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Abstract: The particle motion behavior in hydrocyclones has received increasing attention, but
the particle circulation flow has received relatively limited attention. In this paper, the particle
circulation flow is regulated by changing the secondary-cylindrical section diameter to optimize the
separation effect. The effects of secondary-cylindrical section diameters on flow field characteristics
and separation performance are explored using the two-fluid model (TFM). The findings demonstrate
that particle circulation flows are ubiquitous in the secondary-cylindrical hydrocyclone and are
induced by the axial velocity wave zone. The increase in the secondary-cylindrical section diameter
intensifies the coarse particle circulation and aggrandizes the coarse particle’s aggregation degree
and aggregation region, leading to an increment in cut size. The circulation flow component can be
regulated by adjusting the secondary-cylindrical section, thus improving the classification effect. An
appropriate diameter of the secondary-cylindrical section facilitates improved particle circulation,
strengthening the separation sharpness.

Keywords: hydrocyclone; secondary-cylindrical section; particle circulation flow; separation performance

1. Introduction

The hydrocyclone is an active equipment that utilizes centrifugal force to achieve
accelerated separation [1,2]. It is widely used in minerals, chemicals, petroleum engineering,
environmental protection, food processing, and papermaking. Hydrocyclones have the
advantages of having no moving parts, being simple to operate, having a large processing
capacity, and being easy to maintain compared to other separation devices [3,4]. Despite
these advantages, the separation efficiency and the cut sharpness are limited by complex
interphase interaction and strong turbulence [5,6].

The particle movement characteristics in the hydrocyclone decide the spatial distri-
bution of the hydrocyclone affecting the separation effect. Researchers have extensively
researched particle motion behavior and its regulatory mechanism to improve the separa-
tion effect. Zhang [7] discovered that under high-concentration feeding conditions, fine
particles with a higher density are easily misplaced in the underflow. In contrast, coarse
particles with a smaller particle size were more likely to be misplaced in the overflow.
Hao [8] found that particles near the wall rotate at a high rate, causing particles to gravitate
toward the center. Yang [9] found that the particle arrangement at the inlet affected the sep-
aration effect remarkably, thus designing a particle arrangement unit. Wang [10] believed
that the inlet with a pre-sedimentation function is very helpful for the separation. Fu [11]
discovered that a smaller cone angle can increase particle revolution and self-rotation
speeds while decreasing average particle residence time. Zhang [12] discovered that a
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tangent-circle inlet could improve the radial regular distribution of particles and allevi-
ate particle misplacement. According to Li [13], a curved inlet facilitates coarse particles
moving toward the wall and fine particles moving toward the air core.

The separation effects are associated with circulation flow within hydrocyclone. It is
critical for further understanding the hydrocyclone separation mechanism by studying
the internal circulation flow, particularly the particle circulation in the separation chamber.
Kelsall [14] was the first to discover circulation flow in the upper cylindrical section,
which increases particle residence time. He et al. [15] found the circulation flow in the
underside region of a micro hydrocyclone by phase Doppler particle analyzer (PDPA).
Hwang et al. [16] discovered that the cone-shaped top plate could reduce the lower velocity
surrounding the vortex finder, thereby reducing the circulation of fine particles. Zhao [17]
pointed out that the thick-walled vortex finder eliminates the circulation flow surrounding
the vortex finder while creating circulation flow in the axial velocity wave zone (AVWZ).
Jiang et al. pointed out that an arc-shaped vortex finder can suppress circulation flow
around the vortex finder [18]. Hsu et al. [19] believed that the strong circulation flow
around the vortex finder causes the unseparated particles to escape directly from the vortex
finder. Liu et al. [20] believed that the velocity gradient between adjacent flow layers is
the primary cause of circulation flow and regarded the flow rate as the flow in the AVWZ.
Unfortunately, most of these studies focus on analyzing the effect of water circulation on
particle separation behavior using qualitative or quantitative methods, but few studies are
devoted to particle circulation in hydrocyclones.

Recently, several sophisticated measurement techniques have been employed in in-
vestigating the flow field and particle motion properties of hydrocyclones [21–25]. He
et al. [15] and Liu et al. [20] studied the internal circulation flow of hydrocyclones by the
PDPA. However, the representativeness of test results under high concentration condi-
tions makes it difficult to apply these advanced measurement techniques to study particle
circulation in hydrocyclones. The advancement of highly performant computing tech-
nology and computational fluid dynamics (CFD) has made it possible to explore particle
circulation flow in hydrocyclones. The widely used numerical methods are categorized
into the Eulerian-Lagrange and Eulerian-Eulerian models [26–28]. Owing to ignoring
the inter-particle interaction, the Eulerian-Lagrange model is mostly used in dilute phase
regimes [29–31]. The emergence of the Dense Discrete Phase model (DDPM) overcomes the
inherent defects of the Eulerian-Eulerian model, but the large calculation amount makes
investigating particle circulation in hydrocyclones more difficult [32–34]. For the Eulerian-
Eulerian, all phases are considered as a continuous medium, and the interaction between
particles is calculated by the kinetic theory of granular flow (KTGF) [6,35,36]. Because of its
high computational efficiency and reliable numerical results, the Eulerian-Eulerian model
is extensively applied to investigate the separation process of hydrocyclones [36–38].

This paper explains links between the AVWZ, particle circulation flow and separation
effect, varying the secondary-cylindrical section diameters. The flow field in different
hydrocyclones is studied by a verified TFM model to clarify the particle circulation flow.
Then, the mechanism underlying the correlation between particle circulation flow and
separation performance is explored by examining the particle circulation flow, AVWZ,
particle spatial distribution, and separation effect. This research is anticipated to better un-
derstand the relations between the particle circulation flow and the separation performance
of hydrocyclones and provide a guide for the design and optimization of the hydrocyclone.

2. Simulation Method and Conditions
2.1. Model Description

Considering the complicatedness of the flow field in hydrocyclones, the simulation
process is divided into two stages to guarantee the stabilization of the numerical models.
Firstly, the air-water two-phase flow field was calculated using the TFM to obtain the flow
field characteristics of the hydrocyclone with different secondary cylindrical sections. Then,
the air-water-solid three-phase flow field is calculated to acquire the circulation particle
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flow and separation efficiency. The turbulent flow in the hydrocyclone is calculated using
the Reynolds stress model (RSM), which can model the turbulent anisotropy problem at
a less computationally expensive than the large eddy simulation (LES) model [39–41]. A
detailed description is provided in the Supplementary File.

2.2. Simulation Conditions

To study particle circulation flow’s impact on the separation property, eight hydro-
cyclones with different structures were designed to control particle circulation flow by
changing secondary-cylindrical section diameters. The secondary-cylindrical hydrocyclone,
also known as cylindrical-conical-cylindrical (CCC) hydrocyclone, and its design ideas
can be found elsewhere [42]. The geometric parameters and computational domain grid
of hydrocyclones with various structures are presented in Figures 1 and 2, respectively.
To capture the minor variations in the flow field, the mesh around the wall, vortex finder,
spigot, and the bottom of the secondary-cylindrical section are refined. The results of
grid independence show that the grid scheme used in this paper is grid independent and
converged. Detailed information is provided in the Supplementary File.
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Boundary conditions for the inlet are “velocity inlet” with a fixed velocity of 3 m/s
for water and solids, and the solid phase released from the inlet is determined by physical
experiments to be in a volume fraction of 16.86%. A “pressure outlet” boundary condition
is applied to both the overflow and underflow, while the outlet pressure is assumed to
be 1 atmosphere and the backflow volume fraction of air is assumed to be 1. The wall
boundary conditions of air and water are non-slip, while the specular coefficient of 0.6 is
used for particles [43,44]. The solid particles used in this paper are quartz samples, and the
particle size composition is presented in the Supplementary File.

2.3. Model Applicability

The validation is essential to verify the reliability of the numerical models before using
them for numerical tests. The air-water two-phase and air-water-solid three-phase flow
models are verified according to the Laser Doppler Velocimetry (LDV) and physical sepa-
ration experiment results, respectively. Overall, all numerical models used in the present
study can accurately predict the flow field characteristics and separation performance of
the cylindrical hydrocyclone, as described in the Supplementary File.

3. Results and Discussion
3.1. Flow Fields
3.1.1. Particle Flow Fields

The particle flow field is analyzed to analyze the particle circulation flow and particle
movement behavior. For simplicity, only three representative particles of 10 µm (fine
particle), 59.5 µm (medium particle), and 150 µm (coarse particle) are studied, as illustrated
in Figure 3.
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Fine particle and medium particle circulation flow in hydrocyclones are ubiquitous.
Taking the hydrocyclone of D1 = 0.5D as an example, the fine particles and medium particles
travel towards the central and change into the internal swirling flow under the drag force,
while part of the fine and medium particles move toward the wall under the centrifugal
force during moving with the internal swirling flow, as shown by the white arrow in
Figure 3. Simultaneously, the particle entering the internal swirling flow from the external
swirling flow and the particle entering the external swirling flow from the internal swirling
flow is coexistence instead of single at certain axial sections. Hence, abundant particle
circulating flows are formed within the hydrocyclone. At the bottom of the secondary-
cylindrical section, fine particles and medium particles have to cross the internal swirling
flow region while moving toward the underflow, increasing the probability of moving with
the internal swirling flow and reducing fine particle misplacement in the underflow.

Different from fine and medium particles, coarse particles travel along the wall to
the bottom of the hydrocyclone. However, some coarse particles are entrained by the
internal swirling flow during travel toward the spigot and move upward. The coarse
particles moving with the internal swirling flow gradually move towards the wall and
return to the external swirling flow region under the centrifugal force, forming the particle
circulating flow. The coarse particle circulation region expands as the secondary-cylindrical
section diameter increases, implying an increase in the coarse particle circulation flow.
Meanwhile, the coarse particles circulation flow zone shifts towards the underside of
the vortex detector by increasing the secondary-cylindrical section diameter, potentially
exacerbating the misplacement phenomenon of coarse particles.

3.1.2. AVWZ

The AVWZ is the source of particle circulation flow in hydrocyclone, which directly
affects the separation performance [20,30]. As a result, the AVWZ in various hydrocyclones
is investigated to understand particle circulation flow better, and the results are shown in
Figure 4. Since there is no definitive description of the AVWZ in the previous publications,
the AVWZ is considered the region with the magnitude of axial velocity less than axial
fluctuation velocity based on the low and fluctuating characteristics of axial velocity in
AVWZ, and the red zone in Figure 4 represents the AVWZ.
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The increase in secondary-cylindrical section diameter enlarges the AVWZ, especially
at the bottom of the secondary-cylindrical section, which can be attributed to the expansion
in the flat-bottomed structure diameter of cylindrical-conical-cylindrical hydrocyclone. For
the secondary-cylindrical section with a large diameter, the bottom region is dominated by
the AVWZ, resulting in more particle circulation flow affected by AVWZ during particle
moving to the spigot, which further explains the increase in the upward flow ratio and
downward flow ratio of medium particle and coarse particle. The AVWZ at the bottom of
the secondary-cylindrical section facilitates fine particles trapped by coarse particles return-
ing to the separating zone, thus decreasing the misplacement of fine particles. However,
the abundant AVWZ accelerates the coarse particles that have been separated to return
to the separation region again, which may restrict the processing capacity and increase
the misplacement of coarse particles. A minor increase in the amplitude of AVWZ in the
middle and upper part of the hydrocyclone can be used to explain the limited effect of the
secondary-cylindrical section diameter on the upward flow ratio and downward flow ratio
of fine particles.

3.2. Particle Circulation Flow
3.2.1. Downward Flow Ratio

Figure 5 depicts the impact of the secondary-cylindrical section on the particle down-
ward flow ratio. For simplicity, only three characteristic particles of 10 µm (fine particles),
59.5 µm (medium particles), and 150 µm (coarse particles) are evaluated. The calculation of
the downward flow ratio can be found in the Supplementary File.
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For 10 µm particles, the downward flow ratio in different hydrocyclones decreases
by reducing the axial position caused by drag force. However, the particle downward
flow ratio around the Z = −300 mm section has a tiny variation, which could be explained
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by the relative balance of particles passing into the internal swirling flow with particles
entering back into the external swirling flow caused by the circulation flow. Simultaneously,
the secondary-cylindrical section diameter slightly affects the fine particle downward
flow ratio.

For 59.5 µm particles, the downward flow ratio in different hydrocyclones increases
first and decreases with decreasing axial position. Due to the circulation flow at the
upper portion of hydrocyclones, particle movement is dominated by returning from the
interior swirling flow to the exterior swirling flow, increasing the particle downward flow
ratio. While a large number of particles are coerced by interior swirling flow at the inferior
portion of the hydrocyclone, decreasing the particle downward flow ratio. Concurrently, the
downward flow ratio of 59.5 µm particle reduces with increasing the secondary-cylindrical
section diameter at the same axial section, implying a reduction in the circulation flow of
59.5 µm particle.

In different hydrocyclones, the downward flow ratio of 150 µm particle firstly in-
creased and then reduced with decreasing axial positions, owing to particle circulation flow
and interior swirling flow, respectively. With increasing the secondary-cylindrical section
diameter, the circulation flow region and the downward flow ratio of 150 µm particles
increase, consistent with the findings in Figure 3. Meanwhile, the downward flow ratio
of 150 µm particles is significantly greater compared to the inlet flow ratio, indicating
abundant particle circulation flow in hydrocyclones, but more coarse particles circulating
in the hydrocyclone result in the misplacement of coarse particles [32].

3.2.2. Upward Flow Ratio

The impact of the secondary-cylindrical section on the upward flow ratio is illustrated
in Figure 6. The calculation of the upward flow ratio can be found in the Supplementary File.
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The variation of the particle upward flow ratio with axial position is consistent with
that of the downward flow ratio. For fine particles (d = 10 µm), particles into the internal
flow are larger than those into the external flow at different axial sections, and the upward
flow ratio of 10 µm particles increases as the axial position increases. On the other hand,
the gently varying region of the upward flow near the Z = −300 mm section demonstrates
that particles entering and exiting the internal swirling flow region have reached a dynamic
balance. The secondary-cylindrical section diameter slightly affects the upward flow ratio
of fine particles, which is consistent with the downward flow ratio, implying that the
secondary-cylindrical section diameter affects the circulating flow of fine particles lightly.

For 59.5 µm particles, the upward flow ratio increases first and then decreases as the
axial position increases. In some axial sections, the particle upward flow ratio exceeds
100%, indicating a particle circulation flow in hydrocyclones. The upward flow ratio of
59.5 µm particles in the middle of the hydrocyclone increases first and then decreases
with the increase of secondary-cylindrical section diameter. However, the increase of
secondary-cylindrical section diameter increases the upward flow ratio of 59.5 µm particles
underneath the vortex finder, implying more particles discharged with the overflow, which
may contribute to increasing the cut size.

For 150 µm particles, the upward flow ratio is approximately 0 nearby the vortex
finder of different hydrocyclones. Essentially, no coarse particles move with the internal
swirling flow, indicating no significant misplacement of the coarse particle in the overflow.
However, the particle upward flow ratio in other positions of the hydrocyclone increase
with secondary-cylindrical section diameter, and the particle upward flow ratio in part
of the axial sections exceeds the inlet flow rate, demonstrating the ubiquity of particle
circulation flow. On the other hand, the large secondary-cylindrical section diameter
expands the region with coarse particle upward flow, thereby expanding the coarse particle
circulation flow region. In general, the effect of the secondary-cylindrical section diameter
on the upward and downward flow ratios of 150 µm particles is stronger than that on fine
particles, implying that the secondary-cylindrical section has a greater effect on the coarse
particle circulation flow.

3.2.3. Circulation Flow Ratio and Circulation Flow Proportion

The particle circulation flow ratio in hydrocyclones with different secondary-cylindrical
sections is presented in Figure 7. The particle circulation flow ratio calculation can be found
in the Supplementary File.
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It can be detected that the circulation flow ratio in different hydrocyclone is greater
than 100%, further indicating a substantial particle circulation flow in hydrocyclones, which
agrees with the outcomes of Figures 5 and 6. Moreover, the particle circulation flow ratio
tends to decrease and then increase slightly with the increases of the secondary-cylindrical
section diameter and reaches the minimum value at 0.6D. The enhancement of the coarse
particle circulation flow hinders the centrifugal settling process of particles, which in turn
inhibits the development of the particle circulation flow, thus decreasing the circulation
flow ratio. However, a further increase in the particle circulation flow ratio is induced with
a sufficiently strong coarse particle circulation flow.

The fine particles (10 µm and 29 µm) circulation flow proportion (RC,f), medium
particles’ (41.5 µm, 59.5 µm, and 89 µm) circulation flow proportion (RC,m), and coarse
particles (127 µm and 150 µm) circulation flow proportion (RC,c) are investigated to an-
alyze further the particle circulating flow composition. The outcomes are presented in
Figure 8. The calculation of the particle circulation flow proportion can be found in the
Supplementary File.
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The medium particle circulation is dominant I in hydrocyclones with different secondary-
cylindrical sections. The medium particle circulation flow proportion decreases mono-
tonically with increasing the secondary-cylindrical section diameter, while the coarse
particle circulation flow proportion increases monotonically. Accordingly, an increase in
the secondary-cylindrical section diameter can intensify the coarse particle circulation flow
and attenuate the medium particle circulation flow, potentially contributing to a greater
cut size. Consequently, the composition of the particle circulation flow can be regulated
by altering the secondary-cylindrical section to purposefully strengthen or attenuate the
specific particle circulation flow, thus improving the separation performance. However,
the fine particle circulation proportion is independent of the secondary-cylindrical section,
which could be attributed to the fact that the fine particle circulation flow is concentrated
in the middle and upper regions of hydrocyclones, while there is no obvious fine particle
circulation flow in the secondary-cylindrical section.

3.3. Particle Spatial Distribution

The particle movement behavior determines its spatial distribution and separation
behavior. The particle distribution in various hydrocyclones is investigated to analyze



Processes 2023, 11, 2542 10 of 16

the impact of particle circulation flows on it. For simplicity, the spatial distribution of the
particle phase and three representative particles are characterized, and the findings are
displayed in Figures 9–12.
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The particle phase in various hydrocyclones aggregates at the bottom of the secondary-
cylindrical section resulting in a dense regime, and the dense regime region expands as
the secondary-cylindrical section diameter increases. Because the axial velocity is low and
fluctuating, particle movement efficiency in the AVWZ is reduced, resulting in particle
aggregation. The strong particle-particle interaction in the dense regime region, on the
other hand, prevents particles from moving through the dense regime to the spigot, which
increases the extent of particle aggregation. Due to the inability to discharge from the
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underflow in time, the possibility of particles in the dense regime forming circulation flow
is enlarged. Concurrently, the secondary-cylindrical section diameter slightly impacts the
volume fraction distribution of the particle phase in the top section of hydrocyclones.

Figure 10 depicts the effect of secondary-cylindrical section diameter on the spatial
distribution of 10 µm particles. The secondary-cylindrical section diameter slightly affects
the spatial distribution of 10 µm particles, which can be attributed to the slight difference
in fine particle circulation flow of different hydrocyclones. The increase in the secondary-
cylindrical section diameter reduces the volume fraction of 10 µm particles at the bottom
of the hydrocyclone, which may contribute to reducing fine particle circulation flow and
misplaced fine particles in the underflow. The volume fraction of 10 µm particles increases
slightly by increasing the secondary-cylindrical section diameter in the upper part of the
hydrocyclone, which helps the fine particles to be discharged quickly with the overflow.

The secondary-cylindrical section diameter significantly affects the spatial distribution
of 59.5 µm particles, illustrated in Figure 11. In the lower part of hydrocyclones, the
aggregation extent of 59.5 µm particles is reduced as the secondary-cylindrical section
diameter increases caused by the reduction in the particle downward flow ratio. The
smaller volume fraction in the AVWZ reduces particle circulation flow, resulting in a
decrease in particle upward flow ratio. However, the volume fraction of 59.5 µm particles
increases first and then decreases by increasing the secondary-cylindrical section diameter
underneath the vortex finder, reaching the maximum when D1 = 0.5D. The increase of
particle aggregation extent under the vortex finder may be ascribed to an increase in particle
upward flow ratio. However, the lower circulation flow of 59.5 µm particles reduces
the particle upward flow ratio and particle downward flow ratio in the hydrocyclone
with a large secondary-cylindrical section diameter. Then it reduces the concentration of
59.5 µm particles.

The impact of the secondary-cylindrical section on the spatial distribution of 150 µm
particle is depicted in Figure 12. At the bottom of hydrocyclones, the volume fraction of
150 µm particle increases with the increase of the secondary-cylindrical section diameter
caused by a larger AVWZ. Synchronously, the larger particle upward flow ratio in the
hydrocyclone with an expanded secondary-cylindrical section aggravates the aggregation
region of 150 µm particles to spread towards the vortex finder. The above analysis further
proves that the coarse particle circulation flow region increases as the secondary-cylindrical
section diameter increases. On the other hand, there is no obvious aggregation of 150 µm
particles under the vortex finder in the hydrocyclone of D1 = 0.7D, which may imply that
the large secondary-cylindrical section diameter strengthens the coarse particle circulation
flow but does not aggravate misplaced coarse particles in the overflow. The preceding
analyses suggest that particle circulation flow is one of the principal reasons for particle
aggregation in hydrocyclones.

3.4. Particles Separation Performance

The effect of the secondary-cylindrical section diameter on the separation efficiency is
depicted in Figure 13. The separation efficiency curve is categorized into three zones: fine
particle zones (d < 30 µm), coarse particle zones (d > 100 µm), and medium particle region
(30 µm ≤ d ≤ 100 µm).
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Compared with fine and coarse particles, the secondary-cylindrical section diameter
affects the medium particle separation efficiency to a greater extent. The larger secondary-
cylindrical section diameter decreases the medium particle separation efficiency, implying
more medium particles discharged with the overflow. Since the secondary-cylindrical
section diameter affects the movement behavior of fine particles in a negligible way, no
significant difference in the fine particle separation efficiency can be observed. Notwith-
standing, the secondary-cylindrical section strengthens the coarse particle circulation flow
and expands the coarse particle aggregation region. However, the coarse particles mov-
ing with the internal swirling flow will return to the external swirling flow region and
eventually be discharged with the underflow caused by the centrifugal force. Hence, the
difference in coarse particle separation efficiency between hydrocyclones is minor.

The impact of the secondary-cylindrical section on the cut size (d50) and imperfection
value (I) is depicted in Figure 14. The cut size increases monotonically by increasing the
secondary-cylindrical section diameter caused by the exaggerated AVWZ. Consequently,
hydrocyclones with a larger secondary-cylindrical section diameter can improve cut size
while reducing misplaced coarse and fine particles, which is advantageous for operations
requiring a larger cut size. A minor imperfection value indicates superior separation
sharpness and more satisfactory separation results. The imperfection value reduces and
then enlarges as the secondary-cylindrical section diameter increases. When D1 = 0.5D,
the imperfection value achieves a minimized value of 0.23. In summary, the separation
sharpness of the hydrocyclone could be enhanced by enlarging the secondary-cylindrical
section diameter.
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4. Conclusions

The impact of particle circulation flow on the separation performance of hydrocyclones
was investigated by adjusting the secondary-cylindrical section diameter. The main findings
are concluded in the following:

1. Particle circulation flow is ubiquitous in hydrocyclones, and the region of particle
circulation flow expands with increasing the secondary-cylindrical section diameter.

2. The upward flow ratio and downward flow ratio of fine particles decrease as the axial
position decreases, whereas the upward and downward flow ratio of medium particles
and coarse particles increase and then decrease. A larger secondary-cylindrical section
diameter can enhance the coarse particle circulation flow and suppress the medium
particle circulation flow, thus reducing the particle circulation flow ratio.

3. The impact of secondary-cylindrical section diameter on the fine particle circulation
flow is negligible, whereas superior AVWZ in hydrocyclones of large secondary-
cylindrical section diameter augments coarse particles circulation flow, increasing the
aggregation extent and aggregation region of coarse particles.

4. The separation sharpness could be increased with an appropriate enlargement of
the secondary-cylindrical section diameter to strengthen the particle circulation flow,
whereas an excessively secondary-cylindrical section diameter will reduce the separa-
tion sharpness.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr11092542/s1, The numerical model, simulation conditions, and model
applications are discussed in detail in the Supplementary Materials, while the particle circulation
flow evaluation methods and calculation formulas are described in detail. Ref. [17] is cited in
Supplementary Materials.
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