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Abstract: Tungsten, essential in the industrial, military, and civilian domains and deemed a strategic
resource by various nations, necessitates careful consideration in room and pillar mines due to the
potential instability and safety hazards posed by untouched mine pillars, making tungsten recovery
crucial for worker safety and economic gain. This research aims to provide guidance for recovering
tungsten from mine pillars and making mining operations safer for workers in the Xianglushan mine.
Numerical simulations are conducted to study the mechanical response of a preformed roadway in a
backfill body subjected to static and dynamic loads with various explosive distances and positions.
Blasting vibration velocity and blasting-induced damage in the backfill body are extracted to evaluate
the mechanical response of the backfill body. The numerical results indicate that the steel frame and
preformed roadway remain stable under the influence of both gravity and the impact from blasting,
using a charge of 3.00 kg per blasthole. By analyzing these indicators, potential safety hazards in the
backfill body and preformed roadway are identified, and the numerical results provide guidance for
mine pillar recovery practices.

Keywords: mine pillar recovery; backfill body; preformed roadway; dynamic response; blasting-
induced damage

1. Introduction

Tungsten carbide, also known as “industrial teeth”, is widely utilized in the industrial,
military, and civilian fields [1]. Its scarcity, difficulty in substitution for industrial appli-
cations, and increasing significance in national economy, national defense, and high-tech
industries have led many countries, especially developed ones, to classify tungsten as
an important strategic resource [2,3]. Tungsten ores can be found in various countries
worldwide, including China, Russia, Canada, Australia, and the United States. China is the
largest tungsten producer globally, followed by Russia and Canada. However, tungsten
mining faces several challenges, such as low efficiency, high loss rate, and dilution rate, as
tungsten orebodies can occur as veins, lenses, or irregular masses within the host rock [4].
In a tungsten mine that uses the room and pillar mining method, pillars serve as support
structures for the mine roof and prevent mine collapse [5,6]. Nevertheless, this type of
mining method may make it difficult to recover residual resources.

The importance of mine pillar recovery lies in the fact that it allows for the extraction
of additional resources that were previously inaccessible or uneconomical to recover [7].
Recovering these pillars enables miners to extract more mineral resources from the mine
and maximize the utilization of the mine site. Moreover, proper mine pillar recovery
can improve the safety of the mining operation by reducing the risk of roof collapse [8].
When pillars are left behind, they can become unstable due to subsidence, leading to the
collapse of the roof and endangering the lives of miners [9]. Mining operators strive to
recover the residual resources safely and at a low cost. By recovering the pillars, miners
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can prevent subsidence and ensure the stability of the mine, which ultimately reduces the
risk of accidents and injuries [10].

Backfilling has been proven to be an efficient approach for recovering mine
pillars [11–13]. Its essence involves replacing high-value resources with low-cost ma-
terials like waste rock and cemented tailings [14,15]. Hassani et al. developed a lightweight
foam mine fill material by incorporating a pre-made foam into the backfill mixture using
an air-entraining agent. The use of this material can reduce water consumption, improve
rheology, and minimize costs [16]. Skrzypkowski reduced mining losses for the room and
pillar method by replacing the inter-room pillars with constructed wooden cribs filled
with waste rocks [17]. Kermani et al. added an alkali activator to tailing-based slurry,
which enhances the mechanical properties of sodium-silicate-fortified backfill (Gelfill) [18].
Wang et al. studied the technique of phosphogypsum-based cemented backfill by consid-
ering gypsum as an aggregate, and the field application shows that this technology not
only protects the environment but also reduces exhausted land and maintenance costs for
gypsum piles [19–21]. Referring to the function of rebars in concrete, scholars mixed fibers
such as straw, steel, polypropylene, glass, and carbon fibers with tailing slurry to develop
fiber-reinforced backfills, which improved the stability of the structures and ductility of
the filling body in the mine fill [22,23]. Furthermore, unconventional backfill technology
has been developed. For example, taking advantage of the extreme climate in cold regions,
frozen backfill technology has been successfully carried out in the Polaris mine in the
Zn-Pb District in the central Arctic islands of Nunavut, Canada [24]. Researchers have also
conducted laboratory tests to investigate the mechanical behavior of frozen backfill [25–27].
The stability of the backfill body is a critical aspect of any mining or excavation opera-
tion. Therefore, it is essential to carefully monitor the condition of the backfill and take
appropriate measures to ensure its stability. One effective way to achieve this is through
the use of numerical modeling, which can simulate various scenarios and help identify
potential hazards before they become a problem [28,29]. By comparing the results of these
simulations with actual observations, engineers can gain a better understanding of the
factors affecting the stability of the backfill and develop strategies for mitigating risks.

The Changsha Institute of Mining Research Co., Ltd. (Changsha, China), has proposed
a novel backfill technology called cofferdam mine fill, which aims to provide a safe mining
environment for residual tungsten mine pillar recovery. This technology has already been
successfully implemented in mines [30]. In cases where the backfilling zone requires
ventilation and material transportation, a preformed roadway is necessary. The mechanical
response of the preformed roadway under external loads is a crucial factor in engineering
practice. When a backfill body is placed on top of a roadway, it can create significant weight
and pressure on the underlying surface. If the roadway is not stable enough to support
this weight and pressure, it can lead to a range of problems, including structural failure,
settlement, and erosion. In the case of blasting, the relationship between the amount of
explosive used and the resulting fragmentation is not linear [31]. The blasting load, which
is characterized by a large amount of energy released instantaneously, is recognized as the
primary threat to the stability of underground engineering [32,33]. Therefore, assessing the
stability of a preformed roadway under a backfill body subjected to blasting loads is of
great significance. The aim of this study is to develop guidelines and recommendations for
blasting in adjacent mine pillars, to minimize the risk of failure and maximize the durability
and service life of the preformed roadway.

2. Engineering Background

The Xianglushan tungsten mine is located in Xiushui County, Jiangxi Province, China.
It is a high-grade mine with a deposit of nearly 216,000 tons of tungsten, with a mean
grade of 0.758%, giving it high economic value, and an annual scheelite output of over
8000 tons. Previously, the room and pillar mining method was the main technique used at
the Xianglushan mine. However, due to the irrational mine planning during the early years
of operation, massive irregular mine pillars were left, significantly impacting work safety
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and the environment. The goaf width ranges from 10 m to 30 m, and the mine pillar’s
height ranges from 10 m to 25 m. It is estimated that the residual ore in those pillars is
nearly ten million tons. On the one hand, these residual pillars could result in significant
resource loss, but on the other hand, recovering them is challenging due to cracks induced
by stress concentration in some pillars. Additionally, the roofs in some areas have collapsed,
requiring considerable time and cost to reinforce the pillars. The cofferdam backfilling
technique has been identified as an efficient approach to recovering the residual mine
pillars in Xianglushan. Its technical specifications encompass an average daily mining
production capacity of 137.2 tons, a 4.2% ore loss rate, and a dilution rate of 4.95%. The
cutting ratio is approximately 1.41 m per thousand tons. However, cofferdam backfilling
alters the local ventilation network, posing a safety threat to workers [34]. Therefore, a
double-T steel-supported roadway has been designed as a channel for wind in the backfill
body, as shown in Figure 1 (128-1# zone). Furthermore, the roadway in the backfill body
provides a channel for material transportation. Based on the rules in the “Safety Regulation
for Metal and Nonmetal Mines” (GB 16423-2020) [35] and operational needs for ventilation
and transportation, the section size of the roadway was determined to be 3.00 m in length
and 2.80 m in height, as depicted in Figure 2.
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Figure 1. Layout of double-T steel-supported roadway in backfill body.

The process for assembling each supporting unit consists of two studs and one joist.
Firstly, a groove is excavated on the floor using machinery. Then, two studs are inserted into
the rock floor with a depth of 300.00 mm and linked horizontally by a 22.00 mm diameter
rebar. The groove is then filled with concrete. The two studs and joist are assembled using
bolts, and two 45-degree braces at the corners are used to reduce the joist’s deflection under
load. The supporting units are arranged with an interval of 0.75 m along the roadway, and
adjacent units are linked with a 22.00 mm diameter rebar. In accordance with the design
requirements, the 28-day unconfined compressive strength (UCS) of the backfill material
within the range from the roadway floor to 2 m above the roadway roof should not be less
than 1.50 MPa. Additionally, considering cost efficiency, the strength of the upper backfill
body must meet the self-support criteria when exposed at the side, set at 0.50 MPa. The
side walls of the roadway are covered by double-layered geotextile and steel mesh, which
help to control the horizontal deformation of the backfill body and provide a channel for
water drainage. To ensure even load distribution at the roof level, a 4.00 mm thick steel



Processes 2023, 11, 2548 4 of 15

plate is placed on the joist. After the backfilling of the adjacent goaf is completed, the mine
pillar is recovered using the shrinkage stoping method.
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3. Numerical Simulations
3.1. Boundary Conditions of Numerical Model

Numerical simulation is widely used in geotechnical engineering due to its advantages
of high efficiency and low cost [36]. To evaluate the stability of the roadway in the backfill
body, an implicit solution is used to obtain the mechanical response of the backfill body
and double-T steel under static load. A sketch of the numerical model for the static load
solution is shown in Figure 3. The entire model was 20.00 m in length, 12.00 m in height,
and 0.75 m in width. Considering the cementing settlement of the backfill body and shallow
conditions, the pressure from the roof was neglected. The normal displacement on the left,
right, front, and back surfaces were constrained, and the bottom of the model was fully
constrained. An interface was located 5.80 m from the bottom of the model, where the
backfill below the interface had an unconfined compressive strength of 2.00 MPa, while the
backfill above the interface had a UCS of 0.50 MPa. The double-T steel-supported roadway
was situated in the central position of the lower boundary of the model.

To evaluate the stability of a double-T steel-supported roadway subjected to a blasting
load, two factors were considered: the distance between the right side of the preformed
roadway and the explosion (d) and the explosive position (H). The numerical simulation
scheme is listed in Table 1, and twelve cases were considered. According to the current
blasting practices in the Xianglushan mine (blasthole and row spacing are around 0.75 m),
the quantity of explosive was determined to be 3.00 kg per blasthole. The single-cartridge
specifications for No. 2 rock emulsion explosive are as follows: 36.00 mm in diameter,
200.00 mm in length, and a mass of 200.00 g. The 3.00 kg charge weight in Table 1 corre-
sponds to a full-charge blasthole with a length of 3.00 m. As shown in Figure 4, the blasting
load was applied to the right side of a 20.00 cm thickness orebody with an equivalent mass
of TNT using the *LOAD_BLAST keyword during the dynamic load simulation phase.
Damping is crucial in numerical simulations to prevent unrealistic vibrations, oscillations,
and unstable behavior that can arise due to the absence of energy dissipation mechanisms
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present in real-world scenarios. In blasting simulations, elements may become distorted.
In this simulation, hourglass control damping was employed to counteract this issue and
enhance the stability of the simulation [37].
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Table 1. Numerical simulation scheme.

Case No. The Distance between the Right Side of the
Preformed Roadway and the Explosion, d (m)

Explosive Position,
H (m)

C1 8 1.4
C2 8 5.4
C3 8 9.4
C4 10 1.4
C5 10 5.4
C6 10 9.4
C7 12 1.4
C8 12 5.4
C9 12 9.4

C10 14 1.4
C11 14 5.4
C12 14 9.4

Figure 5 depicts the construction of a three-dimensional model using finite elements
(case C1). The backfill body and mine pillar were meshed with 990,000 hexahedral elements,
while the steel frame was meshed with 15,813 tetrahedral elements. The interaction be-
tween the steel frame and backfill body was achieved using the *CONTACT_AUTOMATIC_
SURFACE_TO_SURFACE keyword. In a similar manner, the connections among these
components within the steel frame were managed using a contact algorithm, with no
sliding permitted at the points of connection. The numerical cases C10, C11, and C12 had
the highest number of elements, consisting of 873,600 hexahedral elements and 15,813 tetra-
hedral elements.
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3.2. Material Model and Parameters

The numerical simulation involved three materials: a mine pillar, a backfill body
with a strength of 1.50 MPa and 0.50 Mpa, and Q235 steel [38,39]. Due to the need
for both static and dynamic load simulations, the material model should be compati-
ble with implicit–explicit conversion solutions. *MAT_PLASTIC_KINEMATIC is suit-
able for modeling isotropic and kinematic hardening plasticity, with the option of in-
cluding rate effects [40]. This model has been widely used to simulate rock and steel
and is very cost-effective; it is available for beam, shell, and solid elements. The ma-
terial model for concrete is usually used to describe the mechanical behavior of the
backfill body. *MAT_CONCRETE_DAMAGE_REL3 is a three-invariant model that uses
three shear failure surfaces and includes damage and strain-rate effects. In this study,
*MAT_PLASTIC_KINEMATIC was used to simulate the steel frame and the orebody, and
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*MAT_CONCRETE_DAMAGE_REL3 was applied to simulate the backfill body [41]. Most
importantly, this material model has an option to automatically generate the model param-
eters based on the UCS of the concrete. More details on these two material models can be
found in the LS-DYNA user manual [42]. The material properties are listed in Table 2.

Table 2. Material properties.

Material Type Density (kg/m3) Elastic Modulus (Gpa) Poisson’s Ratio UCS (Mpa)

Orebody 2705.00 42.20 0.1 60.80
Steel 7850.00 210.00 0.3 235.00 (Yield strength)

Upper backfill body 1540.00 - 0.20 0.50 (28 day)
Lower backfill body 1780 - 0.23 1.50 (28 day)

4. Numerical Results and Discussion
4.1. Static Response of the Roadway under Gravitational Load

In practice, the double-T steel-supported roadway is constructed before the surround-
ing space is backfilled. The backfill body settles with bleeding water dewatering, creating a
space between the upper backfill body surface and the stope roof. As a result, the external
load in the backfill body in a shallow goaf is gravity, and the vertical stress distribution
is shown in Figure 6 (Unit: Pa). Similar to an excavated roadway, the highest stresses in
a preformed roadway are usually concentrated in the immediate vicinity of the excava-
tion because the roadway creates a void in the rock mass, leading to a redistribution of
stresses in the surrounding rock. The stresses near the preformed roadway are typically
compressive, as the weight of the overlying backfill body causes it to be squeezed together.
As the distance from the roadway increases, the stresses tend to be self-weight stresses. In
most cases, regardless of whether there is support or not, most areas are under pressure.
The maximum compressive vertical stress was 0.70 Mpa in the numerical case without
support (Figure 6a). Geotechnical materials such as rock, soil, and backfill body have
lower resistance to tension than to compression. It can be seen that tension stress occurred
near the middle of the roadway roof in both cases, and the tension stress was below the
materials’ tension strength. The steel frame resisted the settlement of the roadway roof
very well, and the maximum vertical displacement of the entire model was 0.26 mm, which
is less than the 0.275 mm obtained for the numerical case without double-T steel support.
In general, regardless of the case, the preformed roadway was in a stable state due to the
limited height of the backfill body.
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4.2. Dynamic Response of the Roadway Subjected to a Blasting Load

The dynamic response of a mine roadway refers to how the surrounding rocks and
supporting structure react to external forces or loads. Because the mine pillar is shallowly
buried, gravitational loads are not taken into consideration during the dynamic phase [43].
The numerical case C1 was taken as an example to analyze the dynamic response of the
preformed roadway subjected to a blasting load. As shown in Figure 7 (unit: m/s), the
blasting occurred at the bottom right of the model (1.40 m to the floor), and the blasting wave
propagated toward the left. The first time the blasting wave reflection and transmission
occurred was at the boundary between the lower backfill body and orebody. The semi-
concentric circle-shaped velocity contour was disturbed, and thereafter, the blasting wave
interface effect happened at the boundaries between two backfill bodies, the free faces, and
the boundary between a steel frame and a lower backfill body. The velocity contour in the
entire model showed disorder. Overall, the energy carried by the blasting wave gradually
decayed as the propagating distance increased. The obvious characteristic of the blasting
wave attenuation was that the blasting vibration velocity was decreasing. Partially, blasting
wave superposition may enhance the local blast vibration, as the red zone shows in Figure 7
(at times of 4.10 and 7.10 ms).
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In all, 17 monitoring points were arranged horizontally along the direction from the
detonation to the preformed roadway with 0.50 m spacing to observe the peak particle
velocity (PPV) evolution (monitored points seen in Figure 5). As shown in Figure 8, the
maximum PPV reached 2.59 m/s on the right side of the lower backfill body. After that, the
PPV decayed within 6.40 m of the distance from the detonation and enhanced within 1.60 m
of the distance from the preformed roadway due to the blasting wave reflection caused by
the free surface. When a steel frame is subjected to blasting, it can experience vibrations
that may potentially lead to structural damage or failure. In this scenario, four monitoring
points were set up to track the time history of vibration around the preformed roadway
(Figure 9). As shown in Figure 7, points P1 and P2 were located at the midpoint of the joist
and right stud of the steel frame, while points P3 and P4 were located on the free face of the
backfill body. The PPV values at these monitoring points (P1, P2, P3, and P4) were 0.32 m/s,
0.72 m/s, 0.29 m/s, and 0.57 m/s, respectively. Generally, the blasting wave attenuation
in a steel frame is slower than that in its surrounding backfill body. In the case of a steel
frame and the supported backfill body, blasting waves will travel through each material
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differently due to their different properties. Steel is a very dense and elastic material, which
means that blasting waves can travel through it quickly and efficiently while maintaining
their energy for longer periods of time. On the other hand, the backfill body is less dense
and less elastic than steel, which means that blasting waves will travel through it more
slowly and with less efficiency, losing energy more quickly as they propagate. Overall, in
numerical case C1, no damage was observed in the steel frame or the backfill body around
the roadway.
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4.3. Blasting-Induced Damage in Backfill Bodies

Besides ensuring the stability of the preformed roadway, it is crucial to prevent damage
caused by blasting in the backfill body when conducting a blasting operation nearby. This
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significantly affects the safety of the working environment and subsequent ore handling.
For instance, if the backfill material mixes with the ore stack, it can increase the ore
dilution rate. Furthermore, the collapse of a backfill body can create safety hazards for
workers, especially if the collapse occurs unexpectedly or if there is a risk of further collapse.
Contaminated ore can be more difficult to process and may require additional processing
steps or equipment, which can increase costs and reduce efficiency. In numerical simulation
cases, the main factor that affects blasting-induced damage in the backfill body near the
orebody is the explosive position.

As shown in Figure 10, three cases of blasting-induced damage (scaled damage mea-
sure described in LS-DYNA users’ manual) in the backfill body were extracted, where the
value in the fringe ranged from 0 to 1 as the material transitioned from the yield failure
surface to the maximum failure surface and, thereafter, ranged from 1 to 2 as the material
ranged from the maximum failure surface to the residual failure surface [42]. Therefore,
elements with fringe ranges from 1 to 2 can be treated as failures. With the upward move-
ment of the explosive position, the range of the damage zone in the backfill body shrunk
first and then increased. The degree of damage decayed as the distance away from the
detonation increased.
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In numerical simulation case 1, the scaled damage measure ranged from 0 to 0.95, and
the maximum dimensions of the blasting load-induced damage zone in the horizontal and
vertical directions were 1.50 m and 1.70 m, respectively. Additionally, a strip of damage
zone with a length of 1.85 m formed near the bottom. When the detonation moved to
the position 5.40 m away from the bottom, the damage zone distribution nearly formed a
triangle, and its size was obviously smaller than in case 1. The reason for this is as follows:
on the one hand, the blasting wave reflection from the bottom boundary and the right
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boundary of the backfill body in case 1 was stronger than in case 2. On the other hand, the
explosive position in case 1 was closer to the constrained bottom boundary than in case 2,
which drives horizontal shear action and generates a damage zone at the bottom.

Due to the weak strength of the upper backfill body, the largest damage zone occurred
in numerical case 3 as expected, and its horizontal length reached 2.90 m. Although the
explosive position was near the free face in numerical simulation case 3, the maximum value
of the scaled damage measure was only 1.53, which is less than that in case 2. Obviously,
elements near the free surface are more prone to moving than those near the constrained
boundary. The free surface resulted in blasting wave superposition around the damage
zone and made it form a large zone of damage. Due to the limited energy of the blasting
wave, the degree of damage in case 3 was lower than in case 2. In terms of material failure,
only a vertical strip zone of 60.00 mm in width near the backfill body boundary failed in
numerical simulation case 2, which is totally acceptable in practice.

Sacrificial pillars, sometimes referred to as mine walls, are commonly used to protect
the backfill body by absorbing the shock and energy from a blast. They are particularly
useful when the backfill is weak or has a high risk of collapse. However, it is unreasonable
to use sacrificial pillars in cases where mine pillars are being recovered. Therefore, it is
crucial to implement reasonable blasting parameters to reduce the risk of backfill body
collapse. In this study, it can be inferred that a charge weight of 3.00 kg per delay interval
poses no threat to backfill body stability. As a result, the optimal blasthole spacing in
engineering practice should be around 0.75 m.

4.4. Blasting Vibration Velocity

The distance between the blast site and the preformed roadway is a crucial factor that
affects the velocity of vibrations. Figure 11 demonstrates the effect of the distance between
the explosive and the preformed roadway on the peak particle velocities (PPVs) of four
monitored points. As the distance increased, more energy was absorbed by the backfill
body during the propagation of blasting waves toward the left, resulting in a negative
relationship between the PPVs and d when H was 1.40 m and 5.40 m. However, when H
was 9.40 m, the effect of d on the PPVs was not obvious due to blasting wave attenuation
(Figure 11c). Moreover, the position of the explosive also played a significant role in the
blasting vibration velocity of the model. Figure 12 depicts that the blasting vibration
contour corresponded to the time when the blasting waves reached point P2. In a particular
numerical model, the explosive had the longest relative distance to the preformed roadway
when H was 9.40 m. Thus, the effect of d on the PPVs was not apparent due to blasting wave
attenuation. Softer materials, such as a low-strength backfill body, tend to absorb more of
the energy from the blast, reducing the velocity of vibrations. On the other hand, harder
materials, such as a high-strength backfill body, transmit the vibrations more efficiently,
allowing them to travel further and faster. Therefore, the global blasting vibration velocity
level in the entire model decreases as the explosive position moves upwards. Point P2 was
closer to the explosive than P1, resulting in stronger stud vibrations than joist vibrations
in the steel frame. Similarly, the vibration velocity of P4 was higher than that of P3 in the
lower backfill body. The relative vibration velocity between two points, P1 (or P2) and P3
(or P4), varied with the d value, as shown in Figure 11.
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Steel is a material that is known for its high stiffness and density, which makes it
capable of vibrating at higher frequencies than the backfill body. On the other hand, the
backfill body is less dense and less stiff, which means that it has a lower vibration frequency
compared to steel. As shown in Figure 6, stress concentration can already occur at the
connection of the brace and stud when subjected to gravitational load. This means that
the quality of the connection between the brace and stud should be carefully considered
during mine pillar recovery to ensure that the structure is able to withstand the load.
Moreover, the blasting load induced high-frequency vibrations in the steel frame, which
further emphasizes the importance of ensuring the connection quality of the welding spot
and screw in the steel frame. The welding spot and screw connection should be carefully
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inspected to ensure that they are strong enough to withstand the high-frequency vibrations
induced by the blasting load.

5. Engineering Practice of Mine Pillar Recovery

A field trial was conducted within the 128-1 zone, situated in the northeastern part
of the broader 128 zone, encompassing an area spanning approximately 5155 m2. This
particular area of interest is characterized by a mining void that presently exists at elevations
ranging from 631 to 646 m. The average height of the roof measures around 12 m. Notably,
the majority of the mining region lies near the surface, with depths generally not exceeding
20 m. Positionally, the northern boundary of the mining area seamlessly connects to the
primary ventilation shaft, strategically located near the northern 4 zone. On the eastern
side, the mining region shares its boundary with the north 4 and north 3 zones, both of
which have previously undergone comprehensive backfilling operations. Within the 128-1
zone, a preformed roadway has been meticulously constructed within the confines of the
backfill mass.

As part of the operational procedures, mine pillar recovery was undertaken utilizing
shrinkage stoping techniques. In light of safety considerations and the prevention of
potential hazards like rockfalls or structural collapse, it is of paramount importance to
maintain the stability of the backfill mass. This ensures that a secure working environment
is upheld for personnel operating within the zone. An observation of Figure 13 reveals
that the surface of the exposed backfill mass presented a relatively level profile. There was
minimal evidence of collapse or deformation near the surface, a feature that harmoniously
corresponds with the outcomes derived from the numerical simulations. In practical
scenarios, the slight collapse of the backfill body is quite acceptable, and the uneven surface
offers advantages when coupling with the adjacent backfill material during the second step
of backfilling.
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In essence, the comprehensive details elucidated above underscore the intricacies of
the trial conducted in the 128-1 zone. The integration of both practical field observations
and numerical analysis is imperative for effective mine management and the continual
assurance of safety within these mining operations.

6. Conclusions

Aiming to provide guidance on recovering tungsten from mine pillars and enhancing
mining safety for workers at the Xianglushan mine, a numerical simulation approach was
utilized to analyze the mechanical response of a steel-framed preformed roadway under a
backfill body. The blasting vibration velocity and blasting-induced damage in the backfill
body were analyzed, and the main conclusions of this paper can be summarized as follows:
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(1) The preformed roadway remained stable under both gravitational load and blasting
dynamic impact with a charge of 3.00 kg per blasthole rock emulsion explosive.

(2) The backfill body posed a low risk when subjected to blasting impact. In terms of
material failure, the largest failure zone was only a vertical strip zone of 60.00 mm in
width near the backfill body, which is totally acceptable in engineering practice.

(3) The blasting vibration attenuation in the steel frame was slower than that in the
backfill body, and the vibration frequency in the steel frame was higher than that in
the backfill body. Therefore, the quality of the welding spot and screw connection in
the steel frame during mine pillar recovery should be carefully considered.
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version of the manuscript.
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