of the proposed method is a tool built on convolutional neural networks
that enables rapid and accurate failure detection in PV panels.

According to the authors, the proposed methodology provides an alternative and
reliable tool that enhances the resolution of picture classification for issues involving remote
failure detection and can be applied in any field of science. Study [11] provides a summary
of IoT and AI applications for PV systems. The most cutting-edge algorithms, including
machine and deep learning, are also discussed in the paper, along with their implemen-
tation costs, accuracy, complexity, software appropriateness, and viability for real-time
applications. For PV facilities located in remote locations with expensive and difficult
accessibility for maintenance, the integration of AI and IoT approaches for defect detection
and diagnosis into basic hardware, such as inexpensive chips, may be economically and
technically possible. These strategies were also provided together with challenging prob-
lems, advice, and trends. In [12], a study examining the use of ANN in various areas of
partially shaded PV systems is provided. It provided an overview of and covered the use
of ANNs in MPPT, fault detection, fault mitigation, system modeling, and performance
enhancement of solar PV systems exposed to partial shading. The study did not just
examine the literature, it also showed how the approaches may be enhanced and applied
in real-world settings. The study described in [13] assesses various ML and ensemble
learning (EL) algorithms for fault diagnosis of PV arrays, including previously untested
methods for faults with numerous faults and faults with comparable I-V curves. The study
created a novel method to accurately identify and classify defects based on this evaluation.
According to the authors’ findings, the results are positive. The study went further to
demonstrate when ML and EL methods ought to be applied in practice and provided some
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recommendations, difficulties, and potential future directions in this area. By suggesting an
early degradation detection that affects glass, EVA, wiring, etc., the work described in [14]
aims to lower the operation costs of PV modules. In the suggested approach, automated
self-evaluation of PV panels is created, and degradation models are integrated as software
into a microcontroller that uses instantly measured parameters. The study also discussed
the deterioration phenomena of each PV module’s component. Modeling each recognized
degradation using P-V characteristics is the basis for the Observing Degradation System
(ODS) program, which is then presented. A checklist is then created for successful testing.
Study [15] presents an ensemble-based deep neural network (DNN) model for the au-
tonomous detection of visual faults on various PV modules, including glass breakage, burn
marks, snail trails, discoloration, and delamination. This method for detecting degradation
faults is similar to the one described earlier. An RGB camera placed on an unmanned
aerial vehicle is used in the procedure to capture the image dataset (UAV). Images are
preprocessed by removing spatial and frequency domain characteristics from them, such
as discrete wavelet transform, the texture grey level co-occurrence matrix, rapid Fourier
transform, and different grey level approaches. Following that, the edited photos are input.
To identify any visual defects in the PV modules, the proposed ensemble-based DNN model
uses DNN. In order to assess the performance of the suggested model, the classification
accuracy, receiver operating characteristic curve, and confusion matrix are utilized. The
results revealed that the proposed model, coupled with a random forest classifier, achieved
a high classification accuracy.

Similarly, in [16], the authors described a fuzzy diagnostic algorithm that relies on the
classification of electrical characteristics, the values of which are taken from experimental
measurements of the crystalline modules’ I-V curves. By using the suggested method, flaws
like uniform dust, partial shading, and potential-induced degradation can be found. Also, a
brand-new approach is suggested for the detection of aberrations in the measured I-V curve
brought about by bypasses that are activated as a result of partial shading. This is based on
quadratic and cubic polynomial regression whose concavities are very sensitive to noisy
data. An approach for identifying, diagnosing, and categorizing short-circuit and open-
circuit string errors that are based on deep learning is provided in [17]. There are four steps
in the suggested technique. First, a PSIM-based simulation that seeks to accurately represent
the functioning PV system using a heuristic optimization approach, based on the Coyote
Optimization Algorithm (COA), is used to input five unknown electrical characteristics
of one diode model. The second phase involves creating a database with information on
current, voltage, power at MMP, module temperature, and solar irradiation for the PV
system under both ideal and unsatisfactory working circumstances. In the third stage, new
features from the old database are extracted using the unsupervised learning capabilities of
the auto-encoder. In the final step, PV defect detection and classification are accomplished
using supervised learning on the new database based on ANN construction. The obtained
results show how well the suggested strategy works with the aforementioned fault kinds.
Study [18] investigates the effects of various physical faults and cyberattacks in order to
develop an intelligent fault/attack detection and diagnosis system. They found that by
being able to quickly identify and diagnose faults/attacks, local controllers and energy
management systems can accommodate or lessen the negative effects of physical faults
and cyberattacks in microgrids. The study then presented an intelligent hybrid diagnosis
method for data online monitoring and diagnosing to reflect the real-time state of the PV
system running at the microgrid level. The proposed method is based on a fuzzy inference
system, a power spectrum estimator, and an adaptive neuro-fuzzy inference system. A
realistic microgrid benchmark model with a range of operating conditions and dynamic
electrical loads in the presence of potential microgrid disturbances is used to show the high
level of efficiency of the proposed method under various types of fault/attack scenarios.
In [19], a fault detection and diagnosis (FDD) scheme design is presented that employs a
Wasserstein generative adversarial network (WGAN) and convolutional neural network
for automatic fault feature extraction from raw electrical data of the PV array, resulting
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in the creation of an effective FDD model with little data. A classifier, a generator, and
a discriminator make up the three modules that make up the FDD model. In order to
enhance the effectiveness of the CNN-based classifier, the discriminator and generator
analyze sequential PV data in a two-dimensional manner to learn the distribution of PV
data under different PV system operations. Then, they are utilized to generate additional
labeled data samples. According to the paper, the suggested FDD model could be trained
with only a little amount of labeled data, and the effectiveness of the model was assessed
using a lab grid-connected PV setup.

A diagnosis of line–line and open-circuit faults using the suggested method was
demonstrated by the results. The implementation of a fault detection strategy based on
the identification of PV systems’ neuro-fuzzy models is presented in [20]. The modeling
and identification of systems and the detection of operational states are the two stages
of the technique. The derived neuro-fuzzy model approximates, with only a few minor
differences, the properties and behavior of a genuine system. The suggested model has
a very high level of accuracy and can identify errors very quickly. Three shortcomings in
machine learning-based defect detection techniques were listed in the study [21], which is
what it seeks to fix. The inability of shallow network structures to effectively learn nonlinear
characteristics of I-V curves is one of them. The others are that feature extraction relies on
expert experience and lacks automation; artificial feature extraction readily ignores some
potentially useful features and feature extraction is not automated. As a result, the study
suggested a methodology based on a layered automated encoder and clustering algorithm
that can automatically extract features and employ a limited amount of labeled data
samples to mine data sample characteristics for defect diagnosis. Three steps make up the
technique’s execution. To enhance the effectiveness of the clustering approach, the effective
features are first automatically retrieved from the I-V curves by the stacking encoder,
and then the dimension of the features is decreased and visualized by the t-distributed
stochastic neighbor embedding. Eventually, the clustering method produces clustering
centers and clusters, and the membership function is utilized to diagnose faults. To address
the issue of fault detection of PV modules using thermographic images, a convolutional
neural network (CNN) model and a fine-tuned model based on the Visual Geometry Group
(VGG-16) have been investigated in [22]. Binary classification and multiclass classification
were employed to determine the type of fault in order to detect it. The database utilized in
the study was made up of an unbalanced class distribution of thermographic images taken
by infrared cameras of PV modules both in good and bad condition (such as bypass diode
failure, partially covered PV module, shading effect, and short-circuit and dust deposit
on the PV surface). The fine-tuned model performs very well in experimental tests, but
the small deep convolutional neural network (small-DCNN) model performs somewhat
less well.

This study presents a novel method of fault detection in PV arrays and inverter faults
by utilizing Elman neural network (ENN), boosted tree algorithms (BTA), multi-layer
perceptron (MLP), and Gaussian processes regression (GPR) models to estimate the DC
Power (DCP) and AC power (ACP) of a PV system setup. Different models have different
strengths and weaknesses, and what works well for one problem may not work as well
for another. Therefore, it is important to experiment with different models and choose the
one that is best suited for the particular task at hand [23]. As such, we develop several
model combinations based on the influencing factors and existing claims of dominancy
in the literature [24–27]. Furthermore, it is important to evaluate the performance of the
chosen model carefully, using appropriate metrics and validation techniques, to ensure that
it is indeed performing well on the given problem. As such, the study employs several
performance criteria to assess the accuracy of the models. Prior to model development,
data pre-processing including normalization, model validation, and stationarity analysis
is carried out. Also, both standalone and hybrid models will be compared using Nash–
Sutcliffe efficiency (NSE), Pearson correlation coefficient (PCC), mean absolute percentage
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error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and Percent
bias (PBAIS) to understand the strength of each model combination.

Ultimately, the fundamental contribution of this research is the development of a
novel hybrid fault detection approach that combines various AI techniques, careful model
selection, thorough performance evaluation, and application to actual solar energy systems.
Through efficient fault detection, the study seeks to improve the functionality, effectiveness,
and dependability of solar energy systems, ultimately resulting in lower maintenance costs
and downtime while helping to create a more sustainable environment.

2. Components Methodology
2.1. DC Power

Solar panels use PV technology to turn sunlight into DCP. It is a kind of electricity that
only goes in one direction. Only batteries and DC loads are powered by DCP. To power
AC loads, DCP must first be converted to ACP using an inverter. The majority of electrical
appliances and equipment in houses and buildings operate on ACP.

2.2. AC Power

In order to power appliances, lighting, and other electrical loads in homes and busi-
nesses, AC electricity is typically employed. ACP is a type of electrical current that has a
sinusoidal waveform and goes back and forth. Inverters are used to convert DC electricity
produced by solar panels into ACP, which may subsequently be utilized to power AC loads.

2.3. Daily Yield

The amount of electricity produced by a solar panel system in a single day is referred
to as daily yield. It is commonly expressed in kilowatt-hours (kWh) and is influenced
by things like the size of the solar panel system, how effective the panels are, and how
much sunlight is available during the day. A solar panel system’s daily yield can be used
to predict how much energy it will produce over time and to assess its financial return
on investment.

2.4. Ambient Temperature

The term “ambient temperature” describes the temperature of the environment or
the air around you. When it comes to solar energy, the ambient temperature can have
an impact on how well solar panels work because hotter temperatures can reduce panel
output and efficiency. When building and installing solar panel systems, it is crucial to take
the ambient temperature into account as solar panels perform better at lower temperatures.

2.5. Module Temperature

The temperature of the solar panels itself is referred to as the module temperature.
Solar panels may get fairly hot as they collect sunlight, which may have an impact on how
well they work. The output and efficiency of panels may decline as module temperatures
rise. Solar panels are frequently mounted with a space between the panel and the mounting
surface to allow for air circulation in order to minimize overheating.

2.6. Solar Radiation

The energy that the sun emits and that reaches the Earth is referred to as solar radiation.
It consists of infrared (IR), ultraviolet (UV), and visible light (light). Solar panels use sun
radiation as their energy source in order to produce electricity. Solar radiation received by
solar modules varies based on its location, the time of day, the season, and the weather. The
energy output of a solar panel system is calculated using the intensity of solar radiation,
which is commonly expressed in terms of watts per square meter (W/m2).
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3. Proposed Intelligent Methods

According to the “no free lunch” theorem, there is no single model that is universally
better than all other models for every type of problem. In other words, there is no one-
size-fits-all model that can provide optimal results across all possible scenarios [28]. In
this work, we proposed several AI learning based on three different scenarios (cropland,
pasture, and cropland and pasture) to estimate the DCP and ACP based on solar panels
and inverters, respectively. For this purpose, ENN, BTA, MLP, and GPR models are
utilized. The proposed modeling schematics are presented in Figure 1. It is essential
to consider the specific characteristics of the problem at hand, such as the nature of the
data, the size of the dataset, and the goals of the analysis. Different models have different
strengths and weaknesses, and what works well for one problem may not work as well
for another. Therefore, it is important to experiment with different models and choose the
one that is best suited for the particular task at hand [23]. As such, we developed several
model combinations based on the influencing factors (see Figure 2) and existing claims of
dominancy in the literature [24–27] as follows:

Solar Panel (DCP) =
{

M1 = Φ(DY + AT + MT)
M2 = Φ(DY + AT + MT + SR + TY)

(1)

Inverter (ACP) =


M1 = Φ(DCP)

M2 = Φ(DY + AT + MT)
M3 = Φ(DY + AT + MT + SR + TY)

M4 = Φ(DY + AT + MT + SR + TY + DCP)

(2)

where DCP is DC power, ACP is AC power, DY is daily yield, AT is ambient temperature,
MT is module temperature, and SR is solar radiation.
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Furthermore, it is important to evaluate the performance of the chosen model carefully,
using appropriate metrics and validation techniques, to ensure that it is indeed performing
well on the given problem. As such, this study employed several performance criteria to
assess the accuracy of the models. Prior to model development, several pre-processing
systems, including normalization (Equation (3), model validation, and stationarity analysis,



Processes 2023, 11, 2549 9 of 21

were carried out. In this study, both the standalone and hybrid models were compared
using NSE (Nash–Sutcliffe efficiency), PCC (Pearson correlation coefficient), MAPE (mean
absolute percentage error), MAE (mean absolute error), RMSE (root mean square error),
and PBAIS to understand the strength of each model combination.

y = 0.05 +
(

0.95
(

x − x
xmax + xmin

))
(3)

where y denotes normalized data, x is the actual data, x is the mean of the measured data,
xmax denotes the maximum value of the measured data, and xmin denotes the minimum value.

NSE = 1 −
∑N

i=1

(
Y(p) − Y(o)

)2

∑N
i=1

(
Y(p) − Y(o)

)2 (4)

PCC =
∑N

i=1

[
Y(o),i − Y(p)

][
Ŷ(o),i −

∼
Y(p)

]
√

∑N
i=1

[
QY(o),i − Y(p)

]2
[

Ŷ(o),i −
∼
Y(p)

]2
(5)

RMSE =

√
1
N∑N

i=1

(
Y(p) − Y(o)

)2
(6)

MAE =
∑N

i=1

∣∣∣Y(p) − Y(o)

∣∣∣
N

(7)

MAPE =
100
n ∑N

i=1

∣∣∣∣∣Y(o) − Y(p)

Y(o)

∣∣∣∣∣ (8)

PBIAS =
∑N

i=1

(
Y(o) − Y(p)

)
∑N

i=1 Y(p)
(9)

where Y(p), Y(o), and Yo are considered as the TP loss rate predicted and Y(o) observed and
Yo are the average values, respectively.

Comparing different AI methods and performance criteria is crucial to identify the
most suitable approach for a given task. The computational approach, such as the AI-based
model, is a diverse field with numerous algorithms, each having strengths and weaknesses.
By comparing these methods, we can determine which one aligns best with the specific
problem’s requirements and dataset characteristics. This study used several indicators,
such as MAPE and NSE, to compare the results of the proposed methods with those in
the existing literature. Comparing AI-based methods and performance criteria enhances
decision-making, promotes innovation, and ensures the development of efficient, accurate,
and contextually appropriate soft computing solutions. They aid in understanding trade-
offs between aspects like model complexity and predictive power. A method that excels in
one criterion might underperform in another, necessitating a comprehensive assessment.

3.1. Elman Neural Network (ENN)

As recurrent computational learning, ENN is a type of machine learning technique
that uses feedback connections to retain information about previous inputs. It comprises
different three layers (as presented in Figure 2a) similar to traditional neural networks with
the hidden layer having additional connections to itself from the previous time step [29].
This allows the network to capture sequential information and make predictions based on
past inputs. The network is trained using backpropagation through time, where the error is
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propagated through the network and the weights are updated accordingly [30]. The ENN
has been used for numerous purposes, both in science and engineering problems [31,32].

3.2. Boosted Tree Algorithms (BTA)

BTA are machine learning techniques that combine multiple decision trees to create a
powerful predictive model (Figure 2b). The term “boosting” refers to the process of itera-
tively improving the performance of the model by focusing on the misclassified instances
in each iteration. Boosted trees can be applied to both supervised and unsupervised learn-
ing problems [33]. The most popular boosted tree algorithms are Gradient Boosted Trees
(GBTs) and Extreme Gradient Boosting (XGBoost). These algorithms work by sequentially
adding trees to the model, with each subsequent tree trying to correct the errors made
by the previous ones. The projection is obtained by aggregating the predictions of all the
trees [34]. GBTs and XGBoost have several hyperparameters that can be tuned to optimize
performance, including the learning rate, number of trees, tree depth, and regularization.
These algorithms have been successfully applied in various domains, including finance,
e-commerce, and healthcare. They are known for their high accuracy and interpretability
as they provide information on the importance of each feature in the prediction [33,35].

3.3. Multi-Layer Perceptron (MLP)

As another version of ANN, the MLP model consists of multiple layers of intercon-
nected perceptron units. MLP plays the role of FFNN in terms of information processing
through the three layers (input, hidden, and outputs) [36] (Figure 2c). Each layer contains
one or more nodes (perceptrons) that receive input from the previous layer and produce
an output that is transmitted to the next layer [37]. The perceptrons in the hidden layers
use activation functions to transform the inputs, allowing the network to learn complex
mapping in the data. The MLP is trained using a supervised learning approach called
backpropagation, hence works based on the principle of reducing the error between the
estimated and observed data [38].

3.4. Gaussian Processes Regression (GPR)

The GPR model has been used to solve different problems related to regression analysis
in both science and engineering [39]. It uses Bayesian inference to make predictions and
estimates uncertainties in the predictions. In contrast to other regression models, GPs do
not make assumptions about the underlying function that generates the data, making them
more flexible and suitable for modeling complex, nonlinear relationships. The core idea
behind GPR is to assume that the function values at any set of input points are jointly
Gaussian distributed [40]. A GP is defined by a mean function and a covariance function,
also called the kernel function. The mean function specifies the expected value of the
function at any input point, while the kernel function captures the similarity between
different input points [41,42].

4. Application of Results and Discussion

In this section, the modeling results for two different scenarios were discussed based
on solar panel (DCP) and inverter (ACP) modeling. It is worth noting that the use of AI
models to simulate and optimize the performance of solar photovoltaic power plants is a
novel approach that allows for better prediction and control of energy production, leading
to increased efficiency and cost-effectiveness.

4.1. Preliminary Results

According to [43], to understand the model performance or, on the other hand, the
model to perform at its best, it is essential to include all factors associated with the removal
process of HMs in the input data optimization. This step will enhance the output and
ensure that the model’s results align as closely as possible with the experimental data.
Descriptive statistics and raw data analysis are crucial in modeling because they provide a
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comprehensive understanding of the data’s characteristics and patterns. Table 1 shows the
input-output descriptive analysis. This information can guide the selection of appropriate
modeling techniques, the validation of model assumptions, and the interpretation of model
results, leading to more accurate and reliable predictions. The time series data used in this
study can be visualized in Figure 3.

Table 1. Descriptive statistics for input-output variables.

Parameters Mean SD Kurtosis Skewness Minimum Maximum

DY 2401.47 2667.09 −1.20 0.64 0.00 7190.00
TY 7,620,392.92 451,795.89 −1.05 −0.45 6,870,716.67 8,460,553.49
AT 28.42 3.75 −0.54 0.67 22.67 39.17
MT 34.65 13.71 −0.65 0.85 20.16 72.83
SR 0.26 0.34 −0.21 1.05 0.00 1.36

DCP 3775.04 4045.64 −1.20 0.52 0.00 13,687.94
ACP 369.50 395.76 −1.21 0.52 0.00 1334.94
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Figure 3. Raw data for input-output variables.

The table presents descriptive statistics for six parameters: DY, TY, AT, MT, SR, DCP,
and ACP. The Kurtosis column represents the peak of the distribution, with a negative value
indicating a flatter distribution than a normal distribution and a positive value indicating a
more peaked distribution. The Skewness column shows the degree of asymmetry in the
distribution, with a negative value indicating a left-skewed distribution and a positive
value indicating a right-skewed distribution. The parameter TY has a Mean of 7,620,392.92
and an SD of 451,795.89, indicating that the data has a relatively high degree of variability.
The Kurtosis value of −1.05 suggests that the distribution is relatively flat compared to
a normal distribution. The Skewness value of −0.45 suggests that the data is slightly
left-skewed. Finally, the Minimum and Maximum values of 6,870,716.67 and 8,460,553.49,
respectively, show the range of observed values for the parameter. Similarly, the parameter
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with the lowest Kurtosis value is ACP with −1.21, while the parameter with the highest
Kurtosis value is SR with −0.21. The parameter with the highest range of values is DCP
with a range of 13,687.94, while the parameter with the lowest range of values is SR with a
range of 1.36. According to [44–48], the lowest skewness towards negative values indicated
the feasibility of AI-based learning in modeling the data accurately. The corroplot (as
displayed in Figure 4) was used for the input combination in this study. It can be seen that
the system is a highly stochastic approach based on the magnitude in Figure 4.
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4.2. Results of Intelligent Leaning Scenario I

In this section, the modeling of solar panels as scenario I was discussed based on the
DCP (kW) parameter as the output of the simulation. Table 2 represents the performance
metrics of different models during the calibration phase. The models are evaluated using
various metrics such as NSE, PCC, RMSE, MAPE, MAE, and PBIAS for both calibration
and verification. From the results, it can be observed that BTA-M1 and BTA-M2 show
relatively good performance with NSE values of 0.914 and 0.921, respectively. They also
have high PCC values of 0.967 and 0.97, indicating a strong linear relationship between the
observed and predicted values. However, they have relatively high MAPE values of 35.267
and 33.745, indicating a higher average percentage difference between the predicted and
observed values. Similarly, the new recurrent approach, i.e., ENN-M1 and ENN-M2, exhibit
even better performance with NSE values of 0.973 and 0.971, respectively, indicating a high
degree of agreement between the observed and predicted values. They also have high PCC
values of 0.99 and 0.989, indicating a strong linear relationship between the observed and
predicted values. Additionally, ENN-M1 and ENN-M2 have low RMSE values of 0.045 and
0.047, respectively, indicating a lower overall error compared to the other models.

However, they have a negative PBIAS value, indicating a tendency to underpredict
the observed values. GPR-M1 and GPR-M2 show perfect correlation (PCC value of 1) and
no error (RMSE value of 0), making them the best-performing models. However, GPR-
M2 has a slightly higher MAE value of 0.001 compared to GPR-M1, which has an MAE
value of 0. Overall, the table provides a good summary of the performance of different
models during the calibration phase. It helps in evaluating the accuracy of predictive
models and selecting the best model based on the evaluation metrics. Figure 5 shows the
embedded scatter-based goodness of fit in the verification phase. The results of this study
were compared with the existing state-of-the-art approach in order to balance the literature
as such. The authors of [49] reported an accuracy of 95.27% and 98.8% before and after



Processes 2023, 11, 2549 13 of 21

considering a fuzzy logic system for fault detection algorithm based on the analysis of the
theoretical curves, which describe the behavior of an existing grid connected to PV and
fuzzy logic system. The accuracy of our results, using the GPR model, is 100% which is
peak and superior to their results. Another research was conducted by [50] to investigate
their effectiveness in the diagnosis of various PV array issues. With the implementation of
LGBM, CatBoost, and XGBoost, respectively, average detection and classification accuracy
of 99.996% and 99.745% have been observed, showing that these algorithms have produced
promising results. These results were almost very close to our accuracy and justify our
100% results feasibility.

Table 2. The predicted results for solar panel modeling.

Calibration Phase
NSE PCC RMSE MAPE MAE PBIAS

BTA-M1 0.914 0.967 0.072 35.267 0.043 0.044
BTA-M2 0.921 0.970 0.070 33.745 0.041 0.044
ENN-M1 0.973 0.990 0.045 22.100 0.019 −58.588
ENN-M2 0.971 0.989 0.047 22.528 0.021 −69.997
GPR-M1 1.000 1.000 0.000 29.597 0.000 0.000
GPR-M2 1.000 1.000 0.002 29.711 0.001 0.000

Verification Phase
NSE PCC RMSE MAPE MAE PBIAS

BTA-M1 0.969 0.989 0.049 6.876 0.031 17,460.222
BTA-M2 0.969 0.989 0.048 6.866 0.031 17,140.021
ENN-M1 0.968 0.985 0.051 22.150 0.039 −58.638
ENN-M2 0.966 0.984 0.053 22.578 0.041 −70.047
GPR-M1 1.000 1.000 0.000 0.083 0.000 0.000
GPR-M2 1.000 1.000 0.000 0.091 0.000 0.000

The verification result of DCP, as displayed in Table 2, also indicated that BTA-M1 and
BTA-M2 exhibit excellent performance during the verification phase, with NSE values of
0.969 for both models, indicating a high degree of agreement between the observed and
predicted values. They also have high PCC values of 0.989 for both models, indicating
a strong linear relationship between the observed and predicted values. Furthermore,
BTA-M1 and BTA-M2 have low RMSE values of 0.049 and 0.048, respectively, indicating a
lower overall error compared to other models. Moreover, they have the lowest MAPE and
MAE values, indicating a smaller percentage and average difference between the predicted
and observed values. The ENN-M1 and ENN-M2 exhibit relatively good performance,
with NSE values of 0.968 and 0.966, respectively, indicating a good agreement between
the observed and predicted values. They also have high PCC values of 0.985 and 0.984,
indicating a strong linear relationship between the observed and predicted values. However,
they have relatively high RMSE values of 0.051 and 0.053, respectively, indicating a higher
overall error compared to BTA-M1 and BTA-M2. In addition, they have a negative PBIAS
value, indicating a tendency to underpredict the observed values. This conclusion was in
line with the work conducted in [51], which suggests a method based on Decision Trees
with a Light Gradient Boosting algorithm (DT-LGB) to analyze power data and predict
faults for the maintenance of solar power plants. The results of this work showed that the
suggested model obtained MSE = 8.74, RMSE = 2, and R2 values of 0.9939, which is 12.8%,
6.8%, and 11.08% improved than the existing method, respectively.
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4.3. Results of Intelligent Leaning Scenario II

This section analyses the second scenario II based on inverter modeling ACP (kW)
using several soft computing approaches. Going with the results in Table 3, the BTA-M1,
BTA-M2, BTA-M3, BTA-M4, GPR-M1, GPR-M2, GPR-M3, and GPR-M4 models have high
NSE values (above 0.9), indicating that they perform well in capturing the variation in the
data. On the other hand, the ENN-M1, ENN-M2, and ENN-M3 models have lower NSE
values, indicating that they do not capture the data variation as well as the other models.
The PCC values for most of the models are high (above 0.9), indicating that they have a
strong linear relationship with the observed data. However, the ENN-M2 model has a
relatively low PCC value of 0.939, indicating that its relationship with the observed data is
not as strong as the other models (see Figure 6). Similarly, the RMSE values for most of the
models are relatively low, indicating that the models have low prediction errors.
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Table 3. The predicted results for inverter modeling.

Calibration Phase
NSE PCC RMSE MAPE MAE PBIAS

BTA-M1 0.997 1.000 0.014 27.247 0.008 0.040
BTA-M2 0.915 0.966 0.073 35.294 0.043 0.040
BTA-M3 0.921 0.969 0.070 34.136 0.041 0.040
BTA-M4 0.997 1.000 0.014 27.247 0.008 0.040
ENN-M1 0.970 0.988 0.046 43.989 0.043 −0.066
ENN-M2 0.860 0.939 0.094 43.518 0.063 −0.021
ENN-M3 0.880 0.945 0.090 36.625 0.059 −0.012
ENN-M4 1.000 1.000 0.001 28.886 0.001 −0.004
GPR-M1 1.000 1.000 0.001 29.721 0.001 −0.004
GPR-M2 1.000 1.000 0.001 29.731 0.001 −0.004
GPR-M3 1.000 1.000 0.002 29.820 0.001 −0.004
GPR-M4 1.000 1.000 0.001 29.733 0.001 −0.004

Verification Phase
NSE PCC RMSE MAPE MAE PBIAS

BTA-M1 0.947 0.973 0.061 10.091 0.095 101.107
BTA-M2 0.995 0.997 0.088 6.069 0.018 801.107
BTA-M3 0.995 0.997 0.088 5.085 0.017 60.107
BTA-M4 0.997 0.998 0.020 4.291 0.013 30.107
ENN-M1 0.999 1.000 0.008 6.424 0.006 −57.560
ENN-M2 1.000 1.000 0.003 1.397 0.003 −49.126
ENN-M3 1.000 1.000 0.002 1.205 0.002 −42.401
ENN-M4 1.000 1.000 0.002 0.506 0.002 −42.302
GPR-M1 1.000 1.000 0.002 0.363 0.002 −2.542
GPR-M2 1.000 1.000 0.003 1.006 0.002 −173.542
GPR-M3 0.988 0.994 68.185 1.006 2.281 87.330
GPR-M4 1.000 1.000 0.002 0.393 0.002 −23.542

However, the ENN-M2 model has a higher RMSE value of 0.094, indicating that it
has higher prediction errors than the other models. The MAPE values for the BTA-M1,
BTA-M2, and BTA-M3 models are high (above 30%), indicating that they have relatively
high prediction errors. The ENN-M1 and ENN-M2 models also have high MAPE values
(above 40%). The MAE values for most of the models are relatively low, indicating that they
have low absolute prediction errors. However, the ENN-M1 and ENN-M2 models have
higher MAE values than the other models. The PBIAS values for most of the models are
close to zero, indicating that they have no significant bias in their predictions. However, the
ENN-M1 and ENN-M2 models have negative PBIAS values, indicating that they tend to
underpredict the observed data. Generally, the BTA-M1, BTA-M2, BTA-M3, BTA-M4, GPR-
M1, GPR-M2, GPR-M3, and GPR-M4 models perform well in the calibration phase, while
the ENN-M1, ENN-M2, and ENN-M3 models have relatively lower performance measures.
These results are in line with the ones reported by [52] to predict PV panel behaviors
under realistic weather conditions. The R2, MSE, and MAPE values for the optimal ANN
model of the proposed method were 0.971, 0.002, and 0.107, respectively. A comparative
study among ANN and analytical models was also carried out. Among the analytical
models, the five-parameter model, with MAPE = 0.112, MSE = 0.0026, and R2 = 0.919, gave
better prediction than the four-parameter model (with MAPE = 0.152, MSE = 0.0052, and
R2 = 0.905).

Similarly, the table provides a quick way to compare and evaluate the performance of
different models in the verification phase, but it is important to consider the context and
purpose of the models before drawing conclusions based solely on the metrics presented.
The numerical comparison of the models based on these metrics indicated that the models
with the highest NSE are ENN-M2, ENN-M3, ENN-M4, GPR-M1, GPR-M2, and GPR-M4,
all with a perfect score of 1. The model with the lowest NSE is GPR-M3 with a score of
0.988. While the models with the highest PCC are ENN-M2, ENN-M3, ENN-M4, GPR-M1,
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GPR-M2, and GPR-M4, all with a perfect score of 1. The model with the lowest PCC is
BTA-M1 with a score of 0.973. The model with the lowest RMSE is BTA-M4 with a score
of 0.02. The model with the highest RMSE is GPR-M3 with a score of 68.185. According
to [53–55], MAPE values are good when they are below or equal to 10%. The model with
the lowest MAPE is ENN-M4 with a score of 0.506%. The model with the highest MAPE
is BTA-M1 with a score of 10.091%. Similarly, the model with the lowest MAE is BTA-M4
with a score of 0.013. The model with the highest MAE is BTA-M1 with a score of 0.095.
To compare the accuracy again with recent literature, Ref. [56] reported the use of ML to
process big data by monitoring the behavior of PV. The monitoring system was reported
to have the capability of detecting PV system failure with an RMSE of 0.66. The accuracy
of the proposed model with respect to real-time data for clear days has an RMSE error of
73.71 and the R-squared is calculated at 0.95. This accuracy is also in line with the current
study outcomes.
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The numerical comparison was also discussed using PBAIS both in the training and 
testing phase. The models with the lowest PBIAS are GPR-M1 and GPR-M4 with a score 
of −2.542 and −23.542, respectively. The model with the highest PBIAS is BTA-M2 with a 
score of 801.107. Based on these metrics, ENN-M4 appears to be the best-performing 
model with perfect scores in NSE, PCC, and relatively low scores in RMSE, MAPE, MAE, 
and PBIAS. BTA-M1, on the other hand, has relatively high scores in RMSE, MAPE, MAE, 
and PBIAS, indicating lower performance than other models. It is important to note that 
these metrics alone may not be sufficient to determine the best model for a specific task 
and other factors, such as computational efficiency and interpretability, should also be 
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The numerical comparison was also discussed using PBAIS both in the training and
testing phase. The models with the lowest PBIAS are GPR-M1 and GPR-M4 with a score
of −2.542 and −23.542, respectively. The model with the highest PBIAS is BTA-M2 with
a score of 801.107. Based on these metrics, ENN-M4 appears to be the best-performing
model with perfect scores in NSE, PCC, and relatively low scores in RMSE, MAPE, MAE,
and PBIAS. BTA-M1, on the other hand, has relatively high scores in RMSE, MAPE, MAE,
and PBIAS, indicating lower performance than other models. It is important to note
that these metrics alone may not be sufficient to determine the best model for a specific
task and other factors, such as computational efficiency and interpretability, should also
be considered [57–59]. Similarly, Ref. [7] presents an intelligent photovoltaic (PV) fault
detection system using adaptive neuro-fuzzy inference system (ANFIS) methodology. To
accomplish this objective, it is necessary to train the ANFIS model for an effective PV
fault detection and classification system by deploying grid partition (GP) and subtractive
clustering (SC) strategies using some research data. The values obtained from statistical
analysis, such as coefficient correlation R, root mean squared error (RMSE), and coefficient
of determination R2, were 0.9989, 0.0383, and 0.9978. These obtained results show that the
ANFIS SC framework, with a cluster radius of 0.6, can remarkably diagnose the PV system
faults with high accuracy. The overall accuracy of both scenarios is presented in Figure 7
using the probability distribution function graph.
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5. Conclusions

In conclusion, this paper proposes a novel approach to fault detection and diagnosis
in PV arrays and inverters using a combination of AI techniques, including the Elman
neural network, boosted tree algorithms, multi-layer Perceptron, and Gaussian processes
regression. The proposed approach integrates the strengths of each algorithm for enhanced
accuracy and reliability in fault diagnosis, with ENN utilized for feature extraction, and
BTA, MLP, and GPR integrated for fault detection and diagnosis. Two intelligent learning
scenarios are carried out, one for the PV array fault detection with DC power as output
and the other for inverter fault detection with AC power as output. The proposed tech-
nique demonstrates superior accuracy and reliability compared to existing fault detection
techniques. It is capable of detecting various types of faults in PV arrays and invert-
ers, providing a reliable solution for enhancing the performance and reliability of solar
energy systems.

The results of the evaluation on a real-world solar energy dataset demonstrate that the
proposed approach outperforms existing fault detection techniques, achieving higher accu-
racy and better performance. Moreover, the proposed technique can be extended to other
renewable energy systems, providing a basis for developing comprehensive fault detection
and diagnosis frameworks. This research represents a significant contribution to the field
of solar energy systems and fault detection and diagnosis. The proposed technique offers a
promising solution for increasing the reliability and efficiency of renewable energy systems,
which are becoming increasingly important as the demand for clean energy continues to
grow. The proposed approach can help to reduce the cost of maintenance and increase the
lifespan of solar energy systems, leading to more efficient and sustainable uses of renewable
energy resources. The research opens the door for further advancements in the field of fault
detection and diagnosis in solar energy systems, with the potential for significant impact in
the development of more efficient and reliable renewable energy systems.
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