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Abstract: With the continuous development and complexity of industrial systems, various types of
industrial equipment and systems face increasing risks of failure during operation. Important to these
systems is fault warning technology, which can timely detect anomalies before failures and take cor-
responding preventive measures, thereby reducing production interruptions and maintenance costs,
improving production efficiency, and enhancing equipment reliability. Machine learning techniques
have proven highly effective for fault detection in modern production processes. Among numerous
machine learning algorithms, the generalized neural network stands out due to its simplicity, effec-
tiveness, and applicability to various fault warning scenarios. However, the increasing complexity
of systems and equipment presents significant challenges to the generalized neural network. In
real-world scenarios, it suffers from drawbacks such as difficulties in determining parameters and
getting trapped in local optima, which affect its ability to meet the requirements of high efficiency
and accuracy. To overcome these issues, this paper proposes a fault warning method based on an
enhanced sand cat swarm optimization algorithm combined with a generalized neural network. First,
we develop an enhanced sand cat swarm optimization algorithm that incorporates an improved
chaotic mapping initialization strategy, as well as Cauchy mutation and reverse elite strategies based
on adaptive selection. Subsequently, we utilize this algorithm to optimize the generalized neural
network and determine its optimal parameters, effectively improving the accuracy and reliability
of system fault warnings. The proposed method is validated using actual industrial system data,
specifically for generator fault warning, and is demonstrated to outperform other advanced fault
warning techniques. This research provides valuable insights and promising directions for enhancing
industrial fault warning capabilities.

Keywords: fault detection; generalized neural network; industrial systems; machine learning; sand
cat swarm optimization

1. Introduction

In today’s constantly evolving and complex industrial systems, various industrial
equipment and systems face increasing risks of failure, posing significant challenges to
production and maintenance work [1]. Therefore, fault warning technology has become an
immensely critical research area in the industrial sector; fault warning involves monitoring
and analyzing data from systems, equipment, or processes to promptly identify potential
faults or anomalies and issue advance warnings. The goal of fault warning is to detect early
signs of potential issues, thereby reducing production disruptions, equipment damage, and
maintenance costs and enhancing system reliability and safety. It typically entails collecting,
monitoring, and analyzing data related to system operation, such as temperature, vibration,
current, pressure, and other parameters. By comparing real-time data with predefined
thresholds or models, the system can identify deviations from normal operation and alert
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relevant personnel or systems for intervention through alarms, notifications, or automated
controls. In industries such as manufacturing, energy, transportation, healthcare, and more,
fault warning holds significant importance. It helps to improve equipment utilization,
reduce maintenance costs, mitigate accident risks, and provide more reliable and continuous
operation [2]. Consequently, developing effective early warning and diagnostic methods
for equipment and system faults has become an urgent problem to address [3]. In this
context, adopting machine learning-based fault prediction methods has emerged as a
crucial approach to modern industrial fault prevention.

Neural network technology has been widely applied in the field of fault warning
due to its powerful learning capability, rapid information processing speed, and error
self-adaptation advantages [3]. Compared to other neural networks, the generalized neural
network (GRNN) exhibits fewer parameters (only the smoothing factor σ) and possesses
strengths such as strong data adaptability, efficiency, and rapid prediction capabilities [4].
However, the performance of GRNN largely depends on the appropriate selection of σ, and
determining its optimal parameters poses a challenge, as it may be difficult to find global
optima in certain cases and can easily get trapped in local optima [5]. To better address
these issues, intelligent algorithms have become essential tools [6].

Meanwhile, the No Free Lunch theorem states that no single algorithm can achieve
optimal solutions for all problems [7]. Therefore, there is a continuous need to develop
and improve novel algorithms and extend their applications. In this regard, this paper
introduces an enhanced sand cat swarm optimization (ESCSO), specifically utilizing chaotic
mapping for population initialization and incorporating Cauchy mutation and elite reverse
population strategies based on adaptive selection during the standard sand cat swarm
optimization (SCSO) search process. Subsequently, the algorithm is employed to optimize
the GRNN by adjusting its parameter values to better adapt to the characteristics of complex
systems. Through this approach, the network is better equipped to fit the nonlinearity and
time-varying nature of complex systems.

Real industrial system data is used for experimentation to validate the proposed
method’s effectiveness. The results demonstrate significant performance advantages of this
method in fault prediction, with higher accuracy and reliability compared to traditional
approaches. This offers novel insights and methods for fault warning research in the
industrial domain and provides robust support for accurate and reliable fault warnings
in industrial production, promising to contribute positively to the robust operation of
industrial systems and increased production efficiency.

In conclusion, the fault warning method proposed in this paper represents a promising
research direction, with the potential to provide more effective solutions for fault prediction
in the industrial sector while offering an intriguing new domain for academic exploration.
Through continuous optimization and improvement, this method is expected to become
a crucial technical means for future industrial system fault warnings. As technology
advances and data accumulates, we firmly believe that this method will play an increasingly
significant role in the industrial field, making greater contributions to the robust operation
and increased production efficiency of industrial systems. In addition, this is the first
combination of SCSO and GRNN in the field of fault warning, which is another contribution
of this paper.

The remaining sections of this paper are organized as follows: Section 2 provides a
comprehensive review of recent work related to fault warning, Section 3 elaborates on our
proposed method, Section 4 validates the method through a real-world case study on gener-
ator fault warning, Section 5 further demonstrates the effectiveness of the proposed method
through comparisons with other advanced techniques, and finally, Section 6 presents the
conclusion, limitations, and potential directions for future development.

2. Literature Review

Many methods have emerged in the field of fault warning in the past decades. For
instance, Wu et al. formulated a combined approach that integrated a deep local adap-
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tive network, dual-phase qualitative trend analysis, and a five-state Bayesian network.
This method turned aberrant variable continuous data into trend state data, serving fault
detection, identification, and diagnosis [8]. Luo et al. introduced an online monitoring
technology based on SCADA data to enhance prediction reliability. They used the con-
ditional mutual information method to select key variables, which improved prediction
accuracy. Their innovative Pair-Copula model overcame the limitations of traditional
models, simplifying prediction complexity. By combining the back propagation neural
network (BPNN) with the Pair-Copula model, they enhanced prediction effectiveness.
The improved Pair-Copula model addressed real-time data processing challenges and
demonstrated practicality, achieving significant progress in the field of wind turbine main-
tenance [9]. Compared to traditional methods, Chen et al. utilized mixed intelligent
algorithms to handle mechanical fault diagnosis more effectively. They employed Parallel
factor analysis (PARAFAC) for multi-dimensional signal processing and constructed a
3D tensor using continuous wavelet transform to extract complex features efficiently. By
applying genetic algorithms for optimization in the diagnosis of centrifugal pump faults,
they further improved accuracy and significantly enhanced the efficiency of fault diag-
nosis [10]. Jiang et al. proposed a condition-based maintenance method for silk dryers,
using entropy methods to enhance objectivity. They improved prediction accuracy by
optimizing neural network nodes and adopted genetic algorithm–backward propagation
neural network (GA-BP) to establish a state prediction model, overcoming limitations
of BP networks. Simulation experiments validated the effectiveness of their method in
compensating for existing maintenance deficiencies and providing a scientific basis for
dryer maintenance [11]. Zhao et al. introduced the use of deep autoencoder networks
for wind turbine health monitoring, enabling fault detection and analysis using SCADA
data. Their method not only achieved early fault warnings but also inferred the fault
component’s location, distinguishing it from previous research [12]. Chen et al. improved
the accuracy of wind turbine pitch system and fault early warnings by optimizing the
BP neural network using a GA. Although the integration of multiple methods resulted in
relatively higher time and space complexity, the early warning capability reduced subse-
quent maintenance costs [13]. In comparison to previous research, Zhang et al. used an
improved gray wolf optimization algorithm (IGWO) and the BP neural network to enhance
accuracy and real-time capability in charging safety early warnings for electric vehicles.
The IGWO-BP algorithm fitted the entire charging process, creating a warning model based
on residual changes, reliably detecting abnormal states and issuing timely alerts, effectively
enhancing electric vehicle charging safety warning capabilities [14]. Lin et al. upgraded
a BPNN using an advanced sparrow search algorithm (SSA), significantly improving its
performance. The fault classification and prediction accuracy for active phase change con-
trol device increased from 53.33% to 96.66%, validating the practicality and effectiveness
of the algorithm, which holds significant significance for stable operation of stratospheric
lighter-than-air aircraft [15]. Gao et al. designed an early warning system for EV charging
processes using adaptive deep belief networks and charging data analysis. Experimental
results demonstrated that their method not only accurately predicted faults during EV
charging but also outperformed the BPNN and traditional deep belief network methods in
early warning accuracy [16]. Zhou et al. innovatively proposed an entropy-based sparsity
measurement method for bearing fault prediction and defect identification in complex hy-
draulic machinery. This method met important conditions and proved suitable for bearing
degradation monitoring and envelope analysis. It surpassed existing methods in terms of
algorithm performance and effectiveness, providing an effective tool for fault monitoring
and diagnosis, albeit with slightly higher computational complexity [17]. Wang et al. intro-
duced a multi-parameter signal-based early warning method for compressor valve faults,
employing an improved deep learning network and information fusion strategy. Compared
to previous research, their method achieved higher parameter prediction accuracy and
reduced model complexity through decomposition, denoising, and reconstruction. Experi-
ments verified its effectiveness in early warning compressor valve faults under complex
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operating conditions [18]. Liu et al. presented a real-time detection method for working
motor faults, utilizing vibration signal decomposition and feature computation for fault
diagnosis and classification using support vector machines and neural networks. Their
unique experimental process combined with hardware configuration enabled real-time
motor fault diagnosis and the design of an early warning system [19]. Ji et al. introduced a
multi-feature sparrow search algorithm (MSSA) optimized support vector machine (SVM)
for fault early warning in cable tunnel environment monitoring, achieving online monitor-
ing and intelligent alarms. Compared to traditional methods, their approach significantly
improved accuracy [20]. Yang et al. proposed a method based on sparse autoencoder-long
short-term memory (LSTM) network and sliding window technique for early warning of
overheating defects in water-cooled turbine generator stator windings. By reconstructing
operational data, LSTM temperature prediction, and defect detection through sliding win-
dows, their approach provided more accurate prediction results compared to traditional
methods, supporting early stable warnings [21]. Peng et al. combined convolutional neural
network (CNN) with adaptive maximum mean discrepancy to develop a wind turbine fault
early warning method. Industrial case studies demonstrated that their evaluation method
had higher fault prediction rates and lower false alarm rates compared to traditional meth-
ods [22]. Kirbaş et al. designed a hybrid anomaly detection model combining multiple
linear regression, response surface methods, and a multilayer perceptron for detecting
faults in high-power generators [23]. Qiao et al. developed a meta-learning-based CNN
approach for wind turbine fault early warning. Experimental results showed that their
proposed method could detect faults in different wind turbine units at an early stage [24].
Li et al. optimized the CNN using an improved hybrid particle swarm optimization algo-
rithm and applied it to fault early warning for synchronous generators. Their approach
had significance in promoting stable operation of synchronous generators [25]. Niu et al.
proposed a least squares hybrid support vector machine method for fault early warning
in doubly fed wind turbine units. Research results indicated that their prediction method
had higher estimation accuracy and could timely identify faults during the operation of
doubly fed wind turbines [26]. Li et al. presented an intelligent early warning method
for mine safety based on GRNN. Their method enhanced overall stability prediction for
mines and effectively controlled errors to avoid vague predictions [27]. Kaminski et al.
applied GRNN to rotor fault monitoring of induction motors, and real-world industrial
cases demonstrated the effectiveness of GRNN in this domain [28]. Chen et al. combined
principal component analysis with GRNN to establish a safety assessment and prediction
model for coal mills. Experimental cases showed that their model had lower costs and
higher accuracy [29]. Liu et al. developed a wind turbine performance prediction model
using GRNN and implemented fault early warning using a sliding data window method to
calculate residual evaluation indicators for wind turbine speed and power in real time. Ex-
perimental cases showed that their model outperformed traditional methods [30]. Qi et al.
combined kernel entropy component analysis (KECA) and GRNN for health monitoring
and fault early warning of wind turbines. Observed results from their model indicated
that it could provide early safety warnings for faults [31]. Jing et al. developed a hybrid
method combining KECA and GRNN for gear box fault monitoring and early warning
in wind turbine units. Their method improved fault warning efficiency by systematically
integrating dimensionality reduction techniques and GRNN [32].

Finally, Table 1 summarizes the above literature.

Table 1. Summary of Literature review.

Ref. Methodology Application Key Findings/Contributions

Luo et al. [9] Conditional mutual info + BPNN Wind turbine maintenance Enhanced reliability with conditional
mutual information.

Chen et al. [10] Parallel factor decomp + GA Mechanical fault diagnosis Improved efficiency using PARAFAC
and genetic algorithms.
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Table 1. Cont.

Ref. Methodology Application Key Findings/Contributions

Jiang et al. [11] Genetic algorithm + BPNN Silk dryer maintenance Optimized neural network nodes for
improved predictions.

Zhao et al. [12] Deep autoencoder network Wind turbine health monitoring Early fault warnings and accurate fault
location identification.

Chen et al. [13] Genetic algorithm + BPNN Wind turbine pitch system
fault warning Enhanced early warning capability.

Zhang et al. [14] IWOA + BPNN EV charging safety early warnings Reliable and real-time abnormal
state detection.

Lin et al. [15] SSA+ BPNN Stratospheric lighter-than-air aircraft Significant improvement in fault
classification accuracy.

Gao et al. [16] Adaptive deep belief networks +
Charging data EV charging process Accurate fault prediction,

outperforming traditional methods.

Zhou et al. [17] Entropy-based sparsity +
LSTM network

Hydraulic machinery bearing
fault pred.

Effective tool for fault monitoring
and diagnosis.

Wang et al. [18] Multi-stage fusion LSTM network Compressor valve faults Higher parameter prediction accuracy
with reduced complexity.

Liu et al. [19] Support vector machines + GRNN Motor fault detection Real-time motor fault diagnosis and
early warning system.

Ji et al. [20] MSSA+ optimized SVM Cable Tunnel Environment Monitoring Significant accuracy improvement for
generator fault warning

Yang et al. [21] Sparse AE+ LSTM+ Sliding Window Water-Cooled Steam Turbine Generator
Stator Winding Overheating Warning

More accurate early-stage
stable warnings

Peng et al. [22] Convolutional Network+ Adaptive
Max Mean Deviation Wind Turbine Generator Fault Warning Higher fault prediction, lower

false alarms

Kirbaş et al. [23] Multivariate Linear Regression+
Response Surface+ MLP High-Power Generator Fault Detection Hybrid model for improved

fault detection

Qiao et al. [24] Meta-Learning+ CNN Wind Turbine Generator Fault Warning Early fault detection across
different units

Li et al. [25] Improved Hybrid PSO+ CNN Synchronous Generator Fault Warning Enhanced stability through optimized
CNN model

Niu et al. [26] Least Squares Hybrid SVM Doubly-Fed Wind Turbine Group
Fault Warning

Accurate fault estimation, timely
identification

Li et al. [27] GRNN-based Intelligent Warning
for Mines Overall Stability Forecast for Mines Improved mine stability prediction

with intelligent warning

Kaminski et al. [28] GRNN Motor Rotor Fault Monitoring Effective motor rotor fault monitoring

Chen et al. [29] PCA-GRNN Coal Mill Safety Assessment Prediction Lower cost, higher accuracy in coal mill
safety prediction

Liu et al. [30] GRNN
Wind Turbine Group Performance

Prediction and Sliding Window
Fault Warning

Superior performance in predicting
turbine group performance

Qi et al. [31] KECA+ GRNN Wind Turbine Health Monitoring and
Fault Warning

Early warnings for turbine health and
faults using KECA and GRNN

Jing et al. [32] KECA + GRNN Wind Turbine Gearbox Fault
Monitoring and Warning

Enhanced fault warning through
hybrid KECA and GRNN

The analysis of the literature (Table 1) reveals that machine learning techniques are
widely applied in the field of fault warning. However, the utilization of GRNN in current
effective methods is somewhat limited. Table 1 presents a clear overview of GRNN appli-
cations, with both the basic version and hybrid combinations with other methods being
more prevalent. This also implies the existence of unexplored opportunities to enhance
performance and broaden its application. The primary goal of this study is to propose a
more streamlined and efficient approach for utilizing GRNN. This involves optimizing
the performance of the basic version to improve efficiency and fully leverage its simplicity.
Additionally, based on the findings in Table 1, meta-heuristic algorithms prove effective in



Processes 2023, 11, 2543 6 of 27

enhancing machine learning performance. By selecting suitable meta-heuristics for specific
problems, a significant performance boost for GRNN across various tasks is expected. It’s
important to note the “no free lunch” theorem, which asserts that no single algorithm
can achieve optimal performance for all problems. This realization drives continuous
innovation and algorithm refinement to meet evolving challenges. Therefore, another
aim of this research is to explore an efficient meta-heuristic algorithm and integrate it
with GRNN seamlessly. This combined approach aims to unlock improved and efficient
utilization of GRNN, pushing the boundaries of fault warning. Through these efforts, our
goal is to advance the field of fault warning and further explore the potential of GRNN in
practical applications.

Hence, in comparison to prior research, this study makes unique contributions to
the field:

• Building upon the foundational version of SCSO, we incorporate novel and improved
operators to enhance the performance of SCSO.

• Drawing insights from the analysis of existing literature, meta-heuristic algorithms
emerge as pivotal tools in optimizing machine learning efficiency. As a result, we
apply ESCSO to GRNN to enhance the efficiency of fault diagnosis. This represents
the first-ever combination of ESCSO and GRNN, and its effectiveness is validated
through real-world industrial cases.

• In comparison to preceding research endeavors, we present a novel approach to
optimal parameter calibration. This approach involves the synergy of the K-fold
cross-validation technique and Taguchi’s experimental method, underpinned by the
concept of relative percentage deviation.

Finally, Figure 1 provides the lineage of our research throughout this paper.
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3. Proposed Hybrid Method

Here, we present the hybrid algorithm proposed in this paper, we first describe the
GRNN structure (Section 3.1), after that, we detail the main components of ESCSO and
provide pseudo-code for these cores (Section 3.2), and finally, we describe ESCSO-GRNN
and provide its flowchart (Section 3.3).

3.1. Generalized Neural Network Structure

Specht proposed the GRNN model [33]. This model is typically built on the foundation
of mathematical statistics and exhibits powerful capabilities in non-linear mapping and
fast learning. The GRNN neural network model consists of input layer, pattern layer,
summation layer, and output layer [33]. Figure 2 illustrates the structure of a GRNN.
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In the GRNN, the input layer receives the feature vector of input samples, and the
pattern layer is a crucial component, storing the feature vectors of training samples along
with their corresponding output values. The summation layer calculates the weights by
computing the similarity between the input sample and the samples in the pattern layer
and then performs a weighted summation of the output values. Finally, the output layer
uses the result of the weighted summation as the final prediction output.

The advantages of GRNN lie in its minimal number of parameters, with only one
smoothing factor σ, requiring less parameter tuning. Since the pattern layer stores all the
training samples, GRNN possesses a powerful memory capability, allowing it to consider
information from all known samples during prediction. This makes it particularly effective
in handling small sample and non-stationary data.

In summary, GRNN is a robust neural network model, especially suitable for non-
linear mapping and processing small sample data. It has found wide application in
various fields, including pattern recognition, fault prediction, and time series forecasting,
among others.

In the training samples, the number of neurons in the input layer is equal to the
dimension of the input vector, and each neuron serves as a simple transmission unit,
directly passing the input variables to the pattern layer. The number of neurons in the
pattern layer is equal to the number of learning samples, and each neuron corresponds
to a different learning sample. In the pattern layer, each neuron corresponds to a transfer
function, as depicted in Equation (1) [33].

Pi = exp

[
− (X − Xi)

T(X − Xi)

2σ2

]
, i = 1, 2, . . . , n (1)

where Pi represents the output of each neuron in the pattern layer, X denotes the input
variables of the network, Xi corresponds to the learning sample associated with each neuron
in the pattern layer, and σ is the smoothing factor, n is the number of samples.

In the GRNN’s summation layer, there are two types of neurons that perform summa-
tion operations.
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The first type is to perform arithmetic summation on the outputs of all neurons in
the pattern layer, where each neuron in the pattern layer is connected to the summation
neuron with a connection weight of 1. The corresponding transfer function is shown in
Equation (2) [33].

SD = ∑n
i=1 Pi (2)

where Pi represents the output of each neuron in the pattern layer, n is the number
of samples.

The second type is to perform a weighted summation of the outputs of all neurons in
the pattern layer, the corresponding transfer function is shown in Equation (3) [33].

SN =
n

∑
i=1

yiPi (3)

where the output value yi of each neuron in the pattern layer serves as its connection weight,
Pi represents the output of each neuron in the pattern layer, n is the number of samples.

Finally, the output Y can be obtained using Equation (4) [33].

Y =
SN
SD

(4)

During regression analysis, GRNN predicts the output using Equation (5) [33].

y = E[y/X] =

∫ ∞
−∞ y f (X, y)dy∫ ∞
−∞ f (X, y)dy

(5)

where X represents the independent variable, y is the dependent variable, and f (X,y) is
the joint probability density function of the two variables X and y. The Parzen-Window
non-parametric estimation method can be used to estimate f (X,y) using random variables
Xi and yi, the method is calculated as shown in Equation (6) [33].

f (X, y) =
1(

2π)(P+1)/2σ(P+1)
× 1

n∑
n ∑ [− (X−Xi)

T (X−Xi)
2σ2 ]exp[−

(y−yj)
2

2σ2 ]

i=1 exp (6)

where n is the number of samples, P is the dimension of the random variable X, σ is the
smoothing factor, X denotes the input variables of the network, and Xi corresponds to the
learning sample associated with each neuron in the pattern layer.

The prediction output is given by Equation (7) [33].

ŷ(X) =
∑

n ∑ [−
D2

i
2σ2 ]i

i=1 exp

∑
n ∑ [−

D2
i

2σ2 ]

i=1 exp

(7)

where D2
i = (X − Xi)

T(X − Xi)
As can be observed, the prediction accuracy of GRNN is influenced by the value of σ

and it requires optimization. When σ is sufficiently large, the predicted results approach
the mean value of y, leading to poor fitting capability to the training data. On the other
hand, when σ is very small, the predicted results closely match the experimental y values
in the training samples, but the prediction accuracy for external test data is compromised.
However, when σ is appropriately chosen, it considers the experimental y values of all
training samples and assigns larger weights to variables y corresponding to points near X,
resulting in excellent prediction performance.

The metaheuristic algorithm is an excellent method for determining the value of
σ [34]. Therefore, we develop an enhanced metaheuristic algorithm. The following is a
detailed introduction.
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3.2. Proposed Enhanced Algorithm

To train the network more efficiently and avoid getting stuck in local optima, we
designed the ESCSO. We selected the SCSO algorithm as the foundation for enhancing
the network for several reasons. Firstly, the SCSO algorithm has demonstrated impressive
performance across diverse fields, particularly in intrusion detection systems and medical
diagnosis, showcasing its adaptability and versatility [35–37]. Secondly, the algorithm’s
robust global search capability, inspired by biological symbiosis mechanisms, enables swift
identification of global optimal solutions in complex problem spaces, mitigating the risk
of getting stuck in local optima. Moreover, through diversity exploration and adaptive
parameter adjustments, the algorithm effectively escapes local extremities, comprehen-
sively exploring potential solution spaces and enhancing the likelihood of discovering
global optimal solutions. Finally, during comparison with other meta-heuristic algorithms,
such as particle swarm optimization algorithm, grey wolf optimization algorithm, whale
optimization algorithm, etc., SCSO demonstrates better performance in several test cases
and real engineering problems. Given these considerations, we are confident that utilizing
the SCSO algorithm as the foundation for network improvement will significantly enhance
network training efficiency, accelerate convergence towards global optimal solutions, and
yield faster, more accurate optimization outcomes for fault warning applications. Addi-
tionally, we have introduced a range of novel optimization operators to further enhance its
efficiency and achieve superior fault warning capabilities.

3.2.1. Population Initialization

To enhance the diversity of the initial population, we use the Tent chaotic mapping
method, which has good traversal uniformity, to initialize the population for ESCSO. Tent
mapping is an excellent strategy to enhance the solution quality of metaheuristic algorithms
and has been widely applied in other algorithms. For instance, Li et al. applied it to the
whale optimization algorithm [38], Chen et al. used it to improve the GA [39], and Gao et al.
combined it with the Harris Hawsk optimization algorithm [40]. Furthermore, it has
been extensively employed to enhance other notable algorithms such as particle swarm
optimization [41], equilibrium optimizer [42], and artificial bee colony algorithm [43]. As
the tent mapping may have small cycles and unstable periodic points, we introduce a
random variable rand(0, 1) × 1/N into the Tent mapping function to improve it. The
updated expression is described in Equation (8).

ynew(i) =

 2yold(i) + rand(0, 1
)
× 1

N 0 6 yold(i) <
1
2

2
(

1 − yold(i)

)
+ rand(0, 1

)
× 1

N
1
2 < yold(i) 6 1

(8)

where yold(i) is the initial solution after random generation, rand(0, 1) represents a random
number between 0 and 1, and N is the number of particles in the Tent sequence, ynew(i) is
the solution after mapping?

Next, we derive the individuals within the population by applying the process of
inverse mapping to the uniformly distributed chaotic sequence generated by the Tent
mapping, as described in Equation (9).

xi = ynew(i)(ub − lb) + lb (9)

where yi is the chaotic sequence generated by Equation (8), xi is the mapped ESCSO individ-
ual, and ub and lb represent the upper and lower bounds of the search space, respectively.

Generally, the value of σ is set to be between (0, 1), so we also choose its value range
to be (0, 1), and we first randomly generate yold(i) in the (0, 1) search space, and then
chaotically map it according to Equation (8) to generate a new mapped particle ynew(i), and
then. Finally, we generate the final initial solution xi according to Equation (9). For all the
subsequent calculations, the value of σ takes the value between (0, 1).
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3.2.2. Sand Cat Searching for Prey (Exploration Phase)

In the ESCSO algorithm, the sand cats update their positions based on the current best
position of the population, their own positions, and the sensitivity range. This allows them
to explore other potentially better prey positions [35]. To ensure that sand cats find new local
optima within the search space, new positions are generated between the current position
and the prey position. Randomness is introduced to balance the convergence effectiveness
and complexity of the algorithm [35]. This phase is organized in a mathematical model as
described in Equation (10) [35].

xnew(i) = r2 ·
(

xbest(t) + rand(0, 1) · xold(i)

)
(10)

where xnew(i) denotes the new individual, r2 is the different sensitivity ranges for each sand
cat, which is computed as described in Section 3.2.4, rand(0, 1) denotes a random number
between [0, 1], xold(i) denotes the individual that needs to be updated, and xbest(t) denotes
the best individual in the current iteration.

3.2.3. Sand Cat Attacking Prey (Exploitation Phase)

In the exploitation phase of the ESCSO algorithm, the sand cats represent the distance
between the best position and the current position [35]. This allows the sand cats to explore
other potentially better prey positions. The position update formula for this phase is
represented as Equation (11) [35].P =

∣∣∣ rand(0, 1 ) · xbest(t) − xold(i)

∣∣∣
xnew(i) = xbest(t) − r2 · P · cos(θ

) (11)

where P denotes update factor, rand(0, 1) denotes a random number between [0, 1], xold(i)
denotes the individual that needs to be updated, and xbest(t) denotes the best individual
in the current iteration, xnew(i) denotes the new individual. Suppose that the sensitivity
range of each sand cat forms a circle so that the direction of movement can be defined by a
random Angle of θ on the circle. θ is a random Angle between 0 and 360 degrees, i.e., the
value of cos(θ) will be between −1 and1. This allows each individual in the population
to move along different circular directions within the search space. The ESCSO selects a
random angle for each sand cat, enabling them to approach the prey position.

By utilizing the position update formula and selecting random angles θ, the ESCSO
enables the sand cats to explore new local optima that lie between their current positions
and the prey position. This strategy increases the algorithm’s exploratory capabilities,
avoids getting trapped in local optima, and enhances the chances of finding global optima.
Moreover, the introduction of randomness promotes diversity in the algorithm and prevents
premature convergence.

3.2.4. Control of the Exploration and Exploitation Phase

In the ESCSO algorithm, the exploration and exploitation phases are controlled using
the parameters rG and R. These parameters allow the sand cats to transition between the
two phases. The parameter r is inspired by the sand cats’ low-frequency detection ability
and is used to adjust the sensitivity range. Specifically, the calculation of rG is as shown in
Equation (12) [35].

rG = sM −
(

2 × sM × t
2 × T

)
(12)

where t represents the current iteration count and T is the maximum iteration count. The
value of rG decreases linearly from 2 to 0 as the iterations progress, approximating the
sensitivity of sand cats during hunting, SM is inspired by sand cat hearing characteristics
in SCSO assuming that it has a value of 2. rG is the control parameter and is obtained
according to Equation (12) [35].
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In the ESCSO algorithm, the main parameter controlling the transition between the
exploration and exploitation phases is R. R is calculated as represented in Equation (13).

R = 2 × rG × rand(0, 1 )− rG (13)

where rand(0, 1 ) represents a random number between 0 and 1, the value of rG decreases
linearly from 2 to 0 as the iterations progress, rG is the control parameter and is obtained
according to Equation (12).

In each search step, the position update of each current search agent is based on a
random position, allowing them to explore new regions in the search space and avoid
getting stuck in local optima. Each sand cat has a different sensitivity range, which is
determined by the Equation (14) [35].

r2 = rG × rand(0, 1 ) (14)

where r2 denotes different sensitivity ranges for each sand cat.
The ESCSO ensures exploration and exploitation through the parameters rG and R.

These two parameters allow the algorithm to switch between the two phases. As the
value of R depends on rG, its fluctuation range also decreases. When the value of rG is
uniformly distributed, the value of R is well balanced, and the execution of the two phases
is adaptively adjusted according to the problem. In other words, R is a random value in
the interval [−2rG, 2rG], and r linearly decreases from 2 to 0 during the iteration process.
When the random value of R is within the range [−1, 1], the next position of the sand cat
can be at any point between its current position and the prey position. If R is less than or
equal to 1, the ESCSO algorithm performs exploitation; otherwise, it is forced to perform
exploration. Equation (15) demonstrates the above mechanism [35].

xnew(i) =

 xbest(t) − r2 · P · cos(θ ), if
∣∣∣R∣∣∣≤ 1, exploitation

r2 ·
(

xbest(t) + rand(0, 1) · xold(i) , else, exploration
(15)

In the ESCSO algorithm, if the value of R is less than or equal to 1 (i.e., R ≤ 1), the
algorithm enters the exploitation phase, indicating that the sand cats are guided to attack
their prey. When the value of R is greater than 1 (i.e., R > 1), the algorithm enters the
exploration phase, indicating that the sand cats’ task is to search for new solutions in the
local region.

3.2.5. Proposed Strategies for Improvement

In order to further enhance the performance of SCSO, apart from initialization based
on chaotic mapping, we propose two improvement strategies, namely the elite inverse
learning strategy and the Cauchy mutation strategy.

(1) Elite inverse learning strategy

Let the extremal point of the ordinary individual in the current population be an elite
individual, then its inverse solution is defined as Equation (16).

xnew(i) = δ(lb t + ubt )− xold(i) (16)

where δ is a random value on the interval [0, 1], and lbt and ubt are the maximum and
minimum values in the current iteration, respectively, which change dynamically with the
number of iterations, xnew(i) denotes the new individual, xold(i) denotes the individual that
needs to be updated.

(2) Cauchy mutation

The Cauchy mutation originates from the Cauchy distribution, which is a continuous
probability distribution with no mathematical expectation, and its probability density



Processes 2023, 11, 2543 12 of 27

function is: f (x) = 1
π × 1

1+x2 . The Cauchy distribution has characteristics such as a long
step length, long tails at both ends, and compact distribution. Therefore, it is easy to
generate random numbers from the origin, and it can produce a larger range of random
numbers than the Gaussian mutation. Introducing the Cauchy operator into the target
position update can take advantage of the regulating capability of the Cauchy operator,
thereby enhancing the algorithm’s ability to escape from local optima. The strategy is
calculated as shown in Equation (17).

xnew(i) = cauchy(0, 1) + (x best(t) − xold(i) ) (17)

where xnew(i) denotes the position of particle i in a new iteration, cauchy(0, 1) is a random
variable obeying a Cauchy distribution with a position parameter of 0 and a scale parameter
of 1. Random numbers generated by the Cauchy distribution are used to increase the
stochasticity of the optimization process and are sometimes used to improve the global
search. xbest(t) denotes the optimal position found in t iterations. xold(i) denotes the current
solution’s current position.

In order to improve the optimization performance of ESCSO, ESCSO adopts a dynamic
selection strategy to update the target position. It alternately selects the elite inverse
learning strategy and the Cauchy mutation strategy to update the target position under a
certain probability pr. pr is a parameter that adapts with iteration, and different strategies
are selected to update the target position using the probability pr. Its calculation method is
shown in Equation (18).

pr = α ∗ exp−t/T (18)

where α is a given parameter, t is the current number of iterations, and T is the maximum
number of iterations.

3.2.6. ESCSO Core Framework

According to the above calculation method, the core framework of ESCSO is as
following Algorithm 1:

Algorithm 1: ESCSO pseudo-code

Input: Npop, t, α
For i = 1: Npop

Generate an individual xi using chaotic mapping
Calculate the fitness value of individual i

End for
t = 1
While t ≤T

For i = 1: Npop
Randomly select an angle θ between 0 and 360 degrees for each individual
If R ≤ 1

Update the current individual using Equation (10)
Else

Update the current individual using Equation (11)
End if
Update parameters r2, rG, and R

End for
Calculate pr
For i = 1: Npop

If pr < rand
Update the individual using Equation (17)

Else
Update the individual using Equation (18)

End if
End for

Update pr
t = t + 1

End while
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3.3. ESCSO-GRNN Flowchart

Using the ESCSO method, the optimal smoothing factor σ of the GRNN neural network
is first obtained. Then, this parameter is used to optimize the GRNN neural network, and
finally, the ESCSO-GRNN neural network fault warning model is trained. The root mean
square error (RMSE) of the true and predicted values is used as the fitness function, and
the RMSE is calculated as shown in Equation (19).

f (x) =

√
∑M

i=1(ŷi − yi)
2

M
(19)

where f (x) represents the fitness value, i.e., RMSE, M represents the number of indicators,
yi represents the true value, and ŷi represents the predicted value.

Finally, the specific modelling steps are shown in Figure 3.
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4. Experimental Results

In this section, we validate the proposed method in a real industrial system; the
results demonstrate that the method exhibits significant advantages in fault warning tasks,
providing more accurate fault prediction and better generalization ability. We first introduce
the data source and experimental process (Section 4.1), then perform algorithm parameters
calibration (Section 4.2), followed by network training and fault warning performance
testing (Section 4.3). All experiments are conducted in the environment of Table 2.

Table 2. Experimental environment display. 1 MATLAB Online—MATLAB & Simulink (mathworks.cn).

Software 1 MATLAB R2018b

Operating System Windows
CPU Intel® Core™ i7

CPU Clock Speed 2.5 GHz
Architecture 64-bit

Memory 8 GB

4.1. Data Source and Experimental Process

To validate the effectiveness of the proposed ESCSO-GRNN model, we conduct exper-
iments in a certain hydroelectric power plant, focusing on the fault warning of a specific
generator. We collect data for three major fault types of the generator, comprising 60 in-
stances for each fault type, along with 1180 instances of normal operating data for the main
measurement points when no faults occur. Using this dataset of 1180 instances, we train
the ESCSO-GRNN model. In the validation phase, we utilize the fault data to evaluate
the performance of our trained ESCSO-GRNN model in detecting and predicting faults.
By comparing the model’s predictions with the actual fault conditions, we can assess its
accuracy and reliability. This experimental design allows us to verify the effectiveness
of the ESCSO-GRNN model for fault warning and its ability to accurately predict and
discriminate different fault types in the generator. It should be noted that our data is
sourced from real-time databases in power plants. Temperature sensors typically convert
temperature changes into electrical signals through variations in thermocouple resistance,
enabling temperature data acquisition. In this context, we adopted the most common
voltage divider circuit. Once the power supply and voltage divider resistor (R1) are deter-
mined, the relationship between output voltage and temperature can be established. By
selecting appropriate voltage divider resistors and referring to the R-T table, voltage values
corresponding to each temperature are computed. Vibration sensors primarily consist
of acceleration sensors, velocity sensors, and displacement sensors used respectively for
measuring vibration acceleration, vibration velocity, and vibration displacement. The
current transformer method is a non-contact measurement technique that employs current
transformers to convert current signals into low-level signals for subsequent measurement.
This method does not require direct contact with the motor, resulting in minimal measure-
ment error. The specific steps are as follows: Install the current transformer on the motor’s
circuit and connect the low-level signal output from the transformer to an ammeter or data
collector. Then, the current value can be obtained and analyzed through the ammeter or
data collector for further processing.

We take three fault types of a generator stator as an example, and the main measuring
points of these three fault types are shown in Table 3.

mathworks.cn


Processes 2023, 11, 2543 15 of 27

Table 3. Types of generator fault.

Fault Types Main Measurement Points Fault Cause

Loose stator core

Stator core
horizontal vibration

Vertical vibration of stator core
Stator core temperature

Material quality is not qualified,
size error,

silicon steel sheet aging,
improper design,

production process problems,
poor installation quality

Loose stator tooth plate

Stator core vertical vibration
Stator core

horizontal vibration
Stator tooth plate temperature

Stator core temperature

Long-term poor
environmental operation

High-temperature thermal
fatigue, frequent start and stop,

overload operation

Stator overload

Stator current
Stator winding temperature

Stator core temperature
Stator hot air temperature

Excessive resistance,
poor wiring of stator winding,

aging of insulation

4.2. ESCSO-GRNN Parameters Calibration

ESCSO-GRNN is a complex neural network model, and to ensure its optimal perfor-
mance in fault warning tasks, we need to calibrate its parameters. Parameters calibration
is a crucial step to fine-tune the model [44–46], making it better adapt to training data
and possess stronger generalization capability [47]. As described in Section 3, the ESCSO-
GRNN model has three parameters: Npop, T, and α. Based on preliminary experiments and
literature analysis [35–39], we set four levels for each parameter, as shown in Table 4.

Table 4. Parameters reference level.

Parameters Level 1 Level 2 Level 3 Level 4

Npop 20 30 40 50
T 50 100 150 200
α 0.4 0.45 0.5 0.55

Performing a comprehensive evaluation of all parameter combinations requires 34 = 81
experiments, which can be a significant computational burden. To efficiently perform pa-
rameters calibration, we decide to use the Taguchi method to form an orthogonal array,
allowing us to evaluate the performance of ESCSO-GRNN parameters in relatively fewer
experiments. Moreover, we use the relative percentage deviation (RPD) as an evalua-
tion metric to determine the performance of the ESCSO-GRNN model under different
parameter combinations.

The Taguchi method is an experimental design approach that constructs orthogonal
arrays, enabling a comprehensive understanding of parameters influences with fewer
experiments [45]. In this case, we use the L16 orthogonal array of the Taguchi method,
which means we only need 16 experiments to assess the performance of ESCSO-GRNN
under different parameter combinations.

Using the relative percentage deviation (RPD) to evaluate ESCSO-GRNN’s perfor-
mance is a common practice. The RPD calculation formula is shown in Equation (20),
helping us measure the accuracy of the model’s predictions. By calculating RPD for differ-
ent parameter combinations, we can find the optimal parameter settings that optimize the
ESCSO-GRNN model.

RPD =
AlgSol − MinSol

MinSol
(20)

where MinSol is the minimum value from the algorithm in all the experiments and AlgSol
is the value from the algorithm in each experiment.
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After implementing the Taguchi method, we only need to perform 16 experiments, sav-
ing a considerable amount of computational resources compared to the full 81 experiments
while still obtaining a thorough evaluation of the ESCSO-GRNN parameters calibration.
This approach allows us to efficiently optimize the model, providing accurate and reliable
prediction capabilities for fault warning tasks in the hydroelectric power plant generator.

Additionally, for fair and effective parameter calibration, we use the K-fold cross-
validation method. This method helps us fully utilize the limited data resources, com-
prehensively evaluate the model’s performance, and reduce the bias caused by different
dataset partitions. In K-fold cross-validation, we divide the original dataset into K subsets,
where K − 1 subsets are used as the training data, and the remaining one subset is used
as the test data [47]. This process is repeated K times, with each subset serving as the
test set once while the others are training sets [47]. Finally, the results of K experiments
are averaged to obtain the model’s performance evaluation metric. The advantage of
using K-fold cross-validation is that all data is thoroughly utilized, and each sample has
an opportunity to be both training and testing data. This helps reduce the fluctuation of
evaluation results due to different data splits, enhancing evaluation stability and reliability.

By carefully calibrating the ESCSO-GRNN parameters and utilizing techniques such
as cross-validation, we can find the best parameter combination that allows the model
to perform well on both the training and test sets, thereby enhancing the accuracy and
reliability of fault warnings. This process may require multiple iterations and attempts, but
the ESCSO-GRNN model, once calibrated, becomes a more powerful and effective tool,
providing robust support for fault warning in hydroelectric power plant generators.

Combining the Taguchi experimental method and K-fold cross-validation, our param-
eter calibration process follows these specific steps:

• Divide the dataset into K = 5 subsets.
• For each parameter combination, conduct five calculations, using one subset as the

test set and the other four subsets as the training set each time.
• Record the results for each calculation.
• Take the average of the five calculations to obtain the model performance metric for

that parameter combination.
• Use the average to calculate the RPD for evaluating model performance.

The final results of the L16 experiments are shown in Table 5.

Table 5. Results of the Taguchi experiments.

Experiment No. Npop T α RPD

1 1 1 1 0.15879
2 1 2 2 0.13800
3 1 3 3 0.117996
4 1 4 4 0.131631
5 2 1 2 0.11995
6 2 2 1 0.07946
7 2 3 4 0.07176
8 2 4 3 0.08137
9 3 1 3 0.09732
10 3 2 4 0.09540
11 3 3 1 0.10928
12 3 4 2 0
13 4 1 4 0.08622
14 4 2 3 0.08190
15 4 3 2 0.07140
16 4 4 1 0.06161

Finally, after obtaining the average values of each parameter level across different
experiments, the calibration results for each parameter are shown in Figure 4.
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Figures 5–15 show the results of the testing set for these eleven measurement points.
It can be observed that our ESCSO-GRNN model achieves high accuracy and demonstrates
effective fault warning capabilities.

After obtaining the predicted values, we calculate the difference between the actual
values and the predicted values for the main observation points when three types of faults
occur. If the difference exceeds the fault warning threshold for a specific fault type, the
corresponding fault will be identified, and a warning signal will be issued.

Next, we conduct fault warning tests based on twenty sets of data collected for each of
the three types of faults in the generator using the ESCSO-GRNN model. The final results
are shown in Table 6.

Table 6. Test results of fault warning.

Type of Faults Accuracy Rate

Loose stator core 53/60 (88%)
Loose stator tooth plate 56/60 (93%)

Stator overload 55/60 (92%)

According to the Table 6, it is evident that our ESCSO-GRNN model performs ex-
ceptionally well in fault warning. For the “Loose stator core” and “Stator overload” fault
types, the accuracy rates both exceed 85%. Furthermore, for the “Loose stator tooth plate”
fault warning, the accuracy rate is an impressive 93%. These results demonstrate the high
reliability and accuracy of our fault warning system in identifying different types of faults,
providing effective assurance for the safe operation of the generator.

5. Comparison with Other Advanced Algorithms

In this section, we undertake a thorough analysis of ESCSO-GRNN. Initially, we
examine its predictive efficacy (Section 5.1) and subsequently, we apply various algorithms
to fault warning, comparing their respective success rates to gain comprehensive insights
(Section 5.2).

5.1. Comparison of Predicted Efficacy

To further validate the effectiveness of our proposed ESCSO-GRNN method, we
conduct performance comparisons with seven other algorithms: SSA-XGBoost [48], IEO-
BP [49], MSSA-SVM [20], and GA-BP [11]. Additionally, to demonstrate the efficacy of
ESCSO, we optimize GRNN using the original SCSO, social engineering optimizer [50],
and GA, with their results included in the discussion. To ensure fairness, all experiments
are conducted within the experimental environment outlined in Table 2. Initially, we
determine the optimal parameters for all algorithms, employing a combination of K-fold
cross-validation and Taguchi experimental methods for parameter calibration, as depicted
in Table 7. Due to the large number of IEO-BP parameters, we use abbreviations to represent
its parameters. Please refer to its literature for the meaning of abbreviations Moreover, to
mitigate the effects of algorithmic randomness during execution, we run each algorithm
ten times and take the average of their performance metrics to measure the performance of
these algorithms in all aspects, including RMSE, R-squared (R2), and computational time
(CPU time).

RMSE and R2 are common metrics used to evaluate the predictive performance
of models.

RMSE represents the degree of difference between predicted values and actual values.
It is calculated by squaring the differences between the model’s predicted values and the
observed values, taking the average, and then taking the square root of the result. A smaller
RMSE indicates that the model’s predictions are closer to the actual values, indicating
higher predictive accuracy.
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Table 7. Parameters settings of the algorithms used for the comparison.

IEO-BP

Fun1 = Tanh, Fun2 = ReLU, NL = 11, I = 0.92, T = 10
Maxit = 200, Npop = 50, Submit = 30, T1 = 1200, T0 = 100
A = 0.92, Number of BP network training = 1000
Training error = 0.02
Learning rate = 0.001

SSA-XGBoost, Maximum number of iterations = 200, Population size = 50, Safety
value = 0.8, Percentage of discoverers is = 65%, Percentage of alerts = 30%

SCSO-GRNN Maximum number of iterations = 200, Population size = 50

GA- GRNN Maximum number of iterations = 200, Population size = 50, Crossover
probability = 0.78, Mutation probability = 0.05

SEO-GRNN Maximum number of iterations = 200, Population size = 50, α = 0.8, β = π
9

GA-BP

Maximum number of iterations = 200, Population size = 50
Crossover probability=0.81, Mutation probability = 0.13,
Input layer to implicit layer activation function = Softsign
Implicit layer to output layer activation function = ReLU
Number of neurons in the hidden layer = 10
Number of BP network training = 1000
Training error = 0.02
Learning rate = 0.001

MSSA-SVM
Maximum number of iterations = 200, Population size =50, Safety value is
0.6, Percentage of discoverers = 70%, Percentage of alerts = 20%, Number of
K-fold crossings = 5

R2 is used to measure the model’s ability to explain the variability of the dependent
variable. It represents the proportion of the total variance explained by the model’s pre-
dicted values. R2 values range from 0 to 1, and a value closer to 1 indicates a better fit of
the model and a better ability to explain the variability of the dependent variable.

CPU time reflects the computational efficiency of each algorithm. It measures the
time consumed by the algorithm during execution. A smaller CPU time indicates that the
algorithm executes faster and completes the task in a shorter time.

In performance comparison, smaller values of RMSE and larger values of R2 are gener-
ally desired, as they indicate more accurate model predictions and better fit. Additionally,
minimizing CPU time is preferred, as it indicates higher computational efficiency, allowing
the algorithm to complete tasks in a shorter time. Therefore, in fault warning tasks, we
aim for models with low RMSE, high R2, and reduced CPU time to achieve efficient and
accurate fault warning models.

The average results of the ten runs are summarized in Table 8 and visualized in
Figure 16.

Table 8. Results of algorithms performance comparison.

Algorithms RMSE R2 CPU/s

IEO-BP 79.54 0.93 8.72
SSA-XGBoost 80.90 0.91 9.36
SCSO-GRNN 83.72 0.88 6.02

ESCSO-GRNN 76.89 0.97 6.65
GA-GRNN 79.48 0.92 8.59
SEO-GRNN 79.06 0.91 9.24

GA-BP 81.32 0.93 9.27
MSSA-SVM 78.02 0.95 10.20
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Figure 16. Statistical results of algorithms performance comparison.

Based on the above results, our ESCSO-GRNN achieves the best values for RMSE and
R2. Although its CPU time is slightly larger than that of SCSO-GRNN, the predictive results
of ESCSO-GRNN far exceed those of SCSO-GRNN. Additionally, in terms of stability,
ESCSO-GRNN demonstrates the best stability across all three metrics, which strongly
indicates the effectiveness of ESCSO-GRNN.

5.2. Comparison of Fault Warning Success Rates

Next, we compare the fault warning accuracy of the four methods, and the results
can be found in Table 9. Figure 17 displays the overall fault warning accuracy for all tasks
achieved by the four methods.

Table 9. Test results of four algorithms for fault warning.

Type of Faults IEO-BP SSA-XGBoost SCSO-GRNN ESCSO-GRNN

Loose stator core 50/60 (83%) 51/60(85%) 49/60(81%) 53/60 (88%)
Loose stator
tooth plate 52/60 (86%) 50/60(83%) 50/60(83%) 56/60 (93%)

Stator overload 53/60 (88%) 49/60(81%) 47/60(78%) 55/60 (92%)

Type of Faults GA-GRNN SEO-GRNN GA-BP MSSA-SVM

Loose stator core 51/60 (85%) 53/60(88%) 50/60(83%) 49/60 (82%)
Loose stator
tooth plate 53/60 (88%) 52/60(86%) 51/60(85%) 53/60 (88%)

Stator overload 53/60 (88%) 52/60(86%) 53/60(88%) 55/60 (92%)
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In accordance with the data presented in Table 9, a discernible pattern emerges show-
casing the accuracy performance of each individual fault prediction model across diverse
fault types. Notably, the ESCSO-GRNN model consistently outshines its counterparts,
attaining the highest accuracies across all three fault categories, namely 88%, 93%, and 92%.
Noteworthy achievements are also evident with the MSSA-SVM model, which similarly
secures the pinnacle of precision in predicting Stator overload faults. Additionally, the SEO-
GRNN model aligns itself with the ESCSO-GRNN in achieving parity when addressing
Loose stator core faults. These collective findings undeniably underscore the effectiveness
of the proposed algorithm.

Furthermore, the graphical representation in Figure 17 serves to reinforce this point,
as it vividly illustrates the substantial superiority of the ESCSO-GRNN’s fault warning ac-
curacy over the alternative three algorithms across the entire spectrum of 180 tasks. In light
of these cumulative insights, it becomes evident that the ESCSO-GRNN model consistently
demonstrates elevated precision in the context of this fault prediction task. Consequently,
it emerges as a potent contender for efficiently executing fault warning assignments.

6. Conclusions and Future Work

This paper introduces a fault warning approach that combines ESCSO and GRNN
to tackle challenges in complex industrial systems and growing fault risks. The method
is applied to predict specific generator faults, validated with real industrial data, and
demonstrates superior performance compared to state-of-the-art methods. Our approach
reduces RMSE by approximately 4.68%, with a maximum of 8.88%, and increases R2 by
5.71% on average, up to 10.23%. Additionally, it excels in program execution time, showing
a 26.4% average improvement, and achieves around 6.24% average improvement in fault
warning success rate compared to other methods. This provides a new perspective and
approach for fault early warning research in the industrial sector. It enables timely detection
of anomalies and the implementation of preventive measures, reducing production inter-
ruptions and maintenance costs, while simultaneously enhancing production efficiency
and equipment reliability.

However, some limitations should be acknowledged. The study’s focus is limited
to particular generators and industrial systems, potentially varying across types. And
validation is restricted to specific systems and geographic regions. While significant accu-
racy improvement is achieved, the study mainly explores specific parameter optimization,
overlooking other combinations’ impact. In addition, the study relies on specific data,
potentially affecting long-term applicability as system behavior evolves.

Future research can explore various avenues to more comprehensively validate and
enhance the practicality and adaptability of our proposed method. Expanding the scope
of applicability validation by conducting experiments on a broader range of industrial
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equipment types and diverse geographical contexts will provide robust confirmation of
the method’s universal applicability across different conditions. Moreover, experimenting
with improved parameter combinations could further elevate prediction performance. By
systematically testing diverse parameter configurations and optimization strategies while
accounting for potential dynamic influences, the method’s adaptability to changing envi-
ronments can be enhanced. Considering the costs associated with subsequent maintenance
and updates is crucial for long-term viability, as new data, conditions, and requirements
emerge, the continued adaptability of the method is pivotal [51,52]. Simplifying the pro-
posed method could also be a focus of future research, taking into account factors like
deployment complexity, resource requirements, and operational usability [53,54]. Other
advanced metaheuristic algorithms, such as the novel diffusion memetic optimizer [55] and
online learning-based evolutionary multi-objective algorithms [56], could be considered for
hybridization with ESCSO. Integrating these developments, which are used for other com-
plex problems, could further enhance its efficiency. Additionally, the incorporation of more
evolutionary strategies into ESCSO can be explored to promote its performance [51,57,58].
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